// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/corrector.h" #include <cstddef> #include <cmath> #include "ceres/internal/eigen.h" #include "glog/logging.h" namespace ceres { namespace internal { Corrector::Corrector(double sq_norm, const double rho[3]) { CHECK_GE(sq_norm, 0.0); CHECK_GT(rho[1], 0.0); sqrt_rho1_ = sqrt(rho[1]); // If sq_norm = 0.0, the correction becomes trivial, the residual // and the jacobian are scaled by the squareroot of the derivative // of rho. Handling this case explicitly avoids the divide by zero // error that would occur below. // // The case where rho'' < 0 also gets special handling. Technically // it shouldn't, and the computation of the scaling should proceed // as below, however we found in experiments that applying the // curvature correction when rho'' < 0, which is the case when we // are in the outlier region slows down the convergence of the // algorithm significantly. // // Thus, we have divided the action of the robustifier into two // parts. In the inliner region, we do the full second order // correction which re-wights the gradient of the function by the // square root of the derivative of rho, and the Gauss-Newton // Hessian gets both the scaling and the rank-1 curvature // correction. Normaly, alpha is upper bounded by one, but with this // change, alpha is bounded above by zero. // // Empirically we have observed that the full Triggs correction and // the clamped correction both start out as very good approximations // to the loss function when we are in the convex part of the // function, but as the function starts transitioning from convex to // concave, the Triggs approximation diverges more and more and // ultimately becomes linear. The clamped Triggs model however // remains quadratic. // // The reason why the Triggs approximation becomes so poor is // because the curvature correction that it applies to the gauss // newton hessian goes from being a full rank correction to a rank // deficient correction making the inversion of the Hessian fraught // with all sorts of misery and suffering. // // The clamped correction retains its quadratic nature and inverting it // is always well formed. if ((sq_norm == 0.0) || (rho[2] <= 0.0)) { residual_scaling_ = sqrt_rho1_; alpha_sq_norm_ = 0.0; return; } // Calculate the smaller of the two solutions to the equation // // 0.5 * alpha^2 - alpha - rho'' / rho' * z'z = 0. // // Start by calculating the discriminant D. const double D = 1.0 + 2.0 * sq_norm*rho[2] / rho[1]; // Since both rho[1] and rho[2] are guaranteed to be positive at // this point, we know that D > 1.0. const double alpha = 1.0 - sqrt(D); // Calculate the constants needed by the correction routines. residual_scaling_ = sqrt_rho1_ / (1 - alpha); alpha_sq_norm_ = alpha / sq_norm; } void Corrector::CorrectResiduals(int nrow, double* residuals) { DCHECK(residuals != NULL); VectorRef r_ref(residuals, nrow); // Equation 11 in BANS. r_ref *= residual_scaling_; } void Corrector::CorrectJacobian(int nrow, int ncol, double* residuals, double* jacobian) { DCHECK(residuals != NULL); DCHECK(jacobian != NULL); ConstVectorRef r_ref(residuals, nrow); MatrixRef j_ref(jacobian, nrow, ncol); // Equation 11 in BANS. j_ref = sqrt_rho1_ * (j_ref - alpha_sq_norm_ * r_ref * (r_ref.transpose() * j_ref)); } } // namespace internal } // namespace ceres