// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) syntax = "proto2"; package ceres.internal; message BlockProto { // The span of the block. optional int32 size = 1; // Position along the row or column (depending on storage orientation). optional int32 position = 2; } message CellProto { // Column or row block id as appropriate. optional int32 block_id = 1; // Position in the values array the cell is located. Each cell is stored as a // row-major chunk inside the values array. optional int32 position = 2; } // A single row or column, depending on the matrix type. message CompressedRowProto { optional BlockProto block = 2; repeated CellProto cells = 1; } message BlockStructureProto { repeated BlockProto cols = 1; repeated CompressedRowProto rows = 2; } // A block sparse matrix, either in column major or row major format. message BlockSparseMatrixProto { optional int64 num_rows = 2; optional int64 num_cols = 3; optional int64 num_nonzeros = 4; repeated double values = 1 [packed=true]; optional BlockStructureProto block_structure = 5; } message TripletSparseMatrixProto { optional int64 num_rows = 4; optional int64 num_cols = 5; optional int64 num_nonzeros = 6; // The data is stored as three arrays. For each i, values(i) is stored at the // location (rows(i), cols(i)). If the there are multiple entries with the // same (rows(i), cols(i)), the values entries corresponding to them are // summed up. repeated int64 rows = 1 [packed=true]; repeated int64 cols = 2 [packed=true]; repeated double values = 3 [packed=true]; } message CompressedRowSparseMatrixProto { optional int64 num_rows = 4; optional int64 num_cols = 5; repeated int64 rows = 1 [packed=true]; repeated int64 cols = 2 [packed=true]; repeated double values = 3 [packed=true]; } message DenseSparseMatrixProto { optional int64 num_rows = 1; optional int64 num_cols = 2; // Entries are stored in row-major order. repeated double values = 3 [packed=true]; } // A sparse matrix. It is a union; only one field is permitted. If new sparse // implementations are added, update this proto accordingly. message SparseMatrixProto { optional TripletSparseMatrixProto triplet_matrix = 1; optional BlockSparseMatrixProto block_matrix = 2; optional CompressedRowSparseMatrixProto compressed_row_matrix = 3; optional DenseSparseMatrixProto dense_matrix = 4; } // A linear least squares problem. // // Given a matrix A, an optional diagonal matrix D as a vector, and a vector b, // the proto represents the following linear least squares problem. // // | A | x = | b | // | D | | 0 | // // If D is empty, then the problem is considered to be // // A x = b // // The desired solution for the problem is the vector x that solves the // following optimization problem: // // arg min_x ||Ax - b||^2 + ||Dx||^2 // // If x is present, then it is the expected solution to the // problem. The dimensions of A, b, x, and D should be consistent. message LinearLeastSquaresProblemProto { optional SparseMatrixProto a = 1; repeated double b = 2 [packed=true]; repeated double d = 3 [packed=true]; repeated double x = 4 [packed=true]; // If the problem is of SfM type, i.e it has a generalized // bi-partite structure, then num_eliminate_blocks is the number of // column blocks that are to eliminated in the formation of the // Schur complement. For more details see // explicit_schur_complement_solver.h. optional int32 num_eliminate_blocks = 5; }