// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/corrector.h" #include <algorithm> #include <cmath> #include <cstring> #include <cstdlib> #include "gtest/gtest.h" #include "ceres/random.h" #include "ceres/internal/eigen.h" namespace ceres { namespace internal { // If rho[1] is zero, the Corrector constructor should crash. TEST(Corrector, ZeroGradientDeathTest) { const double kRho[] = {0.0, 0.0, 0.0}; EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);}, ".*"); } // If rho[1] is negative, the Corrector constructor should crash. TEST(Corrector, NegativeGradientDeathTest) { const double kRho[] = {0.0, -0.1, 0.0}; EXPECT_DEATH_IF_SUPPORTED({Corrector c(1.0, kRho);}, ".*"); } TEST(Corrector, ScalarCorrection) { double residuals = sqrt(3.0); double jacobian = 10.0; double sq_norm = residuals * residuals; const double kRho[] = {sq_norm, 0.1, -0.01}; // In light of the rho'' < 0 clamping now implemented in // corrector.cc, alpha = 0 whenever rho'' < 0. const double kAlpha = 0.0; // Thus the expected value of the residual is // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha). const double kExpectedResidual = residuals * sqrt(kRho[1]) / (1 - kAlpha); // The jacobian in this case will be // sqrt(kRho[1]) * (1 - kAlpha) * jacobian. const double kExpectedJacobian = sqrt(kRho[1]) * (1 - kAlpha) * jacobian; Corrector c(sq_norm, kRho); c.CorrectJacobian(1.0, 1.0, &residuals, &jacobian); c.CorrectResiduals(1.0, &residuals); ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); } TEST(Corrector, ScalarCorrectionZeroResidual) { double residuals = 0.0; double jacobian = 10.0; double sq_norm = residuals * residuals; const double kRho[] = {0.0, 0.1, -0.01}; Corrector c(sq_norm, kRho); // The alpha equation is // 1/2 alpha^2 - alpha + 0.0 = 0. // i.e. alpha = 1.0 - sqrt(1.0). // alpha = 0.0. // Thus the expected value of the residual is // residual[i] * sqrt(kRho[1]) const double kExpectedResidual = residuals * sqrt(kRho[1]); // The jacobian in this case will be // sqrt(kRho[1]) * jacobian. const double kExpectedJacobian = sqrt(kRho[1]) * jacobian; c.CorrectJacobian(1, 1, &residuals, &jacobian); c.CorrectResiduals(1, &residuals); ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); } // Scaling behaviour for one dimensional functions. TEST(Corrector, ScalarCorrectionAlphaClamped) { double residuals = sqrt(3.0); double jacobian = 10.0; double sq_norm = residuals * residuals; const double kRho[] = {3, 0.1, -0.1}; // rho[2] < 0 -> alpha = 0.0 const double kAlpha = 0.0; // Thus the expected value of the residual is // residual[i] * sqrt(kRho[1]) / (1.0 - kAlpha). const double kExpectedResidual = residuals * sqrt(kRho[1]) / (1.0 - kAlpha); // The jacobian in this case will be scaled by // sqrt(rho[1]) * (1 - alpha) * J. const double kExpectedJacobian = sqrt(kRho[1]) * (1.0 - kAlpha) * jacobian; Corrector c(sq_norm, kRho); c.CorrectJacobian(1, 1, &residuals, &jacobian); c.CorrectResiduals(1, &residuals); ASSERT_NEAR(residuals, kExpectedResidual, 1e-6); ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); } // Test that the corrected multidimensional residual and jacobians // match the expected values and the resulting modified normal // equations match the robustified gauss newton approximation. TEST(Corrector, MultidimensionalGaussNewtonApproximation) { double residuals[3]; double jacobian[2 * 3]; double rho[3]; // Eigen matrix references for linear algebra. MatrixRef jac(jacobian, 3, 2); VectorRef res(residuals, 3); // Ground truth values of the modified jacobian and residuals. Matrix g_jac(3, 2); Vector g_res(3); // Ground truth values of the robustified Gauss-Newton // approximation. Matrix g_hess(2, 2); Vector g_grad(2); // Corrected hessian and gradient implied by the modified jacobian // and hessians. Matrix c_hess(2, 2); Vector c_grad(2); srand(5); for (int iter = 0; iter < 10000; ++iter) { // Initialize the jacobian and residual. for (int i = 0; i < 2 * 3; ++i) jacobian[i] = RandDouble(); for (int i = 0; i < 3; ++i) residuals[i] = RandDouble(); const double sq_norm = res.dot(res); rho[0] = sq_norm; rho[1] = RandDouble(); rho[2] = 2.0 * RandDouble() - 1.0; // If rho[2] > 0, then the curvature correction to the correction // and the gauss newton approximation will match. Otherwise, we // will clamp alpha to 0. const double kD = 1 + 2 * rho[2] / rho[1] * sq_norm; const double kAlpha = (rho[2] > 0.0) ? 1 - sqrt(kD) : 0.0; // Ground truth values. g_res = sqrt(rho[1]) / (1.0 - kAlpha) * res; g_jac = sqrt(rho[1]) * (jac - kAlpha / sq_norm * res * res.transpose() * jac); g_grad = rho[1] * jac.transpose() * res; g_hess = rho[1] * jac.transpose() * jac + 2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac; Corrector c(sq_norm, rho); c.CorrectJacobian(3, 2, residuals, jacobian); c.CorrectResiduals(3, residuals); // Corrected gradient and hessian. c_grad = jac.transpose() * res; c_hess = jac.transpose() * jac; ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); } } TEST(Corrector, MultidimensionalGaussNewtonApproximationZeroResidual) { double residuals[3]; double jacobian[2 * 3]; double rho[3]; // Eigen matrix references for linear algebra. MatrixRef jac(jacobian, 3, 2); VectorRef res(residuals, 3); // Ground truth values of the modified jacobian and residuals. Matrix g_jac(3, 2); Vector g_res(3); // Ground truth values of the robustified Gauss-Newton // approximation. Matrix g_hess(2, 2); Vector g_grad(2); // Corrected hessian and gradient implied by the modified jacobian // and hessians. Matrix c_hess(2, 2); Vector c_grad(2); srand(5); for (int iter = 0; iter < 10000; ++iter) { // Initialize the jacobian. for (int i = 0; i < 2 * 3; ++i) jacobian[i] = RandDouble(); // Zero residuals res.setZero(); const double sq_norm = res.dot(res); rho[0] = sq_norm; rho[1] = RandDouble(); rho[2] = 2 * RandDouble() - 1.0; // Ground truth values. g_res = sqrt(rho[1]) * res; g_jac = sqrt(rho[1]) * jac; g_grad = rho[1] * jac.transpose() * res; g_hess = rho[1] * jac.transpose() * jac + 2.0 * rho[2] * jac.transpose() * res * res.transpose() * jac; Corrector c(sq_norm, rho); c.CorrectJacobian(3, 2, residuals, jacobian); c.CorrectResiduals(3, residuals); // Corrected gradient and hessian. c_grad = jac.transpose() * res; c_hess = jac.transpose() * jac; ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); ASSERT_NEAR((g_hess - c_hess).norm(), 0.0, 1e-10); } } } // namespace internal } // namespace ceres