/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This file contains codegen and support common to all supported * ARM variants. It is included by: * * Codegen-$(TARGET_ARCH_VARIANT).c * * which combines this common code with specific support found in the * applicable directory below this one. */ /* * Mark garbage collection card. Skip if the value we're storing is null. */ static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg) { int regCardBase = dvmCompilerAllocTemp(cUnit); int regCardNo = dvmCompilerAllocTemp(cUnit); ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0); loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable), regCardBase); opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT); storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0, kUnsignedByte); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *)target; dvmCompilerFreeTemp(cUnit, regCardBase); dvmCompilerFreeTemp(cUnit, regCardNo); } static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct, int srcSize, int tgtSize) { /* * Don't optimize the register usage since it calls out to template * functions */ RegLocation rlSrc; RegLocation rlDest; dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ if (srcSize == 1) { rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); loadValueDirectFixed(cUnit, rlSrc, r0); } else { rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); loadValueDirectWideFixed(cUnit, rlSrc, r0, r1); } LOAD_FUNC_ADDR(cUnit, r2, (int)funct); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); if (tgtSize == 1) { RegLocation rlResult; rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerGetReturn(cUnit); storeValue(cUnit, rlDest, rlResult); } else { RegLocation rlResult; rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); rlResult = dvmCompilerGetReturnWide(cUnit); storeValueWide(cUnit, rlDest, rlResult); } return false; } static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { RegLocation rlResult; void* funct; switch (mir->dalvikInsn.opcode) { case OP_ADD_FLOAT_2ADDR: case OP_ADD_FLOAT: funct = (void*) __aeabi_fadd; break; case OP_SUB_FLOAT_2ADDR: case OP_SUB_FLOAT: funct = (void*) __aeabi_fsub; break; case OP_DIV_FLOAT_2ADDR: case OP_DIV_FLOAT: funct = (void*) __aeabi_fdiv; break; case OP_MUL_FLOAT_2ADDR: case OP_MUL_FLOAT: funct = (void*) __aeabi_fmul; break; case OP_REM_FLOAT_2ADDR: case OP_REM_FLOAT: funct = (void*) fmodf; break; case OP_NEG_FLOAT: { genNegFloat(cUnit, rlDest, rlSrc1); return false; } default: return true; } dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ loadValueDirectFixed(cUnit, rlSrc1, r0); loadValueDirectFixed(cUnit, rlSrc2, r1); LOAD_FUNC_ADDR(cUnit, r2, (int)funct); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); rlResult = dvmCompilerGetReturn(cUnit); storeValue(cUnit, rlDest, rlResult); return false; } static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { RegLocation rlResult; void* funct; switch (mir->dalvikInsn.opcode) { case OP_ADD_DOUBLE_2ADDR: case OP_ADD_DOUBLE: funct = (void*) __aeabi_dadd; break; case OP_SUB_DOUBLE_2ADDR: case OP_SUB_DOUBLE: funct = (void*) __aeabi_dsub; break; case OP_DIV_DOUBLE_2ADDR: case OP_DIV_DOUBLE: funct = (void*) __aeabi_ddiv; break; case OP_MUL_DOUBLE_2ADDR: case OP_MUL_DOUBLE: funct = (void*) __aeabi_dmul; break; case OP_REM_DOUBLE_2ADDR: case OP_REM_DOUBLE: funct = (void*) (double (*)(double, double)) fmod; break; case OP_NEG_DOUBLE: { genNegDouble(cUnit, rlDest, rlSrc1); return false; } default: return true; } dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct); loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); opReg(cUnit, kOpBlx, r14lr); dvmCompilerClobberCallRegs(cUnit); rlResult = dvmCompilerGetReturnWide(cUnit); storeValueWide(cUnit, rlDest, rlResult); #if defined(WITH_SELF_VERIFICATION) cUnit->usesLinkRegister = true; #endif return false; } static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir) { Opcode opcode = mir->dalvikInsn.opcode; switch (opcode) { case OP_INT_TO_FLOAT: return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1); case OP_FLOAT_TO_INT: return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1); case OP_DOUBLE_TO_FLOAT: return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1); case OP_FLOAT_TO_DOUBLE: return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2); case OP_INT_TO_DOUBLE: return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2); case OP_DOUBLE_TO_INT: return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1); case OP_FLOAT_TO_LONG: return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2); case OP_LONG_TO_FLOAT: return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1); case OP_DOUBLE_TO_LONG: return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2); case OP_LONG_TO_DOUBLE: return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2); default: return true; } return false; } #if defined(WITH_SELF_VERIFICATION) static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode, int dest, int src1) { ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; setupResourceMasks(insn); dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn); } /* * Example where r14 (LR) is preserved around a heap access under * self-verification mode in Thumb2: * * D/dalvikvm( 1538): 0x59414c5e (0026): ldr r14, [r15pc, #220] <-hoisted * D/dalvikvm( 1538): 0x59414c62 (002a): mla r4, r0, r8, r4 * D/dalvikvm( 1538): 0x59414c66 (002e): adds r3, r4, r3 * D/dalvikvm( 1538): 0x59414c6a (0032): push <r5, r14> ---+ * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1 0x5940f494 | * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2 see above <-MEM_OP_DECODE * D/dalvikvm( 1538): 0x59414c70 (0038): ldr r10, [r9, #0] | * D/dalvikvm( 1538): 0x59414c74 (003c): pop <r5, r14> ---+ * D/dalvikvm( 1538): 0x59414c78 (0040): mov r11, r10 * D/dalvikvm( 1538): 0x59414c7a (0042): asr r12, r11, #31 * D/dalvikvm( 1538): 0x59414c7e (0046): movs r0, r2 * D/dalvikvm( 1538): 0x59414c80 (0048): movs r1, r3 * D/dalvikvm( 1538): 0x59414c82 (004a): str r2, [r5, #16] * D/dalvikvm( 1538): 0x59414c84 (004c): mov r2, r11 * D/dalvikvm( 1538): 0x59414c86 (004e): str r3, [r5, #20] * D/dalvikvm( 1538): 0x59414c88 (0050): mov r3, r12 * D/dalvikvm( 1538): 0x59414c8a (0052): str r11, [r5, #24] * D/dalvikvm( 1538): 0x59414c8e (0056): str r12, [r5, #28] * D/dalvikvm( 1538): 0x59414c92 (005a): blx r14 <-use of LR * */ static void selfVerificationBranchInsertPass(CompilationUnit *cUnit) { ArmLIR *thisLIR; TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE; for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn; thisLIR != (ArmLIR *) cUnit->lastLIRInsn; thisLIR = NEXT_LIR(thisLIR)) { if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) { /* * Push r5(FP) and r14(LR) onto stack. We need to make sure that * SP is 8-byte aligned, and we use r5 as a temp to restore LR * for Thumb-only target since LR cannot be directly accessed in * Thumb mode. Another reason to choose r5 here is it is the Dalvik * frame pointer and cannot be the target of the emulated heap * load. */ if (cUnit->usesLinkRegister) { genSelfVerificationPreBranch(cUnit, thisLIR); } /* Branch to mem op decode template */ selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1, (int) gDvmJit.codeCache + templateEntryOffsets[opcode], (int) gDvmJit.codeCache + templateEntryOffsets[opcode]); selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2, (int) gDvmJit.codeCache + templateEntryOffsets[opcode], (int) gDvmJit.codeCache + templateEntryOffsets[opcode]); /* Restore LR */ if (cUnit->usesLinkRegister) { genSelfVerificationPostBranch(cUnit, thisLIR); } } } } #endif /* Generate conditional branch instructions */ static ArmLIR *genConditionalBranch(CompilationUnit *cUnit, ArmConditionCode cond, ArmLIR *target) { ArmLIR *branch = opCondBranch(cUnit, cond); branch->generic.target = (LIR *) target; return branch; } /* Generate a unconditional branch to go to the interpreter */ static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset, ArmLIR *pcrLabel) { ArmLIR *branch = opNone(cUnit, kOpUncondBr); return genCheckCommon(cUnit, dOffset, branch, pcrLabel); } /* Load a wide field from an object instance */ static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) { RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); RegLocation rlResult; rlObj = loadValue(cUnit, rlObj, kCoreReg); int regPtr = dvmCompilerAllocTemp(cUnit); assert(rlDest.wide); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);/* null object? */ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); HEAP_ACCESS_SHADOW(true); loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); storeValueWide(cUnit, rlDest, rlResult); } /* Store a wide field to an object instance */ static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) { RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2); rlObj = loadValue(cUnit, rlObj, kCoreReg); int regPtr; rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);/* null object? */ regPtr = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); HEAP_ACCESS_SHADOW(true); storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); } /* * Load a field from an object instance * */ static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size, int fieldOffset, bool isVolatile) { RegLocation rlResult; RegisterClass regClass = dvmCompilerRegClassBySize(size); RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlObj = loadValue(cUnit, rlObj, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);/* null object? */ HEAP_ACCESS_SHADOW(true); loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg, size, rlObj.sRegLow); HEAP_ACCESS_SHADOW(false); if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kSY); } storeValue(cUnit, rlDest, rlResult); } /* * Store a field to an object instance * */ static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size, int fieldOffset, bool isObject, bool isVolatile) { RegisterClass regClass = dvmCompilerRegClassBySize(size); RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1); rlObj = loadValue(cUnit, rlObj, kCoreReg); rlSrc = loadValue(cUnit, rlSrc, regClass); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);/* null object? */ if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kST); } HEAP_ACCESS_SHADOW(true); storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size); HEAP_ACCESS_SHADOW(false); if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kSY); } if (isObject) { /* NOTE: marking card based on object head */ markCard(cUnit, rlSrc.lowReg, rlObj.lowReg); } } /* * Generate array load */ static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size, RegLocation rlArray, RegLocation rlIndex, RegLocation rlDest, int scale) { RegisterClass regClass = dvmCompilerRegClassBySize(size); int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); RegLocation rlResult; rlArray = loadValue(cUnit, rlArray, kCoreReg); rlIndex = loadValue(cUnit, rlIndex, kCoreReg); int regPtr; /* null object? */ ArmLIR * pcrLabel = NULL; if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, mir->offset, NULL); } regPtr = dvmCompilerAllocTemp(cUnit); if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { int regLen = dvmCompilerAllocTemp(cUnit); /* Get len */ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); /* regPtr -> array data */ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, pcrLabel); dvmCompilerFreeTemp(cUnit, regLen); } else { /* regPtr -> array data */ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); } if ((size == kLong) || (size == kDouble)) { if (scale) { int rNewIndex = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); dvmCompilerFreeTemp(cUnit, rNewIndex); } else { opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); } rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); HEAP_ACCESS_SHADOW(true); loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); storeValueWide(cUnit, rlDest, rlResult); } else { rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); HEAP_ACCESS_SHADOW(true); loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg, scale, size); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); storeValue(cUnit, rlDest, rlResult); } } /* * Generate array store * */ static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size, RegLocation rlArray, RegLocation rlIndex, RegLocation rlSrc, int scale) { RegisterClass regClass = dvmCompilerRegClassBySize(size); int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); int regPtr; rlArray = loadValue(cUnit, rlArray, kCoreReg); rlIndex = loadValue(cUnit, rlIndex, kCoreReg); if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) { dvmCompilerClobber(cUnit, rlArray.lowReg); regPtr = rlArray.lowReg; } else { regPtr = dvmCompilerAllocTemp(cUnit); genRegCopy(cUnit, regPtr, rlArray.lowReg); } /* null object? */ ArmLIR * pcrLabel = NULL; if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, mir->offset, NULL); } if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { int regLen = dvmCompilerAllocTemp(cUnit); //NOTE: max live temps(4) here. /* Get len */ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); /* regPtr -> array data */ opRegImm(cUnit, kOpAdd, regPtr, dataOffset); genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, pcrLabel); dvmCompilerFreeTemp(cUnit, regLen); } else { /* regPtr -> array data */ opRegImm(cUnit, kOpAdd, regPtr, dataOffset); } /* at this point, regPtr points to array, 2 live temps */ if ((size == kLong) || (size == kDouble)) { //TODO: need specific wide routine that can handle fp regs if (scale) { int rNewIndex = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); dvmCompilerFreeTemp(cUnit, rNewIndex); } else { opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); } rlSrc = loadValueWide(cUnit, rlSrc, regClass); HEAP_ACCESS_SHADOW(true); storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); } else { rlSrc = loadValue(cUnit, rlSrc, regClass); HEAP_ACCESS_SHADOW(true); storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg, scale, size); HEAP_ACCESS_SHADOW(false); } } /* * Generate array object store * Must use explicit register allocation here because of * call-out to dvmCanPutArrayElement */ static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir, RegLocation rlArray, RegLocation rlIndex, RegLocation rlSrc, int scale) { int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); dvmCompilerFlushAllRegs(cUnit); int regLen = r0; int regPtr = r4PC; /* Preserved across call */ int regArray = r1; int regIndex = r7; /* Preserved across call */ loadValueDirectFixed(cUnit, rlArray, regArray); loadValueDirectFixed(cUnit, rlIndex, regIndex); /* null object? */ ArmLIR * pcrLabel = NULL; if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray, mir->offset, NULL); } if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { /* Get len */ loadWordDisp(cUnit, regArray, lenOffset, regLen); /* regPtr -> array data */ opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); genBoundsCheck(cUnit, regIndex, regLen, mir->offset, pcrLabel); } else { /* regPtr -> array data */ opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); } /* Get object to store */ loadValueDirectFixed(cUnit, rlSrc, r0); LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement); /* Are we storing null? If so, avoid check */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0); /* Make sure the types are compatible */ loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1); loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); /* * Using fixed registers here, and counting on r4 and r7 being * preserved across the above call. Tell the register allocation * utilities about the regs we are using directly */ dvmCompilerLockTemp(cUnit, regPtr); // r4PC dvmCompilerLockTemp(cUnit, regIndex); // r7 dvmCompilerLockTemp(cUnit, r0); dvmCompilerLockTemp(cUnit, r1); /* Bad? - roll back and re-execute if so */ genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel); /* Resume here - must reload element & array, regPtr & index preserved */ loadValueDirectFixed(cUnit, rlSrc, r0); loadValueDirectFixed(cUnit, rlArray, r1); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; HEAP_ACCESS_SHADOW(true); storeBaseIndexed(cUnit, regPtr, regIndex, r0, scale, kWord); HEAP_ACCESS_SHADOW(false); dvmCompilerFreeTemp(cUnit, regPtr); dvmCompilerFreeTemp(cUnit, regIndex); /* NOTE: marking card here based on object head */ markCard(cUnit, r0, r1); } static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlShift) { /* * Don't mess with the regsiters here as there is a particular calling * convention to the out-of-line handler. */ RegLocation rlResult; loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); loadValueDirect(cUnit, rlShift, r2); switch( mir->dalvikInsn.opcode) { case OP_SHL_LONG: case OP_SHL_LONG_2ADDR: genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG); break; case OP_SHR_LONG: case OP_SHR_LONG_2ADDR: genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG); break; case OP_USHR_LONG: case OP_USHR_LONG_2ADDR: genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG); break; default: return true; } rlResult = dvmCompilerGetReturnWide(cUnit); storeValueWide(cUnit, rlDest, rlResult); return false; } static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { RegLocation rlResult; OpKind firstOp = kOpBkpt; OpKind secondOp = kOpBkpt; bool callOut = false; bool checkZero = false; void *callTgt; int retReg = r0; switch (mir->dalvikInsn.opcode) { case OP_NOT_LONG: rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg); opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg); storeValueWide(cUnit, rlDest, rlResult); return false; break; case OP_ADD_LONG: case OP_ADD_LONG_2ADDR: firstOp = kOpAdd; secondOp = kOpAdc; break; case OP_SUB_LONG: case OP_SUB_LONG_2ADDR: firstOp = kOpSub; secondOp = kOpSbc; break; case OP_MUL_LONG: case OP_MUL_LONG_2ADDR: genMulLong(cUnit, rlDest, rlSrc1, rlSrc2); return false; case OP_DIV_LONG: case OP_DIV_LONG_2ADDR: callOut = true; retReg = r0; checkZero = true; callTgt = (void*)__aeabi_ldivmod; break; /* NOTE - result is in r2/r3 instead of r0/r1 */ case OP_REM_LONG: case OP_REM_LONG_2ADDR: callOut = true; callTgt = (void*)__aeabi_ldivmod; retReg = r2; checkZero = true; break; case OP_AND_LONG_2ADDR: case OP_AND_LONG: firstOp = kOpAnd; secondOp = kOpAnd; break; case OP_OR_LONG: case OP_OR_LONG_2ADDR: firstOp = kOpOr; secondOp = kOpOr; break; case OP_XOR_LONG: case OP_XOR_LONG_2ADDR: firstOp = kOpXor; secondOp = kOpXor; break; case OP_NEG_LONG: { //TUNING: can improve this using Thumb2 code int tReg = dvmCompilerAllocTemp(cUnit); rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, tReg, 0); opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc2.lowReg); opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg); genRegCopy(cUnit, rlResult.highReg, tReg); storeValueWide(cUnit, rlDest, rlResult); return false; } default: ALOGE("Invalid long arith op"); dvmCompilerAbort(cUnit); } if (!callOut) { genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2); } else { // Adjust return regs in to handle case of rem returning r2/r3 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt); if (checkZero) { int tReg = r12; // Using fixed registers during call sequence opRegRegReg(cUnit, kOpOr, tReg, r2, r3); genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL); } opReg(cUnit, kOpBlx, r14lr); dvmCompilerClobberCallRegs(cUnit); if (retReg == r0) rlResult = dvmCompilerGetReturnWide(cUnit); else rlResult = dvmCompilerGetReturnWideAlt(cUnit); storeValueWide(cUnit, rlDest, rlResult); #if defined(WITH_SELF_VERIFICATION) cUnit->usesLinkRegister = true; #endif } return false; } static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { OpKind op = kOpBkpt; bool callOut = false; bool checkZero = false; bool unary = false; int retReg = r0; int (*callTgt)(int, int); RegLocation rlResult; bool shiftOp = false; switch (mir->dalvikInsn.opcode) { case OP_NEG_INT: op = kOpNeg; unary = true; break; case OP_NOT_INT: op = kOpMvn; unary = true; break; case OP_ADD_INT: case OP_ADD_INT_2ADDR: op = kOpAdd; break; case OP_SUB_INT: case OP_SUB_INT_2ADDR: op = kOpSub; break; case OP_MUL_INT: case OP_MUL_INT_2ADDR: op = kOpMul; break; case OP_DIV_INT: case OP_DIV_INT_2ADDR: callOut = true; checkZero = true; callTgt = __aeabi_idiv; retReg = r0; break; /* NOTE: returns in r1 */ case OP_REM_INT: case OP_REM_INT_2ADDR: callOut = true; checkZero = true; callTgt = __aeabi_idivmod; retReg = r1; break; case OP_AND_INT: case OP_AND_INT_2ADDR: op = kOpAnd; break; case OP_OR_INT: case OP_OR_INT_2ADDR: op = kOpOr; break; case OP_XOR_INT: case OP_XOR_INT_2ADDR: op = kOpXor; break; case OP_SHL_INT: case OP_SHL_INT_2ADDR: shiftOp = true; op = kOpLsl; break; case OP_SHR_INT: case OP_SHR_INT_2ADDR: shiftOp = true; op = kOpAsr; break; case OP_USHR_INT: case OP_USHR_INT_2ADDR: shiftOp = true; op = kOpLsr; break; default: ALOGE("Invalid word arith op: %#x(%d)", mir->dalvikInsn.opcode, mir->dalvikInsn.opcode); dvmCompilerAbort(cUnit); } if (!callOut) { rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); if (unary) { rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg); } else { rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); if (shiftOp) { int tReg = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg, tReg); dvmCompilerFreeTemp(cUnit, tReg); } else { rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegRegReg(cUnit, op, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg); } } storeValue(cUnit, rlDest, rlResult); } else { RegLocation rlResult; dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ loadValueDirectFixed(cUnit, rlSrc2, r1); LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt); loadValueDirectFixed(cUnit, rlSrc1, r0); if (checkZero) { genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL); } opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); if (retReg == r0) rlResult = dvmCompilerGetReturn(cUnit); else rlResult = dvmCompilerGetReturnAlt(cUnit); storeValue(cUnit, rlDest, rlResult); } return false; } static bool genArithOp(CompilationUnit *cUnit, MIR *mir) { Opcode opcode = mir->dalvikInsn.opcode; RegLocation rlDest; RegLocation rlSrc1; RegLocation rlSrc2; /* Deduce sizes of operands */ if (mir->ssaRep->numUses == 2) { rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); } else if (mir->ssaRep->numUses == 3) { rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); } else { rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); assert(mir->ssaRep->numUses == 4); } if (mir->ssaRep->numDefs == 1) { rlDest = dvmCompilerGetDest(cUnit, mir, 0); } else { assert(mir->ssaRep->numDefs == 2); rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); } if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) { return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) { return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) { return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) { return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) { return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) { return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) { return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) { return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) { return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); } if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) { return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); } return true; } /* Generate unconditional branch instructions */ static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target) { ArmLIR *branch = opNone(cUnit, kOpUncondBr); branch->generic.target = (LIR *) target; return branch; } /* Perform the actual operation for OP_RETURN_* */ static void genReturnCommon(CompilationUnit *cUnit, MIR *mir) { genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_RETURN_PROF : TEMPLATE_RETURN); #if defined(WITH_JIT_TUNING) gDvmJit.returnOp++; #endif int dPC = (int) (cUnit->method->insns + mir->offset); /* Insert branch, but defer setting of target */ ArmLIR *branch = genUnconditionalBranch(cUnit, NULL); /* Set up the place holder to reconstruct this Dalvik PC */ ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); pcrLabel->opcode = kArmPseudoPCReconstructionCell; pcrLabel->operands[0] = dPC; pcrLabel->operands[1] = mir->offset; /* Insert the place holder to the growable list */ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); /* Branch to the PC reconstruction code */ branch->generic.target = (LIR *) pcrLabel; } static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir, DecodedInstruction *dInsn, ArmLIR **pcrLabel) { unsigned int i; unsigned int regMask = 0; RegLocation rlArg; int numDone = 0; /* * Load arguments to r0..r4. Note that these registers may contain * live values, so we clobber them immediately after loading to prevent * them from being used as sources for subsequent loads. */ dvmCompilerLockAllTemps(cUnit); for (i = 0; i < dInsn->vA; i++) { regMask |= 1 << i; rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++); loadValueDirectFixed(cUnit, rlArg, i); } if (regMask) { /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */ opRegRegImm(cUnit, kOpSub, r7, r5FP, sizeof(StackSaveArea) + (dInsn->vA << 2)); /* generate null check */ if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, mir->offset, NULL); } storeMultiple(cUnit, r7, regMask); } } static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir, DecodedInstruction *dInsn, ArmLIR **pcrLabel) { int srcOffset = dInsn->vC << 2; int numArgs = dInsn->vA; int regMask; /* * Note: here, all promoted registers will have been flushed * back to the Dalvik base locations, so register usage restrictins * are lifted. All parms loaded from original Dalvik register * region - even though some might conceivably have valid copies * cached in a preserved register. */ dvmCompilerLockAllTemps(cUnit); /* * r4PC : &r5FP[vC] * r7: &newFP[0] */ opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset); /* load [r0 .. min(numArgs,4)] */ regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1; /* * Protect the loadMultiple instruction from being reordered with other * Dalvik stack accesses. */ if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask); opRegRegImm(cUnit, kOpSub, r7, r5FP, sizeof(StackSaveArea) + (numArgs << 2)); /* generate null check */ if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, mir->offset, NULL); } /* * Handle remaining 4n arguments: * store previously loaded 4 values and load the next 4 values */ if (numArgs >= 8) { ArmLIR *loopLabel = NULL; /* * r0 contains "this" and it will be used later, so push it to the stack * first. Pushing r5FP is just for stack alignment purposes. */ opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP)); /* No need to generate the loop structure if numArgs <= 11 */ if (numArgs > 11) { loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2); loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel); loopLabel->defMask = ENCODE_ALL; } storeMultiple(cUnit, r7, regMask); /* * Protect the loadMultiple instruction from being reordered with other * Dalvik stack accesses. */ loadMultiple(cUnit, r4PC, regMask); /* No need to generate the loop structure if numArgs <= 11 */ if (numArgs > 11) { opRegImm(cUnit, kOpSub, r5FP, 4); genConditionalBranch(cUnit, kArmCondNe, loopLabel); } } /* Save the last batch of loaded values */ if (numArgs != 0) storeMultiple(cUnit, r7, regMask); /* Generate the loop epilogue - don't use r0 */ if ((numArgs > 4) && (numArgs % 4)) { regMask = ((1 << (numArgs & 0x3)) - 1) << 1; /* * Protect the loadMultiple instruction from being reordered with other * Dalvik stack accesses. */ loadMultiple(cUnit, r4PC, regMask); } if (numArgs >= 8) opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP)); /* Save the modulo 4 arguments */ if ((numArgs > 4) && (numArgs % 4)) { storeMultiple(cUnit, r7, regMask); } } /* * Generate code to setup the call stack then jump to the chaining cell if it * is not a native method. */ static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList, ArmLIR *pcrLabel, const Method *calleeMethod) { /* * Note: all Dalvik register state should be flushed to * memory by the point, so register usage restrictions no * longer apply. All temp & preserved registers may be used. */ dvmCompilerLockAllTemps(cUnit); ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; /* r1 = &retChainingCell */ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); /* r4PC = dalvikCallsite */ loadConstant(cUnit, r4PC, (int) (cUnit->method->insns + mir->offset)); addrRetChain->generic.target = (LIR *) retChainingCell; /* r7 = calleeMethod->registersSize */ loadConstant(cUnit, r7, calleeMethod->registersSize); /* * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon) * r1 = &ChainingCell * r2 = calleeMethod->outsSize (to be loaded later for Java callees) * r4PC = callsiteDPC * r7 = calleeMethod->registersSize */ if (dvmIsNativeMethod(calleeMethod)) { genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_NATIVE_PROF : TEMPLATE_INVOKE_METHOD_NATIVE); #if defined(WITH_JIT_TUNING) gDvmJit.invokeNative++; #endif } else { /* For Java callees, set up r2 to be calleeMethod->outsSize */ loadConstant(cUnit, r2, calleeMethod->outsSize); genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_CHAIN_PROF : TEMPLATE_INVOKE_METHOD_CHAIN); #if defined(WITH_JIT_TUNING) gDvmJit.invokeMonomorphic++; #endif /* Branch to the chaining cell */ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); } /* Handle exceptions using the interpreter */ genTrap(cUnit, mir->offset, pcrLabel); } /* * Generate code to check the validity of a predicted chain and take actions * based on the result. * * 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke * 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell * 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell * 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN * 0x426a99b2 : blx_2 see above --+ * 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain * 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter * 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx] * 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0 * 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain * 0x426a99be : ldr r7, [pc, #off]--+ dvmJitToPatchPredictedChain * 0x426a99c0 : blx r7 --+ * 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell * 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT * 0x426a99c6 : blx_2 see above --+ */ static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir, int methodIndex, ArmLIR *retChainingCell, ArmLIR *predChainingCell, ArmLIR *pcrLabel) { /* * Note: all Dalvik register state should be flushed to * memory by the point, so register usage restrictions no * longer apply. Lock temps to prevent them from being * allocated by utility routines. */ dvmCompilerLockAllTemps(cUnit); /* * For verbose printing, store the method pointer in operands[1] first as * operands[0] will be clobbered in dvmCompilerMIR2LIR. */ predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method; /* "this" is already left in r0 by genProcessArgs* */ /* r4PC = dalvikCallsite */ loadConstant(cUnit, r4PC, (int) (cUnit->method->insns + mir->offset)); /* r1 = &retChainingCell */ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); addrRetChain->generic.target = (LIR *) retChainingCell; /* r2 = &predictedChainingCell */ ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0); predictedChainingCell->generic.target = (LIR *) predChainingCell; genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF : TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); /* return through lr - jump to the chaining cell */ genUnconditionalBranch(cUnit, predChainingCell); /* * null-check on "this" may have been eliminated, but we still need a PC- * reconstruction label for stack overflow bailout. */ if (pcrLabel == NULL) { int dPC = (int) (cUnit->method->insns + mir->offset); pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); pcrLabel->opcode = kArmPseudoPCReconstructionCell; pcrLabel->operands[0] = dPC; pcrLabel->operands[1] = mir->offset; /* Insert the place holder to the growable list */ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); } /* return through lr+2 - punt to the interpreter */ genUnconditionalBranch(cUnit, pcrLabel); /* * return through lr+4 - fully resolve the callee method. * r1 <- count * r2 <- &predictedChainCell * r3 <- this->class * r4 <- dPC * r7 <- this->class->vtable */ /* r0 <- calleeMethod */ loadWordDisp(cUnit, r7, methodIndex * 4, r0); /* Check if rechain limit is reached */ ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0); LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain); genRegCopy(cUnit, r1, r6SELF); /* * r0 = calleeMethod * r2 = &predictedChainingCell * r3 = class * * &returnChainingCell has been loaded into r1 but is not needed * when patching the chaining cell and will be clobbered upon * returning so it will be reconstructed again. */ opReg(cUnit, kOpBlx, r7); /* r1 = &retChainingCell */ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); addrRetChain->generic.target = (LIR *) retChainingCell; bypassRechaining->generic.target = (LIR *) addrRetChain; /* * r0 = calleeMethod, * r1 = &ChainingCell, * r4PC = callsiteDPC, */ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_NO_OPT_PROF : TEMPLATE_INVOKE_METHOD_NO_OPT); #if defined(WITH_JIT_TUNING) gDvmJit.invokePolymorphic++; #endif /* Handle exceptions using the interpreter */ genTrap(cUnit, mir->offset, pcrLabel); } /* "this" pointer is already in r0 */ static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit, MIR *mir, void *calleeAddr, ArmLIR *retChainingCell) { CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo; dvmCompilerLockAllTemps(cUnit); loadClassPointer(cUnit, r1, (int) callsiteInfo); loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2); /* Branch to the slow path if classes are not equal */ opRegReg(cUnit, kOpCmp, r1, r2); /* * Set the misPredBranchOver target so that it will be generated when the * code for the non-optimized invoke is generated. */ ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe); /* r0 = the Dalvik PC of the callsite */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr); newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr); genUnconditionalBranch(cUnit, retChainingCell); /* Target of slow path */ ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel); slowPathLabel->defMask = ENCODE_ALL; classCheck->generic.target = (LIR *) slowPathLabel; // FIXME cUnit->printMe = true; } static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit, MIR *mir, void *calleeAddr, ArmLIR *retChainingCell) { /* r0 = the Dalvik PC of the callsite */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr); newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr); genUnconditionalBranch(cUnit, retChainingCell); // FIXME cUnit->printMe = true; } /* Geneate a branch to go back to the interpreter */ static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset) { /* r0 = dalvik pc */ dvmCompilerFlushAllRegs(cUnit); loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset)); loadWordDisp(cUnit, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpPunt), r1); opReg(cUnit, kOpBlx, r1); } /* * Attempt to single step one instruction using the interpreter and return * to the compiled code for the next Dalvik instruction */ static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir) { int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode); int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn; // Single stepping is considered loop mode breaker if (cUnit->jitMode == kJitLoop) { cUnit->quitLoopMode = true; return; } //If already optimized out, just ignore if (mir->dalvikInsn.opcode == OP_NOP) return; //Ugly, but necessary. Flush all Dalvik regs so Interp can find them dvmCompilerFlushAllRegs(cUnit); if ((mir->next == NULL) || (flags & flagsToCheck)) { genPuntToInterp(cUnit, mir->offset); return; } int entryAddr = offsetof(Thread, jitToInterpEntries.dvmJitToInterpSingleStep); loadWordDisp(cUnit, r6SELF, entryAddr, r2); /* r0 = dalvik pc */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); /* r1 = dalvik pc of following instruction */ loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset)); opReg(cUnit, kOpBlx, r2); } #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP) /* * To prevent a thread in a monitor wait from blocking the Jit from * resetting the code cache, heavyweight monitor lock will not * be allowed to return to an existing translation. Instead, we will * handle them by branching to a handler, which will in turn call the * runtime lock routine and then branch directly back to the * interpreter main loop. Given the high cost of the heavyweight * lock operation, this additional cost should be slight (especially when * considering that we expect the vast majority of lock operations to * use the fast-path thin lock bypass). */ static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir) { bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER); genExportPC(cUnit, mir); dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); loadValueDirectFixed(cUnit, rlSrc, r1); genRegCopy(cUnit, r0, r6SELF); genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL); if (isEnter) { /* Get dPC of next insn */ loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset + dexGetWidthFromOpcode(OP_MONITOR_ENTER))); genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER); } else { LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject); /* Do the call */ opReg(cUnit, kOpBlx, r2); /* Did we throw? */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset + dexGetWidthFromOpcode(OP_MONITOR_EXIT))); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; dvmCompilerClobberCallRegs(cUnit); } } #endif /* * Fetch *self->info.breakFlags. If the breakFlags are non-zero, * punt to the interpreter. */ static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir) { int rTemp = dvmCompilerAllocTemp(cUnit); ArmLIR *ld; ld = loadBaseDisp(cUnit, NULL, r6SELF, offsetof(Thread, interpBreak.ctl.breakFlags), rTemp, kUnsignedByte, INVALID_SREG); setMemRefType(ld, true /* isLoad */, kMustNotAlias); genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL); } /* * The following are the first-level codegen routines that analyze the format * of each bytecode then either dispatch special purpose codegen routines * or produce corresponding Thumb instructions directly. */ static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { /* backward branch? */ bool backwardBranch = (bb->taken->startOffset <= mir->offset); if (backwardBranch && (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { genSuspendPoll(cUnit, mir); } int numPredecessors = dvmCountSetBits(bb->taken->predecessors); /* * Things could be hoisted out of the taken block into the predecessor, so * make sure it is dominated by the predecessor. */ if (numPredecessors == 1 && bb->taken->visited == false && bb->taken->blockType == kDalvikByteCode) { cUnit->nextCodegenBlock = bb->taken; } else { /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); } return false; } static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) { ALOGE("Codegen: got unused opcode %#x",dalvikOpcode); return true; } switch (dalvikOpcode) { case OP_RETURN_VOID_BARRIER: dvmCompilerGenMemBarrier(cUnit, kST); // Intentional fallthrough case OP_RETURN_VOID: genReturnCommon(cUnit,mir); break; case OP_UNUSED_73: case OP_UNUSED_79: case OP_UNUSED_7A: case OP_UNUSED_FF: ALOGE("Codegen: got unused opcode %#x",dalvikOpcode); return true; case OP_NOP: break; default: return true; } return false; } static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir) { RegLocation rlDest; RegLocation rlResult; if (mir->ssaRep->numDefs == 2) { rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); } else { rlDest = dvmCompilerGetDest(cUnit, mir, 0); } switch (mir->dalvikInsn.opcode) { case OP_CONST: case OP_CONST_4: { rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); storeValue(cUnit, rlDest, rlResult); break; } case OP_CONST_WIDE_32: { //TUNING: single routine to load constant pair for support doubles //TUNING: load 0/-1 separately to avoid load dependency rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); storeValueWide(cUnit, rlDest, rlResult); break; } default: return true; } return false; } static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir) { RegLocation rlDest; RegLocation rlResult; if (mir->ssaRep->numDefs == 2) { rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); } else { rlDest = dvmCompilerGetDest(cUnit, mir, 0); } rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); switch (mir->dalvikInsn.opcode) { case OP_CONST_HIGH16: { loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB << 16); storeValue(cUnit, rlDest, rlResult); break; } case OP_CONST_WIDE_HIGH16: { loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, 0, mir->dalvikInsn.vB << 16); storeValueWide(cUnit, rlDest, rlResult); break; } default: return true; } return false; } static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir) { /* For OP_THROW_VERIFICATION_ERROR */ genInterpSingleStep(cUnit, mir); return false; } static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir) { RegLocation rlResult; RegLocation rlDest; RegLocation rlSrc; switch (mir->dalvikInsn.opcode) { case OP_CONST_STRING_JUMBO: case OP_CONST_STRING: { void *strPtr = (void*) (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]); if (strPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null string"); dvmAbort(); } rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr ); storeValue(cUnit, rlDest, rlResult); break; } case OP_CONST_CLASS: { void *classPtr = (void*) (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); if (classPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null class"); dvmAbort(); } rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr ); storeValue(cUnit, rlDest, rlResult); break; } case OP_SGET: case OP_SGET_VOLATILE: case OP_SGET_OBJECT: case OP_SGET_OBJECT_VOLATILE: case OP_SGET_BOOLEAN: case OP_SGET_CHAR: case OP_SGET_BYTE: case OP_SGET_SHORT: { int valOffset = OFFSETOF_MEMBER(StaticField, value); int tReg = dvmCompilerAllocTemp(cUnit); bool isVolatile; const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? mir->meta.calleeMethod : cUnit->method; void *fieldPtr = (void*) (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); if (fieldPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null static field"); dvmAbort(); } /* * On SMP systems, Dalvik opcodes found to be referencing * volatile fields are rewritten to their _VOLATILE variant. * However, this does not happen on non-SMP systems. The JIT * still needs to know about volatility to avoid unsafe * optimizations so we determine volatility based on either * the opcode or the field access flags. */ #if ANDROID_SMP != 0 Opcode opcode = mir->dalvikInsn.opcode; isVolatile = (opcode == OP_SGET_VOLATILE) || (opcode == OP_SGET_OBJECT_VOLATILE); assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); #else isVolatile = dvmIsVolatileField((Field *) fieldPtr); #endif rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kSY); } HEAP_ACCESS_SHADOW(true); loadWordDisp(cUnit, tReg, 0, rlResult.lowReg); HEAP_ACCESS_SHADOW(false); storeValue(cUnit, rlDest, rlResult); break; } case OP_SGET_WIDE: { int valOffset = OFFSETOF_MEMBER(StaticField, value); const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? mir->meta.calleeMethod : cUnit->method; void *fieldPtr = (void*) (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); if (fieldPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null static field"); dvmAbort(); } int tReg = dvmCompilerAllocTemp(cUnit); rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); HEAP_ACCESS_SHADOW(true); loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg); HEAP_ACCESS_SHADOW(false); storeValueWide(cUnit, rlDest, rlResult); break; } case OP_SPUT: case OP_SPUT_VOLATILE: case OP_SPUT_OBJECT: case OP_SPUT_OBJECT_VOLATILE: case OP_SPUT_BOOLEAN: case OP_SPUT_CHAR: case OP_SPUT_BYTE: case OP_SPUT_SHORT: { int valOffset = OFFSETOF_MEMBER(StaticField, value); int tReg = dvmCompilerAllocTemp(cUnit); int objHead; bool isVolatile; bool isSputObject; const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? mir->meta.calleeMethod : cUnit->method; void *fieldPtr = (void*) (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); Opcode opcode = mir->dalvikInsn.opcode; if (fieldPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null static field"); dvmAbort(); } #if ANDROID_SMP != 0 isVolatile = (opcode == OP_SPUT_VOLATILE) || (opcode == OP_SPUT_OBJECT_VOLATILE); assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); #else isVolatile = dvmIsVolatileField((Field *) fieldPtr); #endif isSputObject = (opcode == OP_SPUT_OBJECT) || (opcode == OP_SPUT_OBJECT_VOLATILE); rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc = loadValue(cUnit, rlSrc, kAnyReg); loadConstant(cUnit, tReg, (int) fieldPtr); if (isSputObject) { objHead = dvmCompilerAllocTemp(cUnit); loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead); } if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kST); } HEAP_ACCESS_SHADOW(true); storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg); dvmCompilerFreeTemp(cUnit, tReg); HEAP_ACCESS_SHADOW(false); if (isVolatile) { dvmCompilerGenMemBarrier(cUnit, kSY); } if (isSputObject) { /* NOTE: marking card based sfield->clazz */ markCard(cUnit, rlSrc.lowReg, objHead); dvmCompilerFreeTemp(cUnit, objHead); } break; } case OP_SPUT_WIDE: { int tReg = dvmCompilerAllocTemp(cUnit); int valOffset = OFFSETOF_MEMBER(StaticField, value); const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? mir->meta.calleeMethod : cUnit->method; void *fieldPtr = (void*) (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); if (fieldPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null static field"); dvmAbort(); } rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); HEAP_ACCESS_SHADOW(true); storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg); HEAP_ACCESS_SHADOW(false); break; } case OP_NEW_INSTANCE: { /* * Obey the calling convention and don't mess with the register * usage. */ ClassObject *classPtr = (ClassObject *) (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); if (classPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null class"); dvmAbort(); } /* * If it is going to throw, it should not make to the trace to begin * with. However, Alloc might throw, so we need to genExportPC() */ assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0); dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ genExportPC(cUnit, mir); LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject); loadConstant(cUnit, r0, (int) classPtr); loadConstant(cUnit, r1, ALLOC_DONT_TRACK); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); /* generate a branch over if allocation is successful */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); /* * OOM exception needs to be thrown here and cannot re-execute */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); /* noreturn */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerGetReturn(cUnit); storeValue(cUnit, rlDest, rlResult); break; } case OP_CHECK_CAST: { /* * Obey the calling convention and don't mess with the register * usage. */ ClassObject *classPtr = (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); /* * Note: It is possible that classPtr is NULL at this point, * even though this instruction has been successfully interpreted. * If the previous interpretation had a null source, the * interpreter would not have bothered to resolve the clazz. * Bail out to the interpreter in this case, and log it * so that we can tell if it happens frequently. */ if (classPtr == NULL) { BAIL_LOOP_COMPILATION(); LOGVV("null clazz in OP_CHECK_CAST, single-stepping"); genInterpSingleStep(cUnit, mir); return false; } dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ loadConstant(cUnit, r1, (int) classPtr ); rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); /* Null? */ ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, rlSrc.lowReg, 0); /* * rlSrc.lowReg now contains object->clazz. Note that * it could have been allocated r0, but we're okay so long * as we don't do anything desctructive until r0 is loaded * with clazz. */ /* r0 now contains object->clazz */ loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0); LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial); opRegReg(cUnit, kOpCmp, r0, r1); ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); /* * If null, check cast failed - punt to the interpreter. Because * interpreter will be the one throwing, we don't need to * genExportPC() here. */ genZeroCheck(cUnit, r0, mir->offset, NULL); /* check cast passed - branch target here */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branch1->generic.target = (LIR *)target; branch2->generic.target = (LIR *)target; break; } case OP_SGET_WIDE_VOLATILE: case OP_SPUT_WIDE_VOLATILE: genInterpSingleStep(cUnit, mir); break; default: return true; } return false; } /* * A typical example of inlined getter/setter from a monomorphic callsite: * * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ invoke-static (I) * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ... * D/dalvikvm( 289): 0x4427fc22 (0002): ldr r0, [pc, #56] * D/dalvikvm( 289): 0x4427fc24 (0004): ldr r1, [r0, #0] * D/dalvikvm( 289): 0x4427fc26 (0006): str r1, [r5, #0] * D/dalvikvm( 289): 0x4427fc28 (0008): .align4 * D/dalvikvm( 289): L0x0003: * D/dalvikvm( 289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0 * * Note the invoke-static and move-result-object with the (I) notation are * turned into no-op. */ static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; RegLocation rlResult; switch (dalvikOpcode) { case OP_MOVE_EXCEPTION: { int exOffset = offsetof(Thread, exception); int resetReg = dvmCompilerAllocTemp(cUnit); RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg); loadConstant(cUnit, resetReg, 0); storeWordDisp(cUnit, r6SELF, exOffset, resetReg); storeValue(cUnit, rlDest, rlResult); break; } case OP_MOVE_RESULT: case OP_MOVE_RESULT_OBJECT: { /* An inlined move result is effectively no-op */ if (mir->OptimizationFlags & MIR_INLINED) break; RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); RegLocation rlSrc = LOC_DALVIK_RETURN_VAL; rlSrc.fp = rlDest.fp; storeValue(cUnit, rlDest, rlSrc); break; } case OP_MOVE_RESULT_WIDE: { /* An inlined move result is effectively no-op */ if (mir->OptimizationFlags & MIR_INLINED) break; RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE; rlSrc.fp = rlDest.fp; storeValueWide(cUnit, rlDest, rlSrc); break; } case OP_RETURN_WIDE: { RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE; rlDest.fp = rlSrc.fp; storeValueWide(cUnit, rlDest, rlSrc); genReturnCommon(cUnit,mir); break; } case OP_RETURN: case OP_RETURN_OBJECT: { RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = LOC_DALVIK_RETURN_VAL; rlDest.fp = rlSrc.fp; storeValue(cUnit, rlDest, rlSrc); genReturnCommon(cUnit, mir); break; } case OP_MONITOR_EXIT: case OP_MONITOR_ENTER: genMonitor(cUnit, mir); break; case OP_THROW: genInterpSingleStep(cUnit, mir); break; default: return true; } return false; } static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir) { Opcode opcode = mir->dalvikInsn.opcode; RegLocation rlDest; RegLocation rlSrc; RegLocation rlResult; if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) { return genArithOp( cUnit, mir ); } if (mir->ssaRep->numUses == 2) rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); else rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); if (mir->ssaRep->numDefs == 2) rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); else rlDest = dvmCompilerGetDest(cUnit, mir, 0); switch (opcode) { case OP_DOUBLE_TO_INT: case OP_INT_TO_FLOAT: case OP_FLOAT_TO_INT: case OP_DOUBLE_TO_FLOAT: case OP_FLOAT_TO_DOUBLE: case OP_INT_TO_DOUBLE: case OP_FLOAT_TO_LONG: case OP_LONG_TO_FLOAT: case OP_DOUBLE_TO_LONG: case OP_LONG_TO_DOUBLE: return genConversion(cUnit, mir); case OP_NEG_INT: case OP_NOT_INT: return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc); case OP_NEG_LONG: case OP_NOT_LONG: return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc); case OP_NEG_FLOAT: return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc); case OP_NEG_DOUBLE: return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc); case OP_MOVE_WIDE: storeValueWide(cUnit, rlDest, rlSrc); break; case OP_INT_TO_LONG: rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); //TUNING: shouldn't loadValueDirect already check for phys reg? if (rlSrc.location == kLocPhysReg) { genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); } else { loadValueDirect(cUnit, rlSrc, rlResult.lowReg); } opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); storeValueWide(cUnit, rlDest, rlResult); break; case OP_LONG_TO_INT: rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc); rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc); // Intentional fallthrough case OP_MOVE: case OP_MOVE_OBJECT: storeValue(cUnit, rlDest, rlSrc); break; case OP_INT_TO_BYTE: rlSrc = loadValue(cUnit, rlSrc, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg); storeValue(cUnit, rlDest, rlResult); break; case OP_INT_TO_SHORT: rlSrc = loadValue(cUnit, rlSrc, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg); storeValue(cUnit, rlDest, rlResult); break; case OP_INT_TO_CHAR: rlSrc = loadValue(cUnit, rlSrc, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg); storeValue(cUnit, rlDest, rlResult); break; case OP_ARRAY_LENGTH: { int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg, mir->offset, NULL); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadWordDisp(cUnit, rlSrc.lowReg, lenOffset, rlResult.lowReg); storeValue(cUnit, rlDest, rlResult); break; } default: return true; } return false; } static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; RegLocation rlDest; RegLocation rlResult; int BBBB = mir->dalvikInsn.vB; if (dalvikOpcode == OP_CONST_WIDE_16) { rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); //TUNING: do high separately to avoid load dependency opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); storeValueWide(cUnit, rlDest, rlResult); } else if (dalvikOpcode == OP_CONST_16) { rlDest = dvmCompilerGetDest(cUnit, mir, 0); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); storeValue(cUnit, rlDest, rlResult); } else return true; return false; } /* Compare agaist zero */ static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; ArmConditionCode cond; /* backward branch? */ bool backwardBranch = (bb->taken->startOffset <= mir->offset); if (backwardBranch && (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { genSuspendPoll(cUnit, mir); } RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0); //TUNING: break this out to allow use of Thumb2 CB[N]Z switch (dalvikOpcode) { case OP_IF_EQZ: cond = kArmCondEq; break; case OP_IF_NEZ: cond = kArmCondNe; break; case OP_IF_LTZ: cond = kArmCondLt; break; case OP_IF_GEZ: cond = kArmCondGe; break; case OP_IF_GTZ: cond = kArmCondGt; break; case OP_IF_LEZ: cond = kArmCondLe; break; default: cond = (ArmConditionCode)0; ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode); dvmCompilerAbort(cUnit); } genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]); /* This mostly likely will be optimized away in a later phase */ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); return false; } static bool isPowerOfTwo(int x) { return (x & (x - 1)) == 0; } // Returns true if no more than two bits are set in 'x'. static bool isPopCountLE2(unsigned int x) { x &= x - 1; return (x & (x - 1)) == 0; } // Returns the index of the lowest set bit in 'x'. static int lowestSetBit(unsigned int x) { int bit_posn = 0; while ((x & 0xf) == 0) { bit_posn += 4; x >>= 4; } while ((x & 1) == 0) { bit_posn++; x >>= 1; } return bit_posn; } // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit' // and store the result in 'rlDest'. static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode, RegLocation rlSrc, RegLocation rlDest, int lit) { if (lit < 2 || !isPowerOfTwo(lit)) { return false; } int k = lowestSetBit(lit); if (k >= 30) { // Avoid special cases. return false; } bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); if (div) { int tReg = dvmCompilerAllocTemp(cUnit); if (lit == 2) { // Division by 2 is by far the most common division by constant. opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k); opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); } else { opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31); opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k); opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); } } else { int cReg = dvmCompilerAllocTemp(cUnit); loadConstant(cUnit, cReg, lit - 1); int tReg1 = dvmCompilerAllocTemp(cUnit); int tReg2 = dvmCompilerAllocTemp(cUnit); if (lit == 2) { opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k); opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg); opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); } else { opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31); opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k); opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg); opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); } } storeValue(cUnit, rlDest, rlResult); return true; } // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit' // and store the result in 'rlDest'. static bool handleEasyMultiply(CompilationUnit *cUnit, RegLocation rlSrc, RegLocation rlDest, int lit) { // Can we simplify this multiplication? bool powerOfTwo = false; bool popCountLE2 = false; bool powerOfTwoMinusOne = false; if (lit < 2) { // Avoid special cases. return false; } else if (isPowerOfTwo(lit)) { powerOfTwo = true; } else if (isPopCountLE2(lit)) { popCountLE2 = true; } else if (isPowerOfTwo(lit + 1)) { powerOfTwoMinusOne = true; } else { return false; } rlSrc = loadValue(cUnit, rlSrc, kCoreReg); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); if (powerOfTwo) { // Shift. opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg, lowestSetBit(lit)); } else if (popCountLE2) { // Shift and add and shift. int firstBit = lowestSetBit(lit); int secondBit = lowestSetBit(lit ^ (1 << firstBit)); genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit, firstBit, secondBit); } else { // Reverse subtract: (src << (shift + 1)) - src. assert(powerOfTwoMinusOne); // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1) int tReg = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1)); opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg); } storeValue(cUnit, rlDest, rlResult); return true; } static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); RegLocation rlResult; int lit = mir->dalvikInsn.vC; OpKind op = (OpKind)0; /* Make gcc happy */ int shiftOp = false; bool isDiv = false; switch (dalvikOpcode) { case OP_RSUB_INT_LIT8: case OP_RSUB_INT: { int tReg; //TUNING: add support for use of Arm rsub op rlSrc = loadValue(cUnit, rlSrc, kCoreReg); tReg = dvmCompilerAllocTemp(cUnit); loadConstant(cUnit, tReg, lit); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg); storeValue(cUnit, rlDest, rlResult); return false; break; } case OP_ADD_INT_LIT8: case OP_ADD_INT_LIT16: op = kOpAdd; break; case OP_MUL_INT_LIT8: case OP_MUL_INT_LIT16: { if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) { return false; } op = kOpMul; break; } case OP_AND_INT_LIT8: case OP_AND_INT_LIT16: op = kOpAnd; break; case OP_OR_INT_LIT8: case OP_OR_INT_LIT16: op = kOpOr; break; case OP_XOR_INT_LIT8: case OP_XOR_INT_LIT16: op = kOpXor; break; case OP_SHL_INT_LIT8: lit &= 31; shiftOp = true; op = kOpLsl; break; case OP_SHR_INT_LIT8: lit &= 31; shiftOp = true; op = kOpAsr; break; case OP_USHR_INT_LIT8: lit &= 31; shiftOp = true; op = kOpLsr; break; case OP_DIV_INT_LIT8: case OP_DIV_INT_LIT16: case OP_REM_INT_LIT8: case OP_REM_INT_LIT16: if (lit == 0) { /* Let the interpreter deal with div by 0 */ genInterpSingleStep(cUnit, mir); return false; } if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) { return false; } dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ loadValueDirectFixed(cUnit, rlSrc, r0); dvmCompilerClobber(cUnit, r0); if ((dalvikOpcode == OP_DIV_INT_LIT8) || (dalvikOpcode == OP_DIV_INT_LIT16)) { LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv); isDiv = true; } else { LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod); isDiv = false; } loadConstant(cUnit, r1, lit); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); if (isDiv) rlResult = dvmCompilerGetReturn(cUnit); else rlResult = dvmCompilerGetReturnAlt(cUnit); storeValue(cUnit, rlDest, rlResult); return false; break; default: return true; } rlSrc = loadValue(cUnit, rlSrc, kCoreReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); // Avoid shifts by literal 0 - no support in Thumb. Change to copy if (shiftOp && (lit == 0)) { genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); } else { opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit); } storeValue(cUnit, rlDest, rlResult); return false; } static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; int fieldOffset = -1; bool isVolatile = false; switch (dalvikOpcode) { /* * Wide volatiles currently handled via single step. * Add them here if generating in-line code. * case OP_IGET_WIDE_VOLATILE: * case OP_IPUT_WIDE_VOLATILE: */ case OP_IGET_VOLATILE: case OP_IGET_OBJECT_VOLATILE: case OP_IPUT_VOLATILE: case OP_IPUT_OBJECT_VOLATILE: #if ANDROID_SMP != 0 isVolatile = true; // NOTE: intentional fallthrough #endif case OP_IGET: case OP_IGET_WIDE: case OP_IGET_OBJECT: case OP_IGET_BOOLEAN: case OP_IGET_BYTE: case OP_IGET_CHAR: case OP_IGET_SHORT: case OP_IPUT: case OP_IPUT_WIDE: case OP_IPUT_OBJECT: case OP_IPUT_BOOLEAN: case OP_IPUT_BYTE: case OP_IPUT_CHAR: case OP_IPUT_SHORT: { const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? mir->meta.calleeMethod : cUnit->method; Field *fieldPtr = method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC]; if (fieldPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null instance field"); dvmAbort(); } #if ANDROID_SMP != 0 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); #else isVolatile = dvmIsVolatileField((Field *) fieldPtr); #endif fieldOffset = ((InstField *)fieldPtr)->byteOffset; break; } default: break; } switch (dalvikOpcode) { case OP_NEW_ARRAY: { // Generates a call - use explicit registers RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); RegLocation rlResult; void *classPtr = (void*) (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); if (classPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGE("Unexpected null class"); dvmAbort(); } dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ genExportPC(cUnit, mir); loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */ loadConstant(cUnit, r0, (int) classPtr ); LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass); /* * "len < 0": bail to the interpreter to re-execute the * instruction */ genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL); loadConstant(cUnit, r2, ALLOC_DONT_TRACK); opReg(cUnit, kOpBlx, r3); dvmCompilerClobberCallRegs(cUnit); /* generate a branch over if allocation is successful */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); /* * OOM exception needs to be thrown here and cannot re-execute */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); /* noreturn */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; rlResult = dvmCompilerGetReturn(cUnit); storeValue(cUnit, rlDest, rlResult); break; } case OP_INSTANCE_OF: { // May generate a call - use explicit registers RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); RegLocation rlResult; ClassObject *classPtr = (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); /* * Note: It is possible that classPtr is NULL at this point, * even though this instruction has been successfully interpreted. * If the previous interpretation had a null source, the * interpreter would not have bothered to resolve the clazz. * Bail out to the interpreter in this case, and log it * so that we can tell if it happens frequently. */ if (classPtr == NULL) { BAIL_LOOP_COMPILATION(); ALOGD("null clazz in OP_INSTANCE_OF, single-stepping"); genInterpSingleStep(cUnit, mir); break; } dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */ loadConstant(cUnit, r2, (int) classPtr ); /* When taken r0 has NULL which can be used for store directly */ ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0); /* r1 now contains object->clazz */ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1); /* r1 now contains object->clazz */ LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial); loadConstant(cUnit, r0, 1); /* Assume true */ opRegReg(cUnit, kOpCmp, r1, r2); ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); genRegCopy(cUnit, r0, r1); genRegCopy(cUnit, r1, r2); opReg(cUnit, kOpBlx, r3); dvmCompilerClobberCallRegs(cUnit); /* branch target here */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; rlResult = dvmCompilerGetReturn(cUnit); storeValue(cUnit, rlDest, rlResult); branch1->generic.target = (LIR *)target; branch2->generic.target = (LIR *)target; break; } case OP_IGET_WIDE: genIGetWide(cUnit, mir, fieldOffset); break; case OP_IGET_VOLATILE: case OP_IGET_OBJECT_VOLATILE: case OP_IGET: case OP_IGET_OBJECT: case OP_IGET_BOOLEAN: case OP_IGET_BYTE: case OP_IGET_CHAR: case OP_IGET_SHORT: genIGet(cUnit, mir, kWord, fieldOffset, isVolatile); break; case OP_IPUT_WIDE: genIPutWide(cUnit, mir, fieldOffset); break; case OP_IPUT_VOLATILE: case OP_IPUT: case OP_IPUT_BOOLEAN: case OP_IPUT_BYTE: case OP_IPUT_CHAR: case OP_IPUT_SHORT: genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile); break; case OP_IPUT_OBJECT_VOLATILE: case OP_IPUT_OBJECT: genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile); break; case OP_IGET_WIDE_VOLATILE: case OP_IPUT_WIDE_VOLATILE: genInterpSingleStep(cUnit, mir); break; default: return true; } return false; } static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; int fieldOffset = mir->dalvikInsn.vC; switch (dalvikOpcode) { case OP_IGET_QUICK: case OP_IGET_OBJECT_QUICK: genIGet(cUnit, mir, kWord, fieldOffset, false); break; case OP_IPUT_QUICK: genIPut(cUnit, mir, kWord, fieldOffset, false, false); break; case OP_IPUT_OBJECT_QUICK: genIPut(cUnit, mir, kWord, fieldOffset, true, false); break; case OP_IGET_WIDE_QUICK: genIGetWide(cUnit, mir, fieldOffset); break; case OP_IPUT_WIDE_QUICK: genIPutWide(cUnit, mir, fieldOffset); break; default: return true; } return false; } /* Compare agaist zero */ static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; ArmConditionCode cond; /* backward branch? */ bool backwardBranch = (bb->taken->startOffset <= mir->offset); if (backwardBranch && (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { genSuspendPoll(cUnit, mir); } RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); switch (dalvikOpcode) { case OP_IF_EQ: cond = kArmCondEq; break; case OP_IF_NE: cond = kArmCondNe; break; case OP_IF_LT: cond = kArmCondLt; break; case OP_IF_GE: cond = kArmCondGe; break; case OP_IF_GT: cond = kArmCondGt; break; case OP_IF_LE: cond = kArmCondLe; break; default: cond = (ArmConditionCode)0; ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode); dvmCompilerAbort(cUnit); } genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]); /* This mostly likely will be optimized away in a later phase */ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); return false; } static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir) { Opcode opcode = mir->dalvikInsn.opcode; switch (opcode) { case OP_MOVE_16: case OP_MOVE_OBJECT_16: case OP_MOVE_FROM16: case OP_MOVE_OBJECT_FROM16: { storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0), dvmCompilerGetSrc(cUnit, mir, 0)); break; } case OP_MOVE_WIDE_16: case OP_MOVE_WIDE_FROM16: { storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1), dvmCompilerGetSrcWide(cUnit, mir, 0, 1)); break; } default: return true; } return false; } static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir) { Opcode opcode = mir->dalvikInsn.opcode; RegLocation rlSrc1; RegLocation rlSrc2; RegLocation rlDest; if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) { return genArithOp( cUnit, mir ); } /* APUTs have 3 sources and no targets */ if (mir->ssaRep->numDefs == 0) { if (mir->ssaRep->numUses == 3) { rlDest = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1); rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); } else { assert(mir->ssaRep->numUses == 4); rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2); rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3); } } else { /* Two sources and 1 dest. Deduce the operand sizes */ if (mir->ssaRep->numUses == 4) { rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); } else { assert(mir->ssaRep->numUses == 2); rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); } if (mir->ssaRep->numDefs == 2) { rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); } else { assert(mir->ssaRep->numDefs == 1); rlDest = dvmCompilerGetDest(cUnit, mir, 0); } } switch (opcode) { case OP_CMPL_FLOAT: case OP_CMPG_FLOAT: case OP_CMPL_DOUBLE: case OP_CMPG_DOUBLE: return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2); case OP_CMP_LONG: genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2); break; case OP_AGET_WIDE: genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); break; case OP_AGET: case OP_AGET_OBJECT: genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); break; case OP_AGET_BOOLEAN: genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); break; case OP_AGET_BYTE: genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0); break; case OP_AGET_CHAR: genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); break; case OP_AGET_SHORT: genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1); break; case OP_APUT_WIDE: genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); break; case OP_APUT: genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); break; case OP_APUT_OBJECT: genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2); break; case OP_APUT_SHORT: case OP_APUT_CHAR: genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); break; case OP_APUT_BYTE: case OP_APUT_BOOLEAN: genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); break; default: return true; } return false; } /* * Find the matching case. * * return values: * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case, * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES). * r1 (high 32-bit): the branch offset of the matching case (only for indexes * above MAX_CHAINED_SWITCH_CASES). * * Instructions around the call are: * * mov r2, pc * blx &findPackedSwitchIndex * mov pc, r0 * .align4 * chaining cell for case 0 [12 bytes] * chaining cell for case 1 [12 bytes] * : * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes] * chaining cell for case default [8 bytes] * noChain exit */ static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc) { int size; int firstKey; const int *entries; int index; int jumpIndex; uintptr_t caseDPCOffset = 0; /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */ uintptr_t chainingPC = (pc + 4) & ~3; /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ size = switchData[1]; assert(size > 0); firstKey = switchData[2]; firstKey |= switchData[3] << 16; /* The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ entries = (const int*) &switchData[4]; assert(((u4)entries & 0x3) == 0); index = testVal - firstKey; /* Jump to the default cell */ if (index < 0 || index >= size) { jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES); /* Jump to the non-chaining exit point */ } else if (index >= MAX_CHAINED_SWITCH_CASES) { jumpIndex = MAX_CHAINED_SWITCH_CASES + 1; caseDPCOffset = entries[index]; /* Jump to the inline chaining cell */ } else { jumpIndex = index; } chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE; return (((u8) caseDPCOffset) << 32) | (u8) chainingPC; } /* See comments for findPackedSwitchIndex */ static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc) { int size; const int *keys; const int *entries; uintptr_t chainingPC = (pc + 4) & ~3; int i; /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ size = switchData[1]; assert(size > 0); /* The keys are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ keys = (const int*) &switchData[2]; assert(((u4)keys & 0x3) == 0); /* The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ entries = keys + size; assert(((u4)entries & 0x3) == 0); /* * Run through the list of keys, which are guaranteed to * be sorted low-to-high. * * Most tables have 3-4 entries. Few have more than 10. A binary * search here is probably not useful. */ for (i = 0; i < size; i++) { int k = keys[i]; if (k == testVal) { /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */ int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ? i : MAX_CHAINED_SWITCH_CASES + 1; chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE; return (((u8) entries[i]) << 32) | (u8) chainingPC; } else if (k > testVal) { break; } } return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) * CHAIN_CELL_NORMAL_SIZE; } static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir) { Opcode dalvikOpcode = mir->dalvikInsn.opcode; switch (dalvikOpcode) { case OP_FILL_ARRAY_DATA: { RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); // Making a call - use explicit registers dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ genExportPC(cUnit, mir); loadValueDirectFixed(cUnit, rlSrc, r0); LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData); loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); opReg(cUnit, kOpBlx, r2); dvmCompilerClobberCallRegs(cUnit); /* generate a branch over if successful */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; break; } /* * Compute the goto target of up to * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells. * See the comment before findPackedSwitchIndex for the code layout. */ case OP_PACKED_SWITCH: case OP_SPARSE_SWITCH: { RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ loadValueDirectFixed(cUnit, rlSrc, r1); dvmCompilerLockAllTemps(cUnit); if (dalvikOpcode == OP_PACKED_SWITCH) { LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex); } else { LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex); } /* r0 <- Addr of the switch data */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); /* r2 <- pc of the instruction following the blx */ opRegReg(cUnit, kOpMov, r2, r15pc); opReg(cUnit, kOpBlx, r4PC); dvmCompilerClobberCallRegs(cUnit); /* pc <- computed goto target */ opRegReg(cUnit, kOpMov, r15pc, r0); break; } default: return true; } return false; } /* * See the example of predicted inlining listed before the * genValidationForPredictedInline function. The function here takes care the * branch over at 0x4858de78 and the misprediction target at 0x4858de7a. */ static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { BasicBlock *fallThrough = bb->fallThrough; /* Bypass the move-result block if there is one */ if (fallThrough->firstMIRInsn) { assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED); fallThrough = fallThrough->fallThrough; } /* Generate a branch over if the predicted inlining is correct */ genUnconditionalBranch(cUnit, &labelList[fallThrough->id]); /* Reset the register state */ dvmCompilerResetRegPool(cUnit); dvmCompilerClobberAllRegs(cUnit); dvmCompilerResetNullCheck(cUnit); /* Target for the slow invoke path */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; /* Hook up the target to the verification branch */ mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target; } static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { ArmLIR *retChainingCell = NULL; ArmLIR *pcrLabel = NULL; /* An invoke with the MIR_INLINED is effectively a no-op */ if (mir->OptimizationFlags & MIR_INLINED) return false; if (bb->fallThrough != NULL) retChainingCell = &labelList[bb->fallThrough->id]; DecodedInstruction *dInsn = &mir->dalvikInsn; switch (mir->dalvikInsn.opcode) { /* * calleeMethod = this->clazz->vtable[ * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex * ] */ case OP_INVOKE_VIRTUAL: case OP_INVOKE_VIRTUAL_RANGE: { ArmLIR *predChainingCell = &labelList[bb->taken->id]; int methodIndex = cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]-> methodIndex; /* * If the invoke has non-null misPredBranchOver, we need to generate * the non-inlined version of the invoke here to handle the * mispredicted case. */ if (mir->meta.callsiteInfo->misPredBranchOver) { genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); } if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); genInvokeVirtualCommon(cUnit, mir, methodIndex, retChainingCell, predChainingCell, pcrLabel); break; } /* * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex * ->pResMethods[BBBB]->methodIndex] */ case OP_INVOKE_SUPER: case OP_INVOKE_SUPER_RANGE: { /* Grab the method ptr directly from what the interpreter sees */ const Method *calleeMethod = mir->meta.callsiteInfo->method; assert(calleeMethod == cUnit->method->clazz->super->vtable[ cUnit->method->clazz->pDvmDex-> pResMethods[dInsn->vB]->methodIndex]); if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { const Method *calleeMethod = mir->meta.callsiteInfo->method; void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); assert(calleeAddr); genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr, retChainingCell); } else { /* r0 = calleeMethod */ loadConstant(cUnit, r0, (int) calleeMethod); genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, calleeMethod); } break; } /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ case OP_INVOKE_DIRECT: case OP_INVOKE_DIRECT_RANGE: { /* Grab the method ptr directly from what the interpreter sees */ const Method *calleeMethod = mir->meta.callsiteInfo->method; assert(calleeMethod == cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]); if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); /* r0 = calleeMethod */ loadConstant(cUnit, r0, (int) calleeMethod); genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, calleeMethod); break; } /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ case OP_INVOKE_STATIC: case OP_INVOKE_STATIC_RANGE: { /* Grab the method ptr directly from what the interpreter sees */ const Method *calleeMethod = mir->meta.callsiteInfo->method; assert(calleeMethod == cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]); if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC) genProcessArgsNoRange(cUnit, mir, dInsn, NULL /* no null check */); else genProcessArgsRange(cUnit, mir, dInsn, NULL /* no null check */); if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { const Method *calleeMethod = mir->meta.callsiteInfo->method; void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); assert(calleeAddr); genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr, retChainingCell); } else { /* r0 = calleeMethod */ loadConstant(cUnit, r0, (int) calleeMethod); genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, calleeMethod); } break; } /* * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz, * BBBB, method, method->clazz->pDvmDex) * * The following is an example of generated code for * "invoke-interface v0" * * -------- dalvik offset: 0x0008 @ invoke-interface v0 * 0x47357e36 : ldr r0, [r5, #0] --+ * 0x47357e38 : sub r7,r5,#24 | * 0x47357e3c : cmp r0, #0 | genProcessArgsNoRange * 0x47357e3e : beq 0x47357e82 | * 0x47357e40 : stmia r7, <r0> --+ * 0x47357e42 : ldr r4, [pc, #120] --> r4 <- dalvikPC of this invoke * 0x47357e44 : add r1, pc, #64 --> r1 <- &retChainingCell * 0x47357e46 : add r2, pc, #72 --> r2 <- &predictedChainingCell * 0x47357e48 : blx_1 0x47348190 --+ TEMPLATE_INVOKE_METHOD_ * 0x47357e4a : blx_2 see above --+ PREDICTED_CHAIN * 0x47357e4c : b 0x47357e90 --> off to the predicted chain * 0x47357e4e : b 0x47357e82 --> punt to the interpreter * 0x47357e50 : mov r8, r1 --+ * 0x47357e52 : mov r9, r2 | * 0x47357e54 : ldr r2, [pc, #96] | * 0x47357e56 : mov r10, r3 | * 0x47357e58 : movs r0, r3 | dvmFindInterfaceMethodInCache * 0x47357e5a : ldr r3, [pc, #88] | * 0x47357e5c : ldr r7, [pc, #80] | * 0x47357e5e : mov r1, #1452 | * 0x47357e62 : blx r7 --+ * 0x47357e64 : cmp r0, #0 --> calleeMethod == NULL? * 0x47357e66 : bne 0x47357e6e --> branch over the throw if !r0 * 0x47357e68 : ldr r0, [pc, #80] --> load Dalvik PC of the invoke * 0x47357e6a : blx_1 0x47348494 --+ TEMPLATE_THROW_EXCEPTION_ * 0x47357e6c : blx_2 see above --+ COMMON * 0x47357e6e : mov r1, r8 --> r1 <- &retChainingCell * 0x47357e70 : cmp r1, #0 --> compare against 0 * 0x47357e72 : bgt 0x47357e7c --> >=0? don't rechain * 0x47357e74 : ldr r7, [pc, #off] --+ * 0x47357e76 : mov r2, r9 | dvmJitToPatchPredictedChain * 0x47357e78 : mov r3, r10 | * 0x47357e7a : blx r7 --+ * 0x47357e7c : add r1, pc, #8 --> r1 <- &retChainingCell * 0x47357e7e : blx_1 0x4734809c --+ TEMPLATE_INVOKE_METHOD_NO_OPT * 0x47357e80 : blx_2 see above --+ * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008 * 0x47357e82 : ldr r0, [pc, #56] * Exception_Handling: * 0x47357e84 : ldr r1, [r6, #92] * 0x47357e86 : blx r1 * 0x47357e88 : .align4 * -------- chaining cell (hot): 0x000b * 0x47357e88 : ldr r0, [r6, #104] * 0x47357e8a : blx r0 * 0x47357e8c : data 0x19e2(6626) * 0x47357e8e : data 0x4257(16983) * 0x47357e90 : .align4 * -------- chaining cell (predicted) * 0x47357e90 : data 0xe7fe(59390) --> will be patched into bx * 0x47357e92 : data 0x0000(0) * 0x47357e94 : data 0x0000(0) --> class * 0x47357e96 : data 0x0000(0) * 0x47357e98 : data 0x0000(0) --> method * 0x47357e9a : data 0x0000(0) * 0x47357e9c : data 0x0000(0) --> rechain count * 0x47357e9e : data 0x0000(0) * -------- end of chaining cells (0x006c) * 0x47357eb0 : .word (0xad03e369) * 0x47357eb4 : .word (0x28a90) * 0x47357eb8 : .word (0x41a63394) * 0x47357ebc : .word (0x425719dc) */ case OP_INVOKE_INTERFACE: case OP_INVOKE_INTERFACE_RANGE: { ArmLIR *predChainingCell = &labelList[bb->taken->id]; /* * If the invoke has non-null misPredBranchOver, we need to generate * the non-inlined version of the invoke here to handle the * mispredicted case. */ if (mir->meta.callsiteInfo->misPredBranchOver) { genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); } if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); /* "this" is already left in r0 by genProcessArgs* */ /* r4PC = dalvikCallsite */ loadConstant(cUnit, r4PC, (int) (cUnit->method->insns + mir->offset)); /* r1 = &retChainingCell */ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); addrRetChain->generic.target = (LIR *) retChainingCell; /* r2 = &predictedChainingCell */ ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0); predictedChainingCell->generic.target = (LIR *) predChainingCell; genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF : TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); /* return through lr - jump to the chaining cell */ genUnconditionalBranch(cUnit, predChainingCell); /* * null-check on "this" may have been eliminated, but we still need * a PC-reconstruction label for stack overflow bailout. */ if (pcrLabel == NULL) { int dPC = (int) (cUnit->method->insns + mir->offset); pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); pcrLabel->opcode = kArmPseudoPCReconstructionCell; pcrLabel->operands[0] = dPC; pcrLabel->operands[1] = mir->offset; /* Insert the place holder to the growable list */ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); } /* return through lr+2 - punt to the interpreter */ genUnconditionalBranch(cUnit, pcrLabel); /* * return through lr+4 - fully resolve the callee method. * r1 <- count * r2 <- &predictedChainCell * r3 <- this->class * r4 <- dPC * r7 <- this->class->vtable */ /* Save count, &predictedChainCell, and class to high regs first */ genRegCopy(cUnit, r8, r1); genRegCopy(cUnit, r9, r2); genRegCopy(cUnit, r10, r3); /* r0 now contains this->clazz */ genRegCopy(cUnit, r0, r3); /* r1 = BBBB */ loadConstant(cUnit, r1, dInsn->vB); /* r2 = method (caller) */ loadConstant(cUnit, r2, (int) cUnit->method); /* r3 = pDvmDex */ loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex); LOAD_FUNC_ADDR(cUnit, r7, (intptr_t) dvmFindInterfaceMethodInCache); opReg(cUnit, kOpBlx, r7); /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */ dvmCompilerClobberCallRegs(cUnit); /* generate a branch over if the interface method is resolved */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); /* * calleeMethod == NULL -> throw */ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); /* noreturn */ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; genRegCopy(cUnit, r1, r8); /* Check if rechain limit is reached */ ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0); LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain); genRegCopy(cUnit, r1, r6SELF); genRegCopy(cUnit, r2, r9); genRegCopy(cUnit, r3, r10); /* * r0 = calleeMethod * r2 = &predictedChainingCell * r3 = class * * &returnChainingCell has been loaded into r1 but is not needed * when patching the chaining cell and will be clobbered upon * returning so it will be reconstructed again. */ opReg(cUnit, kOpBlx, r7); /* r1 = &retChainingCell */ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); addrRetChain->generic.target = (LIR *) retChainingCell; bypassRechaining->generic.target = (LIR *) addrRetChain; /* * r0 = this, r1 = calleeMethod, * r1 = &ChainingCell, * r4PC = callsiteDPC, */ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? TEMPLATE_INVOKE_METHOD_NO_OPT_PROF : TEMPLATE_INVOKE_METHOD_NO_OPT); #if defined(WITH_JIT_TUNING) gDvmJit.invokePolymorphic++; #endif /* Handle exceptions using the interpreter */ genTrap(cUnit, mir->offset, pcrLabel); break; } case OP_INVOKE_OBJECT_INIT_RANGE: case OP_FILLED_NEW_ARRAY: case OP_FILLED_NEW_ARRAY_RANGE: { /* Just let the interpreter deal with these */ genInterpSingleStep(cUnit, mir); break; } default: return true; } return false; } static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, ArmLIR *labelList) { ArmLIR *pcrLabel = NULL; /* An invoke with the MIR_INLINED is effectively a no-op */ if (mir->OptimizationFlags & MIR_INLINED) return false; DecodedInstruction *dInsn = &mir->dalvikInsn; switch (mir->dalvikInsn.opcode) { /* calleeMethod = this->clazz->vtable[BBBB] */ case OP_INVOKE_VIRTUAL_QUICK_RANGE: case OP_INVOKE_VIRTUAL_QUICK: { int methodIndex = dInsn->vB; ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; ArmLIR *predChainingCell = &labelList[bb->taken->id]; /* * If the invoke has non-null misPredBranchOver, we need to generate * the non-inlined version of the invoke here to handle the * mispredicted case. */ if (mir->meta.callsiteInfo->misPredBranchOver) { genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); } if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { const Method *calleeMethod = mir->meta.callsiteInfo->method; void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); assert(calleeAddr); genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr, retChainingCell); } genInvokeVirtualCommon(cUnit, mir, methodIndex, retChainingCell, predChainingCell, pcrLabel); break; } /* calleeMethod = method->clazz->super->vtable[BBBB] */ case OP_INVOKE_SUPER_QUICK: case OP_INVOKE_SUPER_QUICK_RANGE: { /* Grab the method ptr directly from what the interpreter sees */ const Method *calleeMethod = mir->meta.callsiteInfo->method; assert(calleeMethod == cUnit->method->clazz->super->vtable[dInsn->vB]); if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK) genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); else genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); /* r0 = calleeMethod */ loadConstant(cUnit, r0, (int) calleeMethod); genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, calleeMethod); break; } default: return true; } return false; } /* * This operation is complex enough that we'll do it partly inline * and partly with a handler. NOTE: the handler uses hardcoded * values for string object offsets and must be revisitied if the * layout changes. */ static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir) { #if defined(USE_GLOBAL_STRING_DEFS) return handleExecuteInlineC(cUnit, mir); #else ArmLIR *rollback; RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1); loadValueDirectFixed(cUnit, rlThis, r0); loadValueDirectFixed(cUnit, rlComp, r1); /* Test objects for NULL */ rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback); /* * TUNING: we could check for object pointer equality before invoking * handler. Unclear whether the gain would be worth the added code size * expansion. */ genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO); storeValue(cUnit, inlinedTarget(cUnit, mir, false), dvmCompilerGetReturn(cUnit)); return false; #endif } static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir) { #if defined(USE_GLOBAL_STRING_DEFS) return handleExecuteInlineC(cUnit, mir); #else RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1); loadValueDirectFixed(cUnit, rlThis, r0); loadValueDirectFixed(cUnit, rlChar, r1); RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2); loadValueDirectFixed(cUnit, rlStart, r2); /* Test objects for NULL */ genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF); storeValue(cUnit, inlinedTarget(cUnit, mir, false), dvmCompilerGetReturn(cUnit)); return false; #endif } // Generates an inlined String.isEmpty or String.length. static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir, bool isEmpty) { // dst = src.length(); RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = inlinedTarget(cUnit, mir, false); rlObj = loadValue(cUnit, rlObj, kCoreReg); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL); loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, rlResult.lowReg); if (isEmpty) { // dst = (dst == 0); int tReg = dvmCompilerAllocTemp(cUnit); opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg); opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg); } storeValue(cUnit, rlDest, rlResult); return false; } static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir) { return genInlinedStringIsEmptyOrLength(cUnit, mir, false); } static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir) { return genInlinedStringIsEmptyOrLength(cUnit, mir, true); } static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir) { int contents = OFFSETOF_MEMBER(ArrayObject, contents); RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1); RegLocation rlDest = inlinedTarget(cUnit, mir, false); RegLocation rlResult; rlObj = loadValue(cUnit, rlObj, kCoreReg); rlIdx = loadValue(cUnit, rlIdx, kCoreReg); int regMax = dvmCompilerAllocTemp(cUnit); int regOff = dvmCompilerAllocTemp(cUnit); int regPtr = dvmCompilerAllocTemp(cUnit); ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL); loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax); loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff); loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr); genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel); dvmCompilerFreeTemp(cUnit, regMax); opRegImm(cUnit, kOpAdd, regPtr, contents); opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); storeValue(cUnit, rlDest, rlResult); return false; } static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir) { RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlinedTarget(cUnit, mir, false); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = dvmCompilerAllocTemp(cUnit); /* * abs(x) = y<=x>>31, (x+y)^y. * Thumb2's IT block also yields 3 instructions, but imposes * scheduling constraints. */ opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); storeValue(cUnit, rlDest, rlResult); return false; } static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir) { RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); RegLocation rlDest = inlinedTargetWide(cUnit, mir, false); rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = dvmCompilerAllocTemp(cUnit); /* * abs(x) = y<=x>>31, (x+y)^y. * Thumb2 IT block allows slightly shorter sequence, * but introduces a scheduling barrier. Stick with this * mechanism for now. */ opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); storeValueWide(cUnit, rlDest, rlResult); return false; } static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir) { // Just move from source to destination... RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); RegLocation rlDest = inlinedTarget(cUnit, mir, false); storeValue(cUnit, rlDest, rlSrc); return false; } static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir) { // Just move from source to destination... RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); RegLocation rlDest = inlinedTargetWide(cUnit, mir, false); storeValueWide(cUnit, rlDest, rlSrc); return false; } /* * JITs a call to a C function. * TODO: use this for faster native method invocation for simple native * methods (http://b/3069458). */ static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir) { DecodedInstruction *dInsn = &mir->dalvikInsn; int operation = dInsn->vB; unsigned int i; const InlineOperation* inLineTable = dvmGetInlineOpsTable(); uintptr_t fn = (int) inLineTable[operation].func; if (fn == 0) { dvmCompilerAbort(cUnit); } dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ dvmCompilerClobberCallRegs(cUnit); dvmCompilerClobber(cUnit, r4PC); dvmCompilerClobber(cUnit, r7); int offset = offsetof(Thread, interpSave.retval); opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset); opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7)); LOAD_FUNC_ADDR(cUnit, r4PC, fn); genExportPC(cUnit, mir); for (i=0; i < dInsn->vA; i++) { loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i); } opReg(cUnit, kOpBlx, r4PC); opRegImm(cUnit, kOpAdd, r13sp, 8); /* NULL? */ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branchOver->generic.target = (LIR *) target; return false; } /* * NOTE: Handles both range and non-range versions (arguments * have already been normalized by this point). */ static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir) { DecodedInstruction *dInsn = &mir->dalvikInsn; assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE || dInsn->opcode == OP_EXECUTE_INLINE); switch (dInsn->vB) { case INLINE_EMPTYINLINEMETHOD: return false; /* Nop */ /* These ones we potentially JIT inline. */ case INLINE_STRING_CHARAT: return genInlinedStringCharAt(cUnit, mir); case INLINE_STRING_LENGTH: return genInlinedStringLength(cUnit, mir); case INLINE_STRING_IS_EMPTY: return genInlinedStringIsEmpty(cUnit, mir); case INLINE_STRING_COMPARETO: return genInlinedCompareTo(cUnit, mir); case INLINE_STRING_FASTINDEXOF_II: return genInlinedFastIndexOf(cUnit, mir); case INLINE_MATH_ABS_INT: case INLINE_STRICT_MATH_ABS_INT: return genInlinedAbsInt(cUnit, mir); case INLINE_MATH_ABS_LONG: case INLINE_STRICT_MATH_ABS_LONG: return genInlinedAbsLong(cUnit, mir); case INLINE_MATH_MIN_INT: case INLINE_STRICT_MATH_MIN_INT: return genInlinedMinMaxInt(cUnit, mir, true); case INLINE_MATH_MAX_INT: case INLINE_STRICT_MATH_MAX_INT: return genInlinedMinMaxInt(cUnit, mir, false); case INLINE_MATH_SQRT: case INLINE_STRICT_MATH_SQRT: return genInlineSqrt(cUnit, mir); case INLINE_MATH_ABS_FLOAT: case INLINE_STRICT_MATH_ABS_FLOAT: return genInlinedAbsFloat(cUnit, mir); case INLINE_MATH_ABS_DOUBLE: case INLINE_STRICT_MATH_ABS_DOUBLE: return genInlinedAbsDouble(cUnit, mir); case INLINE_FLOAT_TO_RAW_INT_BITS: case INLINE_INT_BITS_TO_FLOAT: return genInlinedIntFloatConversion(cUnit, mir); case INLINE_DOUBLE_TO_RAW_LONG_BITS: case INLINE_LONG_BITS_TO_DOUBLE: return genInlinedLongDoubleConversion(cUnit, mir); /* * These ones we just JIT a call to a C function for. * TODO: special-case these in the other "invoke" call paths. */ case INLINE_STRING_EQUALS: case INLINE_MATH_COS: case INLINE_MATH_SIN: case INLINE_FLOAT_TO_INT_BITS: case INLINE_DOUBLE_TO_LONG_BITS: return handleExecuteInlineC(cUnit, mir); } dvmCompilerAbort(cUnit); return false; // Not reachable; keeps compiler happy. } static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir) { //TUNING: We're using core regs here - not optimal when target is a double RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL); loadConstantNoClobber(cUnit, rlResult.highReg, (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL); storeValueWide(cUnit, rlDest, rlResult); return false; } /* * The following are special processing routines that handle transfer of * controls between compiled code and the interpreter. Certain VM states like * Dalvik PC and special-purpose registers are reconstructed here. */ /* * Insert a * b .+4 * nop * pair at the beginning of a chaining cell. This serves as the * switch branch that selects between reverting to the interpreter or * not. Once the cell is chained to a translation, the cell will * contain a 32-bit branch. Subsequent chain/unchain operations will * then only alter that first 16-bits - the "b .+4" for unchaining, * and the restoration of the first half of the 32-bit branch for * rechaining. */ static void insertChainingSwitch(CompilationUnit *cUnit) { ArmLIR *branch = newLIR0(cUnit, kThumbBUncond); newLIR2(cUnit, kThumbOrr, r0, r0); ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); target->defMask = ENCODE_ALL; branch->generic.target = (LIR *) target; } /* Chaining cell for code that may need warmup. */ static void handleNormalChainingCell(CompilationUnit *cUnit, unsigned int offset) { /* * Use raw instruction constructors to guarantee that the generated * instructions fit the predefined cell size. */ insertChainingSwitch(cUnit); newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2); newLIR1(cUnit, kThumbBlxR, r0); addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); } /* * Chaining cell for instructions that immediately following already translated * code. */ static void handleHotChainingCell(CompilationUnit *cUnit, unsigned int offset) { /* * Use raw instruction constructors to guarantee that the generated * instructions fit the predefined cell size. */ insertChainingSwitch(cUnit); newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); newLIR1(cUnit, kThumbBlxR, r0); addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); } /* Chaining cell for branches that branch back into the same basic block */ static void handleBackwardBranchChainingCell(CompilationUnit *cUnit, unsigned int offset) { /* * Use raw instruction constructors to guarantee that the generated * instructions fit the predefined cell size. */ insertChainingSwitch(cUnit); #if defined(WITH_SELF_VERIFICATION) newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2); #else newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2); #endif newLIR1(cUnit, kThumbBlxR, r0); addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); } /* Chaining cell for monomorphic method invocations. */ static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit, const Method *callee) { /* * Use raw instruction constructors to guarantee that the generated * instructions fit the predefined cell size. */ insertChainingSwitch(cUnit); newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); newLIR1(cUnit, kThumbBlxR, r0); addWordData(cUnit, NULL, (int) (callee->insns)); } /* Chaining cell for monomorphic method invocations. */ static void handleInvokePredictedChainingCell(CompilationUnit *cUnit) { /* Should not be executed in the initial state */ addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT); /* To be filled: class */ addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT); /* To be filled: method */ addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT); /* * Rechain count. The initial value of 0 here will trigger chaining upon * the first invocation of this callsite. */ addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT); } /* Load the Dalvik PC into r0 and jump to the specified target */ static void handlePCReconstruction(CompilationUnit *cUnit, ArmLIR *targetLabel) { ArmLIR **pcrLabel = (ArmLIR **) cUnit->pcReconstructionList.elemList; int numElems = cUnit->pcReconstructionList.numUsed; int i; /* * We should never reach here through fall-through code, so insert * a bomb to signal troubles immediately. */ if (numElems) { newLIR0(cUnit, kThumbUndefined); } for (i = 0; i < numElems; i++) { dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]); /* r0 = dalvik PC */ loadConstant(cUnit, r0, pcrLabel[i]->operands[0]); genUnconditionalBranch(cUnit, targetLabel); } } static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = { "kMirOpPhi", "kMirOpNullNRangeUpCheck", "kMirOpNullNRangeDownCheck", "kMirOpLowerBound", "kMirOpPunt", "kMirOpCheckInlinePrediction", }; /* * vA = arrayReg; * vB = idxReg; * vC = endConditionReg; * arg[0] = maxC * arg[1] = minC * arg[2] = loopBranchConditionCode */ static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir) { /* * NOTE: these synthesized blocks don't have ssa names assigned * for Dalvik registers. However, because they dominate the following * blocks we can simply use the Dalvik name w/ subscript 0 as the * ssa name. */ DecodedInstruction *dInsn = &mir->dalvikInsn; const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); const int maxC = dInsn->arg[0]; int regLength; RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC]; /* regArray <- arrayRef */ rlArray = loadValue(cUnit, rlArray, kCoreReg); rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg); genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); /* regLength <- len(arrayRef) */ regLength = dvmCompilerAllocTemp(cUnit); loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); int delta = maxC; /* * If the loop end condition is ">=" instead of ">", then the largest value * of the index is "endCondition - 1". */ if (dInsn->arg[2] == OP_IF_GE) { delta--; } if (delta) { int tReg = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta); rlIdxEnd.lowReg = tReg; dvmCompilerFreeTemp(cUnit, tReg); } /* Punt if "regIdxEnd < len(Array)" is false */ genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); } /* * vA = arrayReg; * vB = idxReg; * vC = endConditionReg; * arg[0] = maxC * arg[1] = minC * arg[2] = loopBranchConditionCode */ static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir) { DecodedInstruction *dInsn = &mir->dalvikInsn; const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); const int regLength = dvmCompilerAllocTemp(cUnit); const int maxC = dInsn->arg[0]; RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB]; /* regArray <- arrayRef */ rlArray = loadValue(cUnit, rlArray, kCoreReg); rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg); genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); /* regLength <- len(arrayRef) */ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); if (maxC) { int tReg = dvmCompilerAllocTemp(cUnit); opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC); rlIdxInit.lowReg = tReg; dvmCompilerFreeTemp(cUnit, tReg); } /* Punt if "regIdxInit < len(Array)" is false */ genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); } /* * vA = idxReg; * vB = minC; */ static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir) { DecodedInstruction *dInsn = &mir->dalvikInsn; const int minC = dInsn->vB; RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA]; /* regIdx <- initial index value */ rlIdx = loadValue(cUnit, rlIdx, kCoreReg); /* Punt if "regIdxInit + minC >= 0" is false */ genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); } /* * vC = this * * A predicted inlining target looks like the following, where instructions * between 0x4858de66 and 0x4858de72 are checking if the predicted class * matches "this", and the verificaion code is generated by this routine. * * (C) means the instruction is inlined from the callee, and (PI) means the * instruction is the predicted inlined invoke, whose corresponding * instructions are still generated to handle the mispredicted case. * * D/dalvikvm( 86): -------- kMirOpCheckInlinePrediction * D/dalvikvm( 86): 0x4858de66 (0002): ldr r0, [r5, #68] * D/dalvikvm( 86): 0x4858de68 (0004): ldr r1, [pc, #140] * D/dalvikvm( 86): 0x4858de6a (0006): cmp r0, #0 * D/dalvikvm( 86): 0x4858de6c (0008): beq 0x4858deb2 * D/dalvikvm( 86): 0x4858de6e (000a): ldr r2, [r0, #0] * D/dalvikvm( 86): 0x4858de70 (000c): cmp r1, r2 * D/dalvikvm( 86): 0x4858de72 (000e): bne 0x4858de7a * D/dalvikvm( 86): -------- dalvik offset: 0x004c @ +iget-object-quick (C) * v4, v17, (#8) * D/dalvikvm( 86): 0x4858de74 (0010): ldr r3, [r0, #8] * D/dalvikvm( 86): 0x4858de76 (0012): str r3, [r5, #16] * D/dalvikvm( 86): -------- dalvik offset: 0x004c @ * +invoke-virtual-quick/range (PI) v17..v17 * D/dalvikvm( 86): 0x4858de78 (0014): b 0x4858debc * D/dalvikvm( 86): 0x4858de7a (0016): add r4,r5,#68 * D/dalvikvm( 86): -------- BARRIER * D/dalvikvm( 86): 0x4858de7e (001a): ldmia r4, <r0> * D/dalvikvm( 86): -------- BARRIER * D/dalvikvm( 86): 0x4858de80 (001c): sub r7,r5,#24 * D/dalvikvm( 86): 0x4858de84 (0020): cmp r0, #0 * D/dalvikvm( 86): 0x4858de86 (0022): beq 0x4858deb6 * D/dalvikvm( 86): -------- BARRIER * D/dalvikvm( 86): 0x4858de88 (0024): stmia r7, <r0> * D/dalvikvm( 86): -------- BARRIER * D/dalvikvm( 86): 0x4858de8a (0026): ldr r4, [pc, #104] * D/dalvikvm( 86): 0x4858de8c (0028): add r1, pc, #28 * D/dalvikvm( 86): 0x4858de8e (002a): add r2, pc, #56 * D/dalvikvm( 86): 0x4858de90 (002c): blx_1 0x48589198 * D/dalvikvm( 86): 0x4858de92 (002e): blx_2 see above * D/dalvikvm( 86): 0x4858de94 (0030): b 0x4858dec8 * D/dalvikvm( 86): 0x4858de96 (0032): b 0x4858deb6 * D/dalvikvm( 86): 0x4858de98 (0034): ldr r0, [r7, #72] * D/dalvikvm( 86): 0x4858de9a (0036): cmp r1, #0 * D/dalvikvm( 86): 0x4858de9c (0038): bgt 0x4858dea4 * D/dalvikvm( 86): 0x4858de9e (003a): ldr r7, [r6, #116] * D/dalvikvm( 86): 0x4858dea0 (003c): movs r1, r6 * D/dalvikvm( 86): 0x4858dea2 (003e): blx r7 * D/dalvikvm( 86): 0x4858dea4 (0040): add r1, pc, #4 * D/dalvikvm( 86): 0x4858dea6 (0042): blx_1 0x485890a0 * D/dalvikvm( 86): 0x4858dea8 (0044): blx_2 see above * D/dalvikvm( 86): 0x4858deaa (0046): b 0x4858deb6 * D/dalvikvm( 86): 0x4858deac (0048): .align4 * D/dalvikvm( 86): L0x004f: * D/dalvikvm( 86): -------- dalvik offset: 0x004f @ move-result-object (PI) * v4, (#0), (#0) * D/dalvikvm( 86): 0x4858deac (0048): ldr r4, [r6, #8] * D/dalvikvm( 86): 0x4858deae (004a): str r4, [r5, #16] * D/dalvikvm( 86): 0x4858deb0 (004c): b 0x4858debc * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c * D/dalvikvm( 86): 0x4858deb2 (004e): ldr r0, [pc, #64] * D/dalvikvm( 86): 0x4858deb4 (0050): b 0x4858deb8 * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c * D/dalvikvm( 86): 0x4858deb6 (0052): ldr r0, [pc, #60] * D/dalvikvm( 86): Exception_Handling: * D/dalvikvm( 86): 0x4858deb8 (0054): ldr r1, [r6, #100] * D/dalvikvm( 86): 0x4858deba (0056): blx r1 * D/dalvikvm( 86): 0x4858debc (0058): .align4 * D/dalvikvm( 86): -------- chaining cell (hot): 0x0050 * D/dalvikvm( 86): 0x4858debc (0058): b 0x4858dec0 * D/dalvikvm( 86): 0x4858debe (005a): orrs r0, r0 * D/dalvikvm( 86): 0x4858dec0 (005c): ldr r0, [r6, #112] * D/dalvikvm( 86): 0x4858dec2 (005e): blx r0 * D/dalvikvm( 86): 0x4858dec4 (0060): data 0xefd4(61396) * D/dalvikvm( 86): 0x4858dec6 (0062): data 0x42be(17086) * D/dalvikvm( 86): 0x4858dec8 (0064): .align4 * D/dalvikvm( 86): -------- chaining cell (predicted) * D/dalvikvm( 86): 0x4858dec8 (0064): data 0xe7fe(59390) * D/dalvikvm( 86): 0x4858deca (0066): data 0x0000(0) * D/dalvikvm( 86): 0x4858decc (0068): data 0x0000(0) * D/dalvikvm( 86): 0x4858dece (006a): data 0x0000(0) * : */ static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir) { CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo; RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC]; rlThis = loadValue(cUnit, rlThis, kCoreReg); int regPredictedClass = dvmCompilerAllocTemp(cUnit); loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo); genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset, NULL);/* null object? */ int regActualClass = dvmCompilerAllocTemp(cUnit); loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass); opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass); /* * Set the misPredBranchOver target so that it will be generated when the * code for the non-optimized invoke is generated. */ callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe); } /* Extended MIR instructions like PHI */ static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir) { int opOffset = mir->dalvikInsn.opcode - kMirOpFirst; char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1, false); strcpy(msg, extendedMIROpNames[opOffset]); newLIR1(cUnit, kArmPseudoExtended, (int) msg); switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) { case kMirOpPhi: { char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep); newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); break; } case kMirOpNullNRangeUpCheck: { genHoistedChecksForCountUpLoop(cUnit, mir); break; } case kMirOpNullNRangeDownCheck: { genHoistedChecksForCountDownLoop(cUnit, mir); break; } case kMirOpLowerBound: { genHoistedLowerBoundCheck(cUnit, mir); break; } case kMirOpPunt: { genUnconditionalBranch(cUnit, (ArmLIR *) cUnit->loopAnalysis->branchToPCR); break; } case kMirOpCheckInlinePrediction: { genValidationForPredictedInline(cUnit, mir); break; } default: break; } } /* * Create a PC-reconstruction cell for the starting offset of this trace. * Since the PCR cell is placed near the end of the compiled code which is * usually out of range for a conditional branch, we put two branches (one * branch over to the loop body and one layover branch to the actual PCR) at the * end of the entry block. */ static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry, ArmLIR *bodyLabel) { /* Set up the place holder to reconstruct this Dalvik PC */ ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); pcrLabel->opcode = kArmPseudoPCReconstructionCell; pcrLabel->operands[0] = (int) (cUnit->method->insns + entry->startOffset); pcrLabel->operands[1] = entry->startOffset; /* Insert the place holder to the growable list */ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); /* * Next, create two branches - one branch over to the loop body and the * other branch to the PCR cell to punt. */ ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); branchToBody->opcode = kThumbBUncond; branchToBody->generic.target = (LIR *) bodyLabel; setupResourceMasks(branchToBody); cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody; ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); branchToPCR->opcode = kThumbBUncond; branchToPCR->generic.target = (LIR *) pcrLabel; setupResourceMasks(branchToPCR); cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR; } #if defined(WITH_SELF_VERIFICATION) static bool selfVerificationPuntOps(MIR *mir) { DecodedInstruction *decInsn = &mir->dalvikInsn; /* * All opcodes that can throw exceptions and use the * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace * under self-verification mode. */ switch (decInsn->opcode) { case OP_MONITOR_ENTER: case OP_MONITOR_EXIT: case OP_NEW_INSTANCE: case OP_NEW_ARRAY: case OP_CHECK_CAST: case OP_MOVE_EXCEPTION: case OP_FILL_ARRAY_DATA: case OP_EXECUTE_INLINE: case OP_EXECUTE_INLINE_RANGE: return true; default: return false; } } #endif void dvmCompilerMIR2LIR(CompilationUnit *cUnit) { /* Used to hold the labels of each block */ ArmLIR *labelList = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true); ArmLIR *headLIR = NULL; GrowableList chainingListByType[kChainingCellGap]; int i; /* * Initialize various types chaining lists. */ for (i = 0; i < kChainingCellGap; i++) { dvmInitGrowableList(&chainingListByType[i], 2); } /* Clear the visited flag for each block */ dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag, kAllNodes, false /* isIterative */); GrowableListIterator iterator; dvmGrowableListIteratorInit(&cUnit->blockList, &iterator); /* Traces start with a profiling entry point. Generate it here */ cUnit->profileCodeSize = genTraceProfileEntry(cUnit); /* Handle the content in each basic block */ for (i = 0; ; i++) { MIR *mir; BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator); if (bb == NULL) break; if (bb->visited == true) continue; labelList[i].operands[0] = bb->startOffset; if (bb->blockType >= kChainingCellGap) { if (bb->isFallThroughFromInvoke == true) { /* Align this block first since it is a return chaining cell */ newLIR0(cUnit, kArmPseudoPseudoAlign4); } /* * Append the label pseudo LIR first. Chaining cells will be handled * separately afterwards. */ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]); } if (bb->blockType == kEntryBlock) { labelList[i].opcode = kArmPseudoEntryBlock; if (bb->firstMIRInsn == NULL) { continue; } else { setupLoopEntryBlock(cUnit, bb, &labelList[bb->fallThrough->id]); } } else if (bb->blockType == kExitBlock) { labelList[i].opcode = kArmPseudoExitBlock; goto gen_fallthrough; } else if (bb->blockType == kDalvikByteCode) { if (bb->hidden == true) continue; labelList[i].opcode = kArmPseudoNormalBlockLabel; /* Reset the register state */ dvmCompilerResetRegPool(cUnit); dvmCompilerClobberAllRegs(cUnit); dvmCompilerResetNullCheck(cUnit); } else { switch (bb->blockType) { case kChainingCellNormal: labelList[i].opcode = kArmPseudoChainingCellNormal; /* handle the codegen later */ dvmInsertGrowableList( &chainingListByType[kChainingCellNormal], i); break; case kChainingCellInvokeSingleton: labelList[i].opcode = kArmPseudoChainingCellInvokeSingleton; labelList[i].operands[0] = (int) bb->containingMethod; /* handle the codegen later */ dvmInsertGrowableList( &chainingListByType[kChainingCellInvokeSingleton], i); break; case kChainingCellInvokePredicted: labelList[i].opcode = kArmPseudoChainingCellInvokePredicted; /* * Move the cached method pointer from operand 1 to 0. * Operand 0 was clobbered earlier in this routine to store * the block starting offset, which is not applicable to * predicted chaining cell. */ labelList[i].operands[0] = labelList[i].operands[1]; /* handle the codegen later */ dvmInsertGrowableList( &chainingListByType[kChainingCellInvokePredicted], i); break; case kChainingCellHot: labelList[i].opcode = kArmPseudoChainingCellHot; /* handle the codegen later */ dvmInsertGrowableList( &chainingListByType[kChainingCellHot], i); break; case kPCReconstruction: /* Make sure exception handling block is next */ labelList[i].opcode = kArmPseudoPCReconstructionBlockLabel; handlePCReconstruction(cUnit, &labelList[cUnit->puntBlock->id]); break; case kExceptionHandling: labelList[i].opcode = kArmPseudoEHBlockLabel; if (cUnit->pcReconstructionList.numUsed) { loadWordDisp(cUnit, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpPunt), r1); opReg(cUnit, kOpBlx, r1); } break; case kChainingCellBackwardBranch: labelList[i].opcode = kArmPseudoChainingCellBackwardBranch; /* handle the codegen later */ dvmInsertGrowableList( &chainingListByType[kChainingCellBackwardBranch], i); break; default: break; } continue; } /* * Try to build a longer optimization unit. Currently if the previous * block ends with a goto, we continue adding instructions and don't * reset the register allocation pool. */ for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) { bb = nextBB; bb->visited = true; cUnit->nextCodegenBlock = NULL; for (mir = bb->firstMIRInsn; mir; mir = mir->next) { dvmCompilerResetRegPool(cUnit); if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) { dvmCompilerClobberAllRegs(cUnit); } if (gDvmJit.disableOpt & (1 << kSuppressLoads)) { dvmCompilerResetDefTracking(cUnit); } if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) { handleExtendedMIR(cUnit, mir); continue; } Opcode dalvikOpcode = mir->dalvikInsn.opcode; InstructionFormat dalvikFormat = dexGetFormatFromOpcode(dalvikOpcode); const char *note; if (mir->OptimizationFlags & MIR_INLINED) { note = " (I)"; } else if (mir->OptimizationFlags & MIR_INLINED_PRED) { note = " (PI)"; } else if (mir->OptimizationFlags & MIR_CALLEE) { note = " (C)"; } else { note = NULL; } ArmLIR *boundaryLIR; /* * Don't generate the boundary LIR unless we are debugging this * trace or we need a scheduling barrier. */ if (headLIR == NULL || cUnit->printMe == true) { boundaryLIR = newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary, mir->offset, (int) dvmCompilerGetDalvikDisassembly( &mir->dalvikInsn, note)); /* Remember the first LIR for this block */ if (headLIR == NULL) { headLIR = boundaryLIR; /* Set the first boundaryLIR as a scheduling barrier */ headLIR->defMask = ENCODE_ALL; } } /* * Don't generate the SSA annotation unless verbose mode is on */ if (cUnit->printMe && mir->ssaRep) { char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep); newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); } bool notHandled; /* * Debugging: screen the opcode first to see if it is in the * do[-not]-compile list */ bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode); #if defined(WITH_SELF_VERIFICATION) if (singleStepMe == false) { singleStepMe = selfVerificationPuntOps(mir); } #endif if (singleStepMe || cUnit->allSingleStep) { notHandled = false; genInterpSingleStep(cUnit, mir); } else { opcodeCoverage[dalvikOpcode]++; switch (dalvikFormat) { case kFmt10t: case kFmt20t: case kFmt30t: notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit, mir, bb, labelList); break; case kFmt10x: notHandled = handleFmt10x(cUnit, mir); break; case kFmt11n: case kFmt31i: notHandled = handleFmt11n_Fmt31i(cUnit, mir); break; case kFmt11x: notHandled = handleFmt11x(cUnit, mir); break; case kFmt12x: notHandled = handleFmt12x(cUnit, mir); break; case kFmt20bc: notHandled = handleFmt20bc(cUnit, mir); break; case kFmt21c: case kFmt31c: notHandled = handleFmt21c_Fmt31c(cUnit, mir); break; case kFmt21h: notHandled = handleFmt21h(cUnit, mir); break; case kFmt21s: notHandled = handleFmt21s(cUnit, mir); break; case kFmt21t: notHandled = handleFmt21t(cUnit, mir, bb, labelList); break; case kFmt22b: case kFmt22s: notHandled = handleFmt22b_Fmt22s(cUnit, mir); break; case kFmt22c: notHandled = handleFmt22c(cUnit, mir); break; case kFmt22cs: notHandled = handleFmt22cs(cUnit, mir); break; case kFmt22t: notHandled = handleFmt22t(cUnit, mir, bb, labelList); break; case kFmt22x: case kFmt32x: notHandled = handleFmt22x_Fmt32x(cUnit, mir); break; case kFmt23x: notHandled = handleFmt23x(cUnit, mir); break; case kFmt31t: notHandled = handleFmt31t(cUnit, mir); break; case kFmt3rc: case kFmt35c: notHandled = handleFmt35c_3rc(cUnit, mir, bb, labelList); break; case kFmt3rms: case kFmt35ms: notHandled = handleFmt35ms_3rms(cUnit, mir, bb, labelList); break; case kFmt35mi: case kFmt3rmi: notHandled = handleExecuteInline(cUnit, mir); break; case kFmt51l: notHandled = handleFmt51l(cUnit, mir); break; default: notHandled = true; break; } } if (notHandled) { ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled", mir->offset, dalvikOpcode, dexGetOpcodeName(dalvikOpcode), dalvikFormat); dvmCompilerAbort(cUnit); break; } } } if (bb->blockType == kEntryBlock) { dvmCompilerAppendLIR(cUnit, (LIR *) cUnit->loopAnalysis->branchToBody); dvmCompilerAppendLIR(cUnit, (LIR *) cUnit->loopAnalysis->branchToPCR); } if (headLIR) { /* * Eliminate redundant loads/stores and delay stores into later * slots */ dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR, cUnit->lastLIRInsn); /* Reset headLIR which is also the optimization boundary */ headLIR = NULL; } gen_fallthrough: /* * Check if the block is terminated due to trace length constraint - * insert an unconditional branch to the chaining cell. */ if (bb->needFallThroughBranch) { genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); } } /* Handle the chaining cells in predefined order */ for (i = 0; i < kChainingCellGap; i++) { size_t j; int *blockIdList = (int *) chainingListByType[i].elemList; cUnit->numChainingCells[i] = chainingListByType[i].numUsed; /* No chaining cells of this type */ if (cUnit->numChainingCells[i] == 0) continue; /* Record the first LIR for a new type of chaining cell */ cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]]; for (j = 0; j < chainingListByType[i].numUsed; j++) { int blockId = blockIdList[j]; BasicBlock *chainingBlock = (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList, blockId); /* Align this chaining cell first */ newLIR0(cUnit, kArmPseudoPseudoAlign4); /* Insert the pseudo chaining instruction */ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]); switch (chainingBlock->blockType) { case kChainingCellNormal: handleNormalChainingCell(cUnit, chainingBlock->startOffset); break; case kChainingCellInvokeSingleton: handleInvokeSingletonChainingCell(cUnit, chainingBlock->containingMethod); break; case kChainingCellInvokePredicted: handleInvokePredictedChainingCell(cUnit); break; case kChainingCellHot: handleHotChainingCell(cUnit, chainingBlock->startOffset); break; case kChainingCellBackwardBranch: handleBackwardBranchChainingCell(cUnit, chainingBlock->startOffset); break; default: ALOGE("Bad blocktype %d", chainingBlock->blockType); dvmCompilerAbort(cUnit); } } } /* Mark the bottom of chaining cells */ cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom); /* * Generate the branch to the dvmJitToInterpNoChain entry point at the end * of all chaining cells for the overflow cases. */ if (cUnit->switchOverflowPad) { loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad); loadWordDisp(cUnit, r6SELF, offsetof(Thread, jitToInterpEntries.dvmJitToInterpNoChain), r2); opRegReg(cUnit, kOpAdd, r1, r1); opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1); #if defined(WITH_JIT_TUNING) loadConstant(cUnit, r0, kSwitchOverflow); #endif opReg(cUnit, kOpBlx, r2); } dvmCompilerApplyGlobalOptimizations(cUnit); #if defined(WITH_SELF_VERIFICATION) selfVerificationBranchInsertPass(cUnit); #endif } /* * Accept the work and start compiling. Returns true if compilation * is attempted. */ bool dvmCompilerDoWork(CompilerWorkOrder *work) { JitTraceDescription *desc; bool isCompile; bool success = true; if (gDvmJit.codeCacheFull) { return false; } switch (work->kind) { case kWorkOrderTrace: isCompile = true; /* Start compilation with maximally allowed trace length */ desc = (JitTraceDescription *)work->info; success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result, work->bailPtr, 0 /* no hints */); break; case kWorkOrderTraceDebug: { bool oldPrintMe = gDvmJit.printMe; gDvmJit.printMe = true; isCompile = true; /* Start compilation with maximally allowed trace length */ desc = (JitTraceDescription *)work->info; success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result, work->bailPtr, 0 /* no hints */); gDvmJit.printMe = oldPrintMe; break; } case kWorkOrderProfileMode: dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info); isCompile = false; break; default: isCompile = false; ALOGE("Jit: unknown work order type"); assert(0); // Bail if debug build, discard otherwise } if (!success) work->result.codeAddress = NULL; return isCompile; } /* Architectural-specific debugging helpers go here */ void dvmCompilerArchDump(void) { /* Print compiled opcode in this VM instance */ int i, start, streak; char buf[1024]; streak = i = 0; buf[0] = 0; while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) { i++; } if (i == kNumPackedOpcodes) { return; } for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) { if (opcodeCoverage[i]) { streak++; } else { if (streak == 1) { sprintf(buf+strlen(buf), "%x,", start); } else { sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1); } streak = 0; while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) { i++; } if (i < kNumPackedOpcodes) { streak = 1; start = i; } } } if (streak) { if (streak == 1) { sprintf(buf+strlen(buf), "%x", start); } else { sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1); } } if (strlen(buf)) { ALOGD("dalvik.vm.jit.op = %s", buf); } } /* Common initialization routine for an architecture family */ bool dvmCompilerArchInit() { int i; for (i = 0; i < kArmLast; i++) { if (EncodingMap[i].opcode != i) { ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d", EncodingMap[i].name, i, EncodingMap[i].opcode); dvmAbort(); // OK to dvmAbort - build error } } return dvmCompilerArchVariantInit(); } void *dvmCompilerGetInterpretTemplate() { return (void*) ((int)gDvmJit.codeCache + templateEntryOffsets[TEMPLATE_INTERPRET]); } JitInstructionSetType dvmCompilerGetInterpretTemplateSet() { return DALVIK_JIT_ARM; } /* Needed by the Assembler */ void dvmCompilerSetupResourceMasks(ArmLIR *lir) { setupResourceMasks(lir); } /* Needed by the ld/st optmizatons */ ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc) { return genRegCopyNoInsert(cUnit, rDest, rSrc); } /* Needed by the register allocator */ ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc) { return genRegCopy(cUnit, rDest, rSrc); } /* Needed by the register allocator */ void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi, int srcLo, int srcHi) { genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi); } void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase, int displacement, int rSrc, OpSize size) { storeBaseDisp(cUnit, rBase, displacement, rSrc, size); } void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase, int displacement, int rSrcLo, int rSrcHi) { storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi); }