//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenInstruction class.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/STLExtras.h"
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// CGIOperandList Implementation
//===----------------------------------------------------------------------===//
CGIOperandList::CGIOperandList(Record *R) : TheDef(R) {
isPredicable = false;
hasOptionalDef = false;
isVariadic = false;
DagInit *OutDI = R->getValueAsDag("OutOperandList");
if (DefInit *Init = dynamic_cast<DefInit*>(OutDI->getOperator())) {
if (Init->getDef()->getName() != "outs")
throw R->getName() + ": invalid def name for output list: use 'outs'";
} else
throw R->getName() + ": invalid output list: use 'outs'";
NumDefs = OutDI->getNumArgs();
DagInit *InDI = R->getValueAsDag("InOperandList");
if (DefInit *Init = dynamic_cast<DefInit*>(InDI->getOperator())) {
if (Init->getDef()->getName() != "ins")
throw R->getName() + ": invalid def name for input list: use 'ins'";
} else
throw R->getName() + ": invalid input list: use 'ins'";
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i){
Init *ArgInit;
std::string ArgName;
if (i < NumDefs) {
ArgInit = OutDI->getArg(i);
ArgName = OutDI->getArgName(i);
} else {
ArgInit = InDI->getArg(i-NumDefs);
ArgName = InDI->getArgName(i-NumDefs);
}
DefInit *Arg = dynamic_cast<DefInit*>(ArgInit);
if (!Arg)
throw "Illegal operand for the '" + R->getName() + "' instruction!";
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
std::string EncoderMethod;
std::string OperandType = "OPERAND_UNKNOWN";
unsigned NumOps = 1;
DagInit *MIOpInfo = 0;
if (Rec->isSubClassOf("RegisterOperand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
} else if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
// If there is an explicit encoder method, use it.
EncoderMethod = Rec->getValueAsString("EncoderMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
// Verify that MIOpInfo has an 'ops' root value.
if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) ||
dynamic_cast<DefInit*>(MIOpInfo->getOperator())
->getDef()->getName() != "ops")
throw "Bad value for MIOperandInfo in operand '" + Rec->getName() +
"'\n";
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
if (Rec->isSubClassOf("PredicateOperand"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
isVariadic = true;
continue;
} else if (Rec->isSubClassOf("RegisterClass")) {
OperandType = "OPERAND_REGISTER";
} else if (!Rec->isSubClassOf("PointerLikeRegClass") &&
Rec->getName() != "unknown")
throw "Unknown operand class '" + Rec->getName() +
"' in '" + R->getName() + "' instruction!";
// Check that the operand has a name and that it's unique.
if (ArgName.empty())
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has no name!";
if (!OperandNames.insert(ArgName).second)
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has the same name as a previous operand!";
OperandList.push_back(OperandInfo(Rec, ArgName, PrintMethod, EncoderMethod,
OperandType, MIOperandNo, NumOps,
MIOpInfo));
MIOperandNo += NumOps;
}
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
OperandList[i].Constraints.resize(OperandList[i].MINumOperands);
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, throw an exception.
///
unsigned CGIOperandList::getOperandNamed(StringRef Name) const {
unsigned OpIdx;
if (hasOperandNamed(Name, OpIdx)) return OpIdx;
throw "'" + TheDef->getName() + "' does not have an operand named '$" +
Name.str() + "'!";
}
/// hasOperandNamed - Query whether the instruction has an operand of the
/// given name. If so, return true and set OpIdx to the index of the
/// operand. Otherwise, return false.
bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) {
OpIdx = i;
return true;
}
return false;
}
std::pair<unsigned,unsigned>
CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
throw TheDef->getName() + ": Illegal operand name: '" + Op + "'";
std::string OpName = Op.substr(1);
std::string SubOpName;
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of(".");
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'";
OpName = OpName.substr(0, DotIdx);
}
unsigned OpIdx = getOperandNamed(OpName);
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
throw TheDef->getName() + ": Illegal to refer to"
" whole operand part of complex operand '" + Op + "'";
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (MIOpInfo == 0)
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgName(i) == SubOpName)
return std::make_pair(OpIdx, i);
// Otherwise, didn't find it!
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
}
static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops) {
// EARLY_CLOBBER: @early $reg
std::string::size_type wpos = CStr.find_first_of(" \t");
std::string::size_type start = CStr.find_first_not_of(" \t");
std::string Tok = CStr.substr(start, wpos - start);
if (Tok == "@earlyclobber") {
std::string Name = CStr.substr(wpos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for @earlyclobber constraint: '" + CStr + "'";
Name = Name.substr(wpos);
std::pair<unsigned,unsigned> Op = Ops.ParseOperandName(Name, false);
// Build the string for the operand
if (!Ops[Op.first].Constraints[Op.second].isNone())
throw "Operand '" + Name + "' cannot have multiple constraints!";
Ops[Op.first].Constraints[Op.second] =
CGIOperandList::ConstraintInfo::getEarlyClobber();
return;
}
// Only other constraint is "TIED_TO" for now.
std::string::size_type pos = CStr.find_first_of('=');
assert(pos != std::string::npos && "Unrecognized constraint");
start = CStr.find_first_not_of(" \t");
std::string Name = CStr.substr(start, pos - start);
// TIED_TO: $src1 = $dst
wpos = Name.find_first_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::string DestOpName = Name.substr(0, wpos);
std::pair<unsigned,unsigned> DestOp = Ops.ParseOperandName(DestOpName, false);
Name = CStr.substr(pos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::pair<unsigned,unsigned> SrcOp =
Ops.ParseOperandName(Name.substr(wpos), false);
if (SrcOp > DestOp)
throw "Illegal tied-to operand constraint '" + CStr + "'";
unsigned FlatOpNo = Ops.getFlattenedOperandNumber(SrcOp);
if (!Ops[DestOp.first].Constraints[DestOp.second].isNone())
throw "Operand '" + DestOpName + "' cannot have multiple constraints!";
Ops[DestOp.first].Constraints[DestOp.second] =
CGIOperandList::ConstraintInfo::getTied(FlatOpNo);
}
static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops) {
if (CStr.empty()) return;
const std::string delims(",");
std::string::size_type bidx, eidx;
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) {
while (1) {
std::pair<StringRef, StringRef> P = getToken(DisableEncoding, " ,\t");
std::string OpName = P.first;
DisableEncoding = P.second;
if (OpName.empty()) break;
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
}
//===----------------------------------------------------------------------===//
// CodeGenInstruction Implementation
//===----------------------------------------------------------------------===//
CodeGenInstruction::CodeGenInstruction(Record *R)
: TheDef(R), Operands(R), InferredFrom(0) {
Namespace = R->getValueAsString("Namespace");
AsmString = R->getValueAsString("AsmString");
isReturn = R->getValueAsBit("isReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isCompare = R->getValueAsBit("isCompare");
isMoveImm = R->getValueAsBit("isMoveImm");
isBitcast = R->getValueAsBit("isBitcast");
isSelect = R->getValueAsBit("isSelect");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
canFoldAsLoad = R->getValueAsBit("canFoldAsLoad");
isPredicable = Operands.isPredicable || R->getValueAsBit("isPredicable");
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomInserter = R->getValueAsBit("usesCustomInserter");
hasPostISelHook = R->getValueAsBit("hasPostISelHook");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
mayLoad = R->getValueAsBitOrUnset("mayLoad", mayLoad_Unset);
mayStore = R->getValueAsBitOrUnset("mayStore", mayStore_Unset);
hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects",
hasSideEffects_Unset);
neverHasSideEffects = R->getValueAsBit("neverHasSideEffects");
isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove");
hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq");
hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq");
isCodeGenOnly = R->getValueAsBit("isCodeGenOnly");
isPseudo = R->getValueAsBit("isPseudo");
ImplicitDefs = R->getValueAsListOfDefs("Defs");
ImplicitUses = R->getValueAsListOfDefs("Uses");
if (neverHasSideEffects + hasSideEffects > 1)
throw R->getName() + ": multiple conflicting side-effect flags set!";
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), Operands);
// Parse the DisableEncoding field.
Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding"));
}
/// HasOneImplicitDefWithKnownVT - If the instruction has at least one
/// implicit def and it has a known VT, return the VT, otherwise return
/// MVT::Other.
MVT::SimpleValueType CodeGenInstruction::
HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const {
if (ImplicitDefs.empty()) return MVT::Other;
// Check to see if the first implicit def has a resolvable type.
Record *FirstImplicitDef = ImplicitDefs[0];
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<MVT::SimpleValueType> &RegVTs =
TargetInfo.getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1)
return RegVTs[0];
return MVT::Other;
}
/// FlattenAsmStringVariants - Flatten the specified AsmString to only
/// include text from the specified variant, returning the new string.
std::string CodeGenInstruction::
FlattenAsmStringVariants(StringRef Cur, unsigned Variant) {
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != Variant; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
//===----------------------------------------------------------------------===//
/// CodeGenInstAlias Implementation
//===----------------------------------------------------------------------===//
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor. It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction. It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
Record *InstOpRec, bool hasSubOps,
ArrayRef<SMLoc> Loc, CodeGenTarget &T,
ResultOperand &ResOp) {
Init *Arg = Result->getArg(AliasOpNo);
DefInit *ADI = dynamic_cast<DefInit*>(Arg);
if (ADI && ADI->getDef() == InstOpRec) {
// If the operand is a record, it must have a name, and the record type
// must match up with the instruction's argument type.
if (Result->getArgName(AliasOpNo).empty())
throw TGError(Loc, "result argument #" + utostr(AliasOpNo) +
" must have a name!");
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
return true;
}
// For register operands, the source register class can be a subclass
// of the instruction register class, not just an exact match.
if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) {
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.hasSubClass(&T.getRegisterClass(ADI->getDef())))
return false;
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
return true;
}
// Handle explicit registers.
if (ADI && ADI->getDef()->isSubClassOf("Register")) {
if (InstOpRec->isSubClassOf("OptionalDefOperand")) {
DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo");
// The operand info should only have a single (register) entry. We
// want the register class of it.
InstOpRec = dynamic_cast<DefInit*>(DI->getArg(0))->getDef();
}
if (InstOpRec->isSubClassOf("RegisterOperand"))
InstOpRec = InstOpRec->getValueAsDef("RegClass");
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.contains(T.getRegBank().getReg(ADI->getDef())))
throw TGError(Loc, "fixed register " + ADI->getDef()->getName() +
" is not a member of the " + InstOpRec->getName() +
" register class!");
if (!Result->getArgName(AliasOpNo).empty())
throw TGError(Loc, "result fixed register argument must "
"not have a name!");
ResOp = ResultOperand(ADI->getDef());
return true;
}
// Handle "zero_reg" for optional def operands.
if (ADI && ADI->getDef()->getName() == "zero_reg") {
// Check if this is an optional def.
// Tied operands where the source is a sub-operand of a complex operand
// need to represent both operands in the alias destination instruction.
// Allow zero_reg for the tied portion. This can and should go away once
// the MC representation of things doesn't use tied operands at all.
//if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
// throw TGError(Loc, "reg0 used for result that is not an "
// "OptionalDefOperand!");
ResOp = ResultOperand(static_cast<Record*>(0));
return true;
}
// Literal integers.
if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
// Integer arguments can't have names.
if (!Result->getArgName(AliasOpNo).empty())
throw TGError(Loc, "result argument #" + utostr(AliasOpNo) +
" must not have a name!");
ResOp = ResultOperand(II->getValue());
return true;
}
// If both are Operands with the same MVT, allow the conversion. It's
// up to the user to make sure the values are appropriate, just like
// for isel Pat's.
if (InstOpRec->isSubClassOf("Operand") &&
ADI->getDef()->isSubClassOf("Operand")) {
// FIXME: What other attributes should we check here? Identical
// MIOperandInfo perhaps?
if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type"))
return false;
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
return true;
}
return false;
}
CodeGenInstAlias::CodeGenInstAlias(Record *R, CodeGenTarget &T) : TheDef(R) {
AsmString = R->getValueAsString("AsmString");
Result = R->getValueAsDag("ResultInst");
// Verify that the root of the result is an instruction.
DefInit *DI = dynamic_cast<DefInit*>(Result->getOperator());
if (DI == 0 || !DI->getDef()->isSubClassOf("Instruction"))
throw TGError(R->getLoc(), "result of inst alias should be an instruction");
ResultInst = &T.getInstruction(DI->getDef());
// NameClass - If argument names are repeated, we need to verify they have
// the same class.
StringMap<Record*> NameClass;
for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
DefInit *ADI = dynamic_cast<DefInit*>(Result->getArg(i));
if (!ADI || Result->getArgName(i).empty())
continue;
// Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
// $foo can exist multiple times in the result list, but it must have the
// same type.
Record *&Entry = NameClass[Result->getArgName(i)];
if (Entry && Entry != ADI->getDef())
throw TGError(R->getLoc(), "result value $" + Result->getArgName(i) +
" is both " + Entry->getName() + " and " +
ADI->getDef()->getName() + "!");
Entry = ADI->getDef();
}
// Decode and validate the arguments of the result.
unsigned AliasOpNo = 0;
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
// Tied registers don't have an entry in the result dag unless they're part
// of a complex operand, in which case we include them anyways, as we
// don't have any other way to specify the whole operand.
if (ResultInst->Operands[i].MINumOperands == 1 &&
ResultInst->Operands[i].getTiedRegister() != -1)
continue;
if (AliasOpNo >= Result->getNumArgs())
throw TGError(R->getLoc(), "not enough arguments for instruction!");
Record *InstOpRec = ResultInst->Operands[i].Rec;
unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
ResultOperand ResOp(static_cast<int64_t>(0));
if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
R->getLoc(), T, ResOp)) {
// If this is a simple operand, or a complex operand with a custom match
// class, then we can match is verbatim.
if (NumSubOps == 1 ||
(InstOpRec->getValue("ParserMatchClass") &&
InstOpRec->getValueAsDef("ParserMatchClass")
->getValueAsString("Name") != "Imm")) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, -1));
++AliasOpNo;
// Otherwise, we need to match each of the suboperands individually.
} else {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
Record *SubRec = dynamic_cast<DefInit*>(MIOI->getArg(SubOp))->getDef();
// Take care to instantiate each of the suboperands with the correct
// nomenclature: $foo.bar
ResultOperands.push_back(
ResultOperand(Result->getArgName(AliasOpNo) + "." +
MIOI->getArgName(SubOp), SubRec));
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
}
++AliasOpNo;
}
continue;
}
// If the argument did not match the instruction operand, and the operand
// is composed of multiple suboperands, try matching the suboperands.
if (NumSubOps > 1) {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
if (AliasOpNo >= Result->getNumArgs())
throw TGError(R->getLoc(), "not enough arguments for instruction!");
Record *SubRec = dynamic_cast<DefInit*>(MIOI->getArg(SubOp))->getDef();
if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
R->getLoc(), T, ResOp)) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
++AliasOpNo;
} else {
throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
" does not match instruction operand class " +
(SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
}
}
continue;
}
throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
" does not match instruction operand class " +
InstOpRec->getName());
}
if (AliasOpNo != Result->getNumArgs())
throw TGError(R->getLoc(), "too many operands for instruction!");
}