// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/levenberg_marquardt_strategy.h" #include "ceres/linear_solver.h" #include "ceres/trust_region_strategy.h" #include "glog/logging.h" #include "gmock/gmock.h" #include "gmock/mock-log.h" #include "gtest/gtest.h" using testing::AllOf; using testing::AnyNumber; using testing::HasSubstr; using testing::ScopedMockLog; using testing::_; namespace ceres { namespace internal { const double kTolerance = 1e-16; // Linear solver that takes as input a vector and checks that the // caller passes the same vector as LinearSolver::PerSolveOptions.D. class RegularizationCheckingLinearSolver : public DenseSparseMatrixSolver { public: RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal) : num_cols_(num_cols), diagonal_(diagonal) { } virtual ~RegularizationCheckingLinearSolver(){} private: virtual LinearSolver::Summary SolveImpl( DenseSparseMatrix* A, const double* b, const LinearSolver::PerSolveOptions& per_solve_options, double* x) { CHECK_NOTNULL(per_solve_options.D); for (int i = 0; i < num_cols_; ++i) { EXPECT_NEAR(per_solve_options.D[i], diagonal_[i], kTolerance) << i << " " << per_solve_options.D[i] << " " << diagonal_[i]; } return LinearSolver::Summary(); } const int num_cols_; const double* diagonal_; }; TEST(LevenbergMarquardtStrategy, AcceptRejectStepRadiusScaling) { TrustRegionStrategy::Options options; options.initial_radius = 2.0; options.max_radius = 20.0; options.lm_min_diagonal = 1e-8; options.lm_max_diagonal = 1e8; // We need a non-null pointer here, so anything should do. scoped_ptr<LinearSolver> linear_solver( new RegularizationCheckingLinearSolver(0, NULL)); options.linear_solver = linear_solver.get(); LevenbergMarquardtStrategy lms(options); EXPECT_EQ(lms.Radius(), options.initial_radius); lms.StepRejected(0.0); EXPECT_EQ(lms.Radius(), 1.0); lms.StepRejected(-1.0); EXPECT_EQ(lms.Radius(), 0.25); lms.StepAccepted(1.0); EXPECT_EQ(lms.Radius(), 0.25 * 3.0); lms.StepAccepted(1.0); EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0); lms.StepAccepted(0.25); EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125); lms.StepAccepted(1.0); EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0); lms.StepAccepted(1.0); EXPECT_EQ(lms.Radius(), 0.25 * 3.0 * 3.0 / 1.125 * 3.0 * 3.0); lms.StepAccepted(1.0); EXPECT_EQ(lms.Radius(), options.max_radius); } TEST(LevenbergMarquardtStrategy, CorrectDiagonalToLinearSolver) { Matrix jacobian(2,3); jacobian.setZero(); jacobian(0,0) = 0.0; jacobian(0,1) = 1.0; jacobian(1,1) = 1.0; jacobian(0,2) = 100.0; double residual = 1.0; double x[3]; DenseSparseMatrix dsm(jacobian); TrustRegionStrategy::Options options; options.initial_radius = 2.0; options.max_radius = 20.0; options.lm_min_diagonal = 1e-2; options.lm_max_diagonal = 1e2; double diagonal[3]; diagonal[0] = options.lm_min_diagonal; diagonal[1] = 2.0; diagonal[2] = options.lm_max_diagonal; for (int i = 0; i < 3; ++i) { diagonal[i] = sqrt(diagonal[i] / options.initial_radius); } RegularizationCheckingLinearSolver linear_solver(3, diagonal); options.linear_solver = &linear_solver; LevenbergMarquardtStrategy lms(options); TrustRegionStrategy::PerSolveOptions pso; { ScopedMockLog log; EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber()); EXPECT_CALL(log, Log(WARNING, _, HasSubstr("Failed to compute a finite step."))); TrustRegionStrategy::Summary summary = lms.ComputeStep(pso, &dsm, &residual, x); EXPECT_EQ(summary.termination_type, FAILURE); } } } // namespace internal } // namespace ceres