// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // TODO(keir): Implement a generic "compare sparse matrix implementations" test // suite that can compare all the implementations. Then this file would shrink // in size. #include "ceres/dense_sparse_matrix.h" #include "gtest/gtest.h" #include "ceres/casts.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/matrix_proto.h" #include "ceres/triplet_sparse_matrix.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" namespace ceres { namespace internal { void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { EXPECT_EQ(a->num_rows(), b->num_rows()); EXPECT_EQ(a->num_cols(), b->num_cols()); int num_rows = a->num_rows(); int num_cols = a->num_cols(); for (int i = 0; i < num_cols; ++i) { Vector x = Vector::Zero(num_cols); x(i) = 1.0; Vector y_a = Vector::Zero(num_rows); Vector y_b = Vector::Zero(num_rows); a->RightMultiply(x.data(), y_a.data()); b->RightMultiply(x.data(), y_b.data()); EXPECT_EQ((y_a - y_b).norm(), 0); } } class DenseSparseMatrixTest : public ::testing::Test { protected : virtual void SetUp() { scoped_ptr<LinearLeastSquaresProblem> problem( CreateLinearLeastSquaresProblemFromId(1)); CHECK_NOTNULL(problem.get()); tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); dsm.reset(new DenseSparseMatrix(*tsm)); num_rows = tsm->num_rows(); num_cols = tsm->num_cols(); } int num_rows; int num_cols; scoped_ptr<TripletSparseMatrix> tsm; scoped_ptr<DenseSparseMatrix> dsm; }; TEST_F(DenseSparseMatrixTest, RightMultiply) { CompareMatrices(tsm.get(), dsm.get()); // Try with a not entirely zero vector to verify column interactions, which // could be masked by a subtle bug when using the elementary vectors. Vector a(num_cols); for (int i = 0; i < num_cols; i++) { a(i) = i; } Vector b1 = Vector::Zero(num_rows); Vector b2 = Vector::Zero(num_rows); tsm->RightMultiply(a.data(), b1.data()); dsm->RightMultiply(a.data(), b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } TEST_F(DenseSparseMatrixTest, LeftMultiply) { for (int i = 0; i < num_rows; ++i) { Vector a = Vector::Zero(num_rows); a(i) = 1.0; Vector b1 = Vector::Zero(num_cols); Vector b2 = Vector::Zero(num_cols); tsm->LeftMultiply(a.data(), b1.data()); dsm->LeftMultiply(a.data(), b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } // Try with a not entirely zero vector to verify column interactions, which // could be masked by a subtle bug when using the elementary vectors. Vector a(num_rows); for (int i = 0; i < num_rows; i++) { a(i) = i; } Vector b1 = Vector::Zero(num_cols); Vector b2 = Vector::Zero(num_cols); tsm->LeftMultiply(a.data(), b1.data()); dsm->LeftMultiply(a.data(), b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } TEST_F(DenseSparseMatrixTest, ColumnNorm) { Vector b1 = Vector::Zero(num_cols); Vector b2 = Vector::Zero(num_cols); tsm->SquaredColumnNorm(b1.data()); dsm->SquaredColumnNorm(b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } TEST_F(DenseSparseMatrixTest, Scale) { Vector scale(num_cols); for (int i = 0; i < num_cols; ++i) { scale(i) = i + 1; } tsm->ScaleColumns(scale.data()); dsm->ScaleColumns(scale.data()); CompareMatrices(tsm.get(), dsm.get()); } #ifndef CERES_NO_PROTOCOL_BUFFERS TEST_F(DenseSparseMatrixTest, Serialization) { SparseMatrixProto proto; dsm->ToProto(&proto); DenseSparseMatrix n(proto); ASSERT_EQ(dsm->num_rows(), n.num_rows()); ASSERT_EQ(dsm->num_cols(), n.num_cols()); ASSERT_EQ(dsm->num_nonzeros(), n.num_nonzeros()); for (int i = 0; i < n.num_rows() + 1; ++i) { ASSERT_EQ(dsm->values()[i], proto.dense_matrix().values(i)); } } #endif TEST_F(DenseSparseMatrixTest, ToDenseMatrix) { Matrix tsm_dense; Matrix dsm_dense; tsm->ToDenseMatrix(&tsm_dense); dsm->ToDenseMatrix(&dsm_dense); EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0); } // TODO(keir): Make this work without protocol buffers. #ifndef CERES_NO_PROTOCOL_BUFFERS TEST_F(DenseSparseMatrixTest, AppendDiagonal) { DenseSparseMatrixProto proto; proto.set_num_rows(3); proto.set_num_cols(3); for (int i = 0; i < 9; ++i) { proto.add_values(i); } SparseMatrixProto outer_proto; *outer_proto.mutable_dense_matrix() = proto; DenseSparseMatrix dsm(outer_proto); double diagonal[] = { 10, 11, 12 }; dsm.AppendDiagonal(diagonal); // Verify the diagonal got added. Matrix m = dsm.matrix(); EXPECT_EQ(6, m.rows()); EXPECT_EQ(3, m.cols()); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { EXPECT_EQ(3 * i + j, m(i, j)); if (i == j) { EXPECT_EQ(10 + i, m(i + 3, j)); } else { EXPECT_EQ(0, m(i + 3, j)); } } } // Verify the diagonal gets removed. dsm.RemoveDiagonal(); m = dsm.matrix(); EXPECT_EQ(3, m.rows()); EXPECT_EQ(3, m.cols()); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { EXPECT_EQ(3 * i + j, m(i, j)); } } } #endif } // namespace internal } // namespace ceres