// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: moll.markus@arcor.de (Markus Moll) #include <limits> #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/dense_qr_solver.h" #include "ceres/dogleg_strategy.h" #include "ceres/linear_solver.h" #include "ceres/trust_region_strategy.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { namespace { class Fixture : public testing::Test { protected: scoped_ptr<DenseSparseMatrix> jacobian_; Vector residual_; Vector x_; TrustRegionStrategy::Options options_; }; // A test problem where // // J^T J = Q diag([1 2 4 8 16 32]) Q^T // // where Q is a randomly chosen orthonormal basis of R^6. // The residual is chosen so that the minimum of the quadratic function is // at (1, 1, 1, 1, 1, 1). It is therefore at a distance of sqrt(6) ~ 2.45 // from the origin. class DoglegStrategyFixtureEllipse : public Fixture { protected: virtual void SetUp() { Matrix basis(6, 6); // The following lines exceed 80 characters for better readability. basis << -0.1046920933796121, -0.7449367449921986, -0.4190744502875876, -0.4480450716142566, 0.2375351607929440, -0.0363053418882862, 0.4064975684355914, 0.2681113508511354, -0.7463625494601520, -0.0803264850508117, -0.4463149623021321, 0.0130224954867195, -0.5514387729089798, 0.1026621026168657, -0.5008316122125011, 0.5738122212666414, 0.2974664724007106, 0.1296020877535158, 0.5037835370947156, 0.2668479925183712, -0.1051754618492798, -0.0272739396578799, 0.7947481647088278, -0.1776623363955670, -0.4005458426625444, 0.2939330589634109, -0.0682629380550051, -0.2895448882503687, -0.0457239396341685, -0.8139899477847840, -0.3247764582762654, 0.4528151365941945, -0.0276683863102816, -0.6155994592510784, 0.1489240599972848, 0.5362574892189350; Vector Ddiag(6); Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0; Matrix sqrtD = Ddiag.array().sqrt().matrix().asDiagonal(); Matrix jacobian = sqrtD * basis; jacobian_.reset(new DenseSparseMatrix(jacobian)); Vector minimum(6); minimum << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0; residual_ = -jacobian * minimum; x_.resize(6); x_.setZero(); options_.lm_min_diagonal = 1.0; options_.lm_max_diagonal = 1.0; } }; // A test problem where // // J^T J = diag([1 2 4 8 16 32]) . // // The residual is chosen so that the minimum of the quadratic function is // at (0, 0, 1, 0, 0, 0). It is therefore at a distance of 1 from the origin. // The gradient at the origin points towards the global minimum. class DoglegStrategyFixtureValley : public Fixture { protected: virtual void SetUp() { Vector Ddiag(6); Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0; Matrix jacobian = Ddiag.asDiagonal(); jacobian_.reset(new DenseSparseMatrix(jacobian)); Vector minimum(6); minimum << 0.0, 0.0, 1.0, 0.0, 0.0, 0.0; residual_ = -jacobian * minimum; x_.resize(6); x_.setZero(); options_.lm_min_diagonal = 1.0; options_.lm_max_diagonal = 1.0; } }; const double kTolerance = 1e-14; const double kToleranceLoose = 1e-5; const double kEpsilon = std::numeric_limits<double>::epsilon(); } // namespace // The DoglegStrategy must never return a step that is longer than the current // trust region radius. TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedTraditional) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); // The global minimum is at (1, 1, ..., 1), so the distance to it is sqrt(6.0). // By restricting the trust region to a radius of 2.0, we test if the trust // region is actually obeyed. options_.dogleg_type = TRADITIONAL_DOGLEG; options_.initial_radius = 2.0; options_.max_radius = 2.0; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); EXPECT_NE(summary.termination_type, FAILURE); EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon)); } TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedSubspace) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); options_.dogleg_type = SUBSPACE_DOGLEG; options_.initial_radius = 2.0; options_.max_radius = 2.0; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); EXPECT_NE(summary.termination_type, FAILURE); EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon)); } TEST_F(DoglegStrategyFixtureEllipse, CorrectGaussNewtonStep) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); options_.dogleg_type = SUBSPACE_DOGLEG; options_.initial_radius = 10.0; options_.max_radius = 10.0; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); EXPECT_NE(summary.termination_type, FAILURE); EXPECT_NEAR(x_(0), 1.0, kToleranceLoose); EXPECT_NEAR(x_(1), 1.0, kToleranceLoose); EXPECT_NEAR(x_(2), 1.0, kToleranceLoose); EXPECT_NEAR(x_(3), 1.0, kToleranceLoose); EXPECT_NEAR(x_(4), 1.0, kToleranceLoose); EXPECT_NEAR(x_(5), 1.0, kToleranceLoose); } // Test if the subspace basis is a valid orthonormal basis of the space spanned // by the gradient and the Gauss-Newton point. TEST_F(DoglegStrategyFixtureEllipse, ValidSubspaceBasis) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); options_.dogleg_type = SUBSPACE_DOGLEG; options_.initial_radius = 2.0; options_.max_radius = 2.0; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); // Check if the basis is orthonormal. const Matrix basis = strategy.subspace_basis(); EXPECT_NEAR(basis.col(0).norm(), 1.0, kTolerance); EXPECT_NEAR(basis.col(1).norm(), 1.0, kTolerance); EXPECT_NEAR(basis.col(0).dot(basis.col(1)), 0.0, kTolerance); // Check if the gradient projects onto itself. const Vector gradient = strategy.gradient(); EXPECT_NEAR((gradient - basis*(basis.transpose()*gradient)).norm(), 0.0, kTolerance); // Check if the Gauss-Newton point projects onto itself. const Vector gn = strategy.gauss_newton_step(); EXPECT_NEAR((gn - basis*(basis.transpose()*gn)).norm(), 0.0, kTolerance); } // Test if the step is correct if the gradient and the Gauss-Newton step point // in the same direction and the Gauss-Newton step is outside the trust region, // i.e. the trust region is active. TEST_F(DoglegStrategyFixtureValley, CorrectStepLocalOptimumAlongGradient) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); options_.dogleg_type = SUBSPACE_DOGLEG; options_.initial_radius = 0.25; options_.max_radius = 0.25; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); EXPECT_NE(summary.termination_type, FAILURE); EXPECT_NEAR(x_(0), 0.0, kToleranceLoose); EXPECT_NEAR(x_(1), 0.0, kToleranceLoose); EXPECT_NEAR(x_(2), options_.initial_radius, kToleranceLoose); EXPECT_NEAR(x_(3), 0.0, kToleranceLoose); EXPECT_NEAR(x_(4), 0.0, kToleranceLoose); EXPECT_NEAR(x_(5), 0.0, kToleranceLoose); } // Test if the step is correct if the gradient and the Gauss-Newton step point // in the same direction and the Gauss-Newton step is inside the trust region, // i.e. the trust region is inactive. TEST_F(DoglegStrategyFixtureValley, CorrectStepGlobalOptimumAlongGradient) { scoped_ptr<LinearSolver> linear_solver( new DenseQRSolver(LinearSolver::Options())); options_.linear_solver = linear_solver.get(); options_.dogleg_type = SUBSPACE_DOGLEG; options_.initial_radius = 2.0; options_.max_radius = 2.0; DoglegStrategy strategy(options_); TrustRegionStrategy::PerSolveOptions pso; TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data()); EXPECT_NE(summary.termination_type, FAILURE); EXPECT_NEAR(x_(0), 0.0, kToleranceLoose); EXPECT_NEAR(x_(1), 0.0, kToleranceLoose); EXPECT_NEAR(x_(2), 1.0, kToleranceLoose); EXPECT_NEAR(x_(3), 0.0, kToleranceLoose); EXPECT_NEAR(x_(4), 0.0, kToleranceLoose); EXPECT_NEAR(x_(5), 0.0, kToleranceLoose); } } // namespace internal } // namespace ceres