// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/compressed_row_sparse_matrix.h" #include "ceres/casts.h" #include "ceres/crs_matrix.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/matrix_proto.h" #include "ceres/triplet_sparse_matrix.h" #include "gtest/gtest.h" namespace ceres { namespace internal { void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { EXPECT_EQ(a->num_rows(), b->num_rows()); EXPECT_EQ(a->num_cols(), b->num_cols()); int num_rows = a->num_rows(); int num_cols = a->num_cols(); for (int i = 0; i < num_cols; ++i) { Vector x = Vector::Zero(num_cols); x(i) = 1.0; Vector y_a = Vector::Zero(num_rows); Vector y_b = Vector::Zero(num_rows); a->RightMultiply(x.data(), y_a.data()); b->RightMultiply(x.data(), y_b.data()); EXPECT_EQ((y_a - y_b).norm(), 0); } } class CompressedRowSparseMatrixTest : public ::testing::Test { protected : virtual void SetUp() { scoped_ptr<LinearLeastSquaresProblem> problem( CreateLinearLeastSquaresProblemFromId(1)); CHECK_NOTNULL(problem.get()); tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); crsm.reset(new CompressedRowSparseMatrix(*tsm)); num_rows = tsm->num_rows(); num_cols = tsm->num_cols(); } int num_rows; int num_cols; scoped_ptr<TripletSparseMatrix> tsm; scoped_ptr<CompressedRowSparseMatrix> crsm; }; TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { CompareMatrices(tsm.get(), crsm.get()); } TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) { for (int i = 0; i < num_rows; ++i) { Vector a = Vector::Zero(num_rows); a(i) = 1.0; Vector b1 = Vector::Zero(num_cols); Vector b2 = Vector::Zero(num_cols); tsm->LeftMultiply(a.data(), b1.data()); crsm->LeftMultiply(a.data(), b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } } TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) { Vector b1 = Vector::Zero(num_cols); Vector b2 = Vector::Zero(num_cols); tsm->SquaredColumnNorm(b1.data()); crsm->SquaredColumnNorm(b2.data()); EXPECT_EQ((b1 - b2).norm(), 0); } TEST_F(CompressedRowSparseMatrixTest, Scale) { Vector scale(num_cols); for (int i = 0; i < num_cols; ++i) { scale(i) = i + 1; } tsm->ScaleColumns(scale.data()); crsm->ScaleColumns(scale.data()); CompareMatrices(tsm.get(), crsm.get()); } TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { for (int i = 0; i < num_rows; ++i) { tsm->Resize(num_rows - i, num_cols); crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); CompareMatrices(tsm.get(), crsm.get()); } } TEST_F(CompressedRowSparseMatrixTest, AppendRows) { for (int i = 0; i < num_rows; ++i) { TripletSparseMatrix tsm_appendage(*tsm); tsm_appendage.Resize(i, num_cols); tsm->AppendRows(tsm_appendage); CompressedRowSparseMatrix crsm_appendage(tsm_appendage); crsm->AppendRows(crsm_appendage); CompareMatrices(tsm.get(), crsm.get()); } } #ifndef CERES_NO_PROTOCOL_BUFFERS TEST_F(CompressedRowSparseMatrixTest, Serialization) { SparseMatrixProto proto; crsm->ToProto(&proto); CompressedRowSparseMatrix n(proto); ASSERT_EQ(n.num_rows(), crsm->num_rows()); ASSERT_EQ(n.num_cols(), crsm->num_cols()); ASSERT_EQ(n.num_nonzeros(), crsm->num_nonzeros()); for (int i = 0; i < n.num_rows() + 1; ++i) { ASSERT_EQ(crsm->rows()[i], proto.compressed_row_matrix().rows(i)); ASSERT_EQ(crsm->rows()[i], n.rows()[i]); } for (int i = 0; i < crsm->num_nonzeros(); ++i) { ASSERT_EQ(crsm->cols()[i], proto.compressed_row_matrix().cols(i)); ASSERT_EQ(crsm->cols()[i], n.cols()[i]); ASSERT_EQ(crsm->values()[i], proto.compressed_row_matrix().values(i)); ASSERT_EQ(crsm->values()[i], n.values()[i]); } } #endif TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { Matrix tsm_dense; Matrix crsm_dense; tsm->ToDenseMatrix(&tsm_dense); crsm->ToDenseMatrix(&crsm_dense); EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); } TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { CRSMatrix crs_matrix; crsm->ToCRSMatrix(&crs_matrix); EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); for (int i = 0; i < crsm->num_rows() + 1; ++i) { EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); } for (int i = 0; i < crsm->num_nonzeros(); ++i) { EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); } } } // namespace internal } // namespace ceres