C++程序  |  7784行  |  294.37 KB

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"

using namespace llvm;

namespace {

class ARMOperand;

enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };

class ARMAsmParser : public MCTargetAsmParser {
  MCSubtargetInfo &STI;
  MCAsmParser &Parser;
  const MCRegisterInfo *MRI;

  // Map of register aliases registers via the .req directive.
  StringMap<unsigned> RegisterReqs;

  struct {
    ARMCC::CondCodes Cond;    // Condition for IT block.
    unsigned Mask:4;          // Condition mask for instructions.
                              // Starting at first 1 (from lsb).
                              //   '1'  condition as indicated in IT.
                              //   '0'  inverse of condition (else).
                              // Count of instructions in IT block is
                              // 4 - trailingzeroes(mask)

    bool FirstCond;           // Explicit flag for when we're parsing the
                              // First instruction in the IT block. It's
                              // implied in the mask, so needs special
                              // handling.

    unsigned CurPosition;     // Current position in parsing of IT
                              // block. In range [0,3]. Initialized
                              // according to count of instructions in block.
                              // ~0U if no active IT block.
  } ITState;
  bool inITBlock() { return ITState.CurPosition != ~0U;}
  void forwardITPosition() {
    if (!inITBlock()) return;
    // Move to the next instruction in the IT block, if there is one. If not,
    // mark the block as done.
    unsigned TZ = CountTrailingZeros_32(ITState.Mask);
    if (++ITState.CurPosition == 5 - TZ)
      ITState.CurPosition = ~0U; // Done with the IT block after this.
  }


  MCAsmParser &getParser() const { return Parser; }
  MCAsmLexer &getLexer() const { return Parser.getLexer(); }

  bool Warning(SMLoc L, const Twine &Msg,
               ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
    return Parser.Warning(L, Msg, Ranges);
  }
  bool Error(SMLoc L, const Twine &Msg,
             ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
    return Parser.Error(L, Msg, Ranges);
  }

  int tryParseRegister();
  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
                              unsigned &ShiftAmount);
  bool parseDirectiveWord(unsigned Size, SMLoc L);
  bool parseDirectiveThumb(SMLoc L);
  bool parseDirectiveARM(SMLoc L);
  bool parseDirectiveThumbFunc(SMLoc L);
  bool parseDirectiveCode(SMLoc L);
  bool parseDirectiveSyntax(SMLoc L);
  bool parseDirectiveReq(StringRef Name, SMLoc L);
  bool parseDirectiveUnreq(SMLoc L);
  bool parseDirectiveArch(SMLoc L);
  bool parseDirectiveEabiAttr(SMLoc L);

  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
                          bool &CarrySetting, unsigned &ProcessorIMod,
                          StringRef &ITMask);
  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
                             bool &CanAcceptPredicationCode);

  bool isThumb() const {
    // FIXME: Can tablegen auto-generate this?
    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
  }
  bool isThumbOne() const {
    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
  }
  bool isThumbTwo() const {
    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
  }
  bool hasV6Ops() const {
    return STI.getFeatureBits() & ARM::HasV6Ops;
  }
  bool hasV7Ops() const {
    return STI.getFeatureBits() & ARM::HasV7Ops;
  }
  void SwitchMode() {
    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
    setAvailableFeatures(FB);
  }
  bool isMClass() const {
    return STI.getFeatureBits() & ARM::FeatureMClass;
  }

  /// @name Auto-generated Match Functions
  /// {

#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"

  /// }

  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseCoprocNumOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseCoprocRegOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseCoprocOptionOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseMemBarrierOptOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseProcIFlagsOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseMSRMaskOperand(
    SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
                                   StringRef Op, int Low, int High);
  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
    return parsePKHImm(O, "lsl", 0, 31);
  }
  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
    return parsePKHImm(O, "asr", 1, 32);
  }
  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index);

  // Asm Match Converter Methods
  void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStWriteBackRegAddrMode2(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStWriteBackRegAddrMode3(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdExtTWriteBackImm(MCInst &Inst,
                             const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdExtTWriteBackReg(MCInst &Inst,
                             const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStExtTWriteBackImm(MCInst &Inst,
                             const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStExtTWriteBackReg(MCInst &Inst,
                             const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtThumbMultiply(MCInst &Inst,
                        const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtVLDwbFixed(MCInst &Inst,
                     const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtVLDwbRegister(MCInst &Inst,
                        const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtVSTwbFixed(MCInst &Inst,
                     const SmallVectorImpl<MCParsedAsmOperand*> &);
  void cvtVSTwbRegister(MCInst &Inst,
                        const SmallVectorImpl<MCParsedAsmOperand*> &);
  bool validateInstruction(MCInst &Inst,
                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
  bool processInstruction(MCInst &Inst,
                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
  bool shouldOmitCCOutOperand(StringRef Mnemonic,
                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);

public:
  enum ARMMatchResultTy {
    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
    Match_RequiresNotITBlock,
    Match_RequiresV6,
    Match_RequiresThumb2,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "ARMGenAsmMatcher.inc"

  };

  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
    : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
    MCAsmParserExtension::Initialize(_Parser);

    // Cache the MCRegisterInfo.
    MRI = &getContext().getRegisterInfo();

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));

    // Not in an ITBlock to start with.
    ITState.CurPosition = ~0U;
  }

  // Implementation of the MCTargetAsmParser interface:
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
  bool ParseInstruction(StringRef Name, SMLoc NameLoc,
                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
  bool ParseDirective(AsmToken DirectiveID);

  unsigned checkTargetMatchPredicate(MCInst &Inst);

  bool MatchAndEmitInstruction(SMLoc IDLoc,
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
                               MCStreamer &Out);

  unsigned getMCInstOperandNum(unsigned Kind, MCInst &Inst,
                           const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
                               unsigned OperandNum, unsigned &NumMCOperands) {
    return getMCInstOperandNumImpl(Kind, Inst, Operands, OperandNum, NumMCOperands);
  }
};
} // end anonymous namespace

namespace {

/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
class ARMOperand : public MCParsedAsmOperand {
  enum KindTy {
    k_CondCode,
    k_CCOut,
    k_ITCondMask,
    k_CoprocNum,
    k_CoprocReg,
    k_CoprocOption,
    k_Immediate,
    k_MemBarrierOpt,
    k_Memory,
    k_PostIndexRegister,
    k_MSRMask,
    k_ProcIFlags,
    k_VectorIndex,
    k_Register,
    k_RegisterList,
    k_DPRRegisterList,
    k_SPRRegisterList,
    k_VectorList,
    k_VectorListAllLanes,
    k_VectorListIndexed,
    k_ShiftedRegister,
    k_ShiftedImmediate,
    k_ShifterImmediate,
    k_RotateImmediate,
    k_BitfieldDescriptor,
    k_Token
  } Kind;

  SMLoc StartLoc, EndLoc;
  SmallVector<unsigned, 8> Registers;

  union {
    struct {
      ARMCC::CondCodes Val;
    } CC;

    struct {
      unsigned Val;
    } Cop;

    struct {
      unsigned Val;
    } CoprocOption;

    struct {
      unsigned Mask:4;
    } ITMask;

    struct {
      ARM_MB::MemBOpt Val;
    } MBOpt;

    struct {
      ARM_PROC::IFlags Val;
    } IFlags;

    struct {
      unsigned Val;
    } MMask;

    struct {
      const char *Data;
      unsigned Length;
    } Tok;

    struct {
      unsigned RegNum;
    } Reg;

    // A vector register list is a sequential list of 1 to 4 registers.
    struct {
      unsigned RegNum;
      unsigned Count;
      unsigned LaneIndex;
      bool isDoubleSpaced;
    } VectorList;

    struct {
      unsigned Val;
    } VectorIndex;

    struct {
      const MCExpr *Val;
    } Imm;

    /// Combined record for all forms of ARM address expressions.
    struct {
      unsigned BaseRegNum;
      // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
      // was specified.
      const MCConstantExpr *OffsetImm;  // Offset immediate value
      unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
      ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
      unsigned ShiftImm;        // shift for OffsetReg.
      unsigned Alignment;       // 0 = no alignment specified
                                // n = alignment in bytes (2, 4, 8, 16, or 32)
      unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
    } Memory;

    struct {
      unsigned RegNum;
      bool isAdd;
      ARM_AM::ShiftOpc ShiftTy;
      unsigned ShiftImm;
    } PostIdxReg;

    struct {
      bool isASR;
      unsigned Imm;
    } ShifterImm;
    struct {
      ARM_AM::ShiftOpc ShiftTy;
      unsigned SrcReg;
      unsigned ShiftReg;
      unsigned ShiftImm;
    } RegShiftedReg;
    struct {
      ARM_AM::ShiftOpc ShiftTy;
      unsigned SrcReg;
      unsigned ShiftImm;
    } RegShiftedImm;
    struct {
      unsigned Imm;
    } RotImm;
    struct {
      unsigned LSB;
      unsigned Width;
    } Bitfield;
  };

  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
    Kind = o.Kind;
    StartLoc = o.StartLoc;
    EndLoc = o.EndLoc;
    switch (Kind) {
    case k_CondCode:
      CC = o.CC;
      break;
    case k_ITCondMask:
      ITMask = o.ITMask;
      break;
    case k_Token:
      Tok = o.Tok;
      break;
    case k_CCOut:
    case k_Register:
      Reg = o.Reg;
      break;
    case k_RegisterList:
    case k_DPRRegisterList:
    case k_SPRRegisterList:
      Registers = o.Registers;
      break;
    case k_VectorList:
    case k_VectorListAllLanes:
    case k_VectorListIndexed:
      VectorList = o.VectorList;
      break;
    case k_CoprocNum:
    case k_CoprocReg:
      Cop = o.Cop;
      break;
    case k_CoprocOption:
      CoprocOption = o.CoprocOption;
      break;
    case k_Immediate:
      Imm = o.Imm;
      break;
    case k_MemBarrierOpt:
      MBOpt = o.MBOpt;
      break;
    case k_Memory:
      Memory = o.Memory;
      break;
    case k_PostIndexRegister:
      PostIdxReg = o.PostIdxReg;
      break;
    case k_MSRMask:
      MMask = o.MMask;
      break;
    case k_ProcIFlags:
      IFlags = o.IFlags;
      break;
    case k_ShifterImmediate:
      ShifterImm = o.ShifterImm;
      break;
    case k_ShiftedRegister:
      RegShiftedReg = o.RegShiftedReg;
      break;
    case k_ShiftedImmediate:
      RegShiftedImm = o.RegShiftedImm;
      break;
    case k_RotateImmediate:
      RotImm = o.RotImm;
      break;
    case k_BitfieldDescriptor:
      Bitfield = o.Bitfield;
      break;
    case k_VectorIndex:
      VectorIndex = o.VectorIndex;
      break;
    }
  }

  /// getStartLoc - Get the location of the first token of this operand.
  SMLoc getStartLoc() const { return StartLoc; }
  /// getEndLoc - Get the location of the last token of this operand.
  SMLoc getEndLoc() const { return EndLoc; }

  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }

  ARMCC::CondCodes getCondCode() const {
    assert(Kind == k_CondCode && "Invalid access!");
    return CC.Val;
  }

  unsigned getCoproc() const {
    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
    return Cop.Val;
  }

  StringRef getToken() const {
    assert(Kind == k_Token && "Invalid access!");
    return StringRef(Tok.Data, Tok.Length);
  }

  unsigned getReg() const {
    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
    return Reg.RegNum;
  }

  const SmallVectorImpl<unsigned> &getRegList() const {
    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
            Kind == k_SPRRegisterList) && "Invalid access!");
    return Registers;
  }

  const MCExpr *getImm() const {
    assert(isImm() && "Invalid access!");
    return Imm.Val;
  }

  unsigned getVectorIndex() const {
    assert(Kind == k_VectorIndex && "Invalid access!");
    return VectorIndex.Val;
  }

  ARM_MB::MemBOpt getMemBarrierOpt() const {
    assert(Kind == k_MemBarrierOpt && "Invalid access!");
    return MBOpt.Val;
  }

  ARM_PROC::IFlags getProcIFlags() const {
    assert(Kind == k_ProcIFlags && "Invalid access!");
    return IFlags.Val;
  }

  unsigned getMSRMask() const {
    assert(Kind == k_MSRMask && "Invalid access!");
    return MMask.Val;
  }

  bool isCoprocNum() const { return Kind == k_CoprocNum; }
  bool isCoprocReg() const { return Kind == k_CoprocReg; }
  bool isCoprocOption() const { return Kind == k_CoprocOption; }
  bool isCondCode() const { return Kind == k_CondCode; }
  bool isCCOut() const { return Kind == k_CCOut; }
  bool isITMask() const { return Kind == k_ITCondMask; }
  bool isITCondCode() const { return Kind == k_CondCode; }
  bool isImm() const { return Kind == k_Immediate; }
  bool isFPImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    return Val != -1;
  }
  bool isFBits16() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value <= 16;
  }
  bool isFBits32() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 1 && Value <= 32;
  }
  bool isImm8s4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
  }
  bool isImm0_1020s4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
  }
  bool isImm0_508s4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
  }
  bool isImm0_508s4Neg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = -CE->getValue();
    // explicitly exclude zero. we want that to use the normal 0_508 version.
    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
  }
  bool isImm0_255() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 256;
  }
  bool isImm0_4095() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 4096;
  }
  bool isImm0_4095Neg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = -CE->getValue();
    return Value > 0 && Value < 4096;
  }
  bool isImm0_1() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 2;
  }
  bool isImm0_3() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 4;
  }
  bool isImm0_7() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 8;
  }
  bool isImm0_15() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 16;
  }
  bool isImm0_31() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 32;
  }
  bool isImm0_63() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 64;
  }
  bool isImm8() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value == 8;
  }
  bool isImm16() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value == 16;
  }
  bool isImm32() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value == 32;
  }
  bool isShrImm8() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value <= 8;
  }
  bool isShrImm16() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value <= 16;
  }
  bool isShrImm32() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value <= 32;
  }
  bool isShrImm64() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value <= 64;
  }
  bool isImm1_7() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 8;
  }
  bool isImm1_15() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 16;
  }
  bool isImm1_31() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 32;
  }
  bool isImm1_16() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 17;
  }
  bool isImm1_32() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 33;
  }
  bool isImm0_32() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 33;
  }
  bool isImm0_65535() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 65536;
  }
  bool isImm0_65535Expr() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // If it's not a constant expression, it'll generate a fixup and be
    // handled later.
    if (!CE) return true;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 65536;
  }
  bool isImm24bit() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value <= 0xffffff;
  }
  bool isImmThumbSR() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value < 33;
  }
  bool isPKHLSLImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 32;
  }
  bool isPKHASRImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && Value <= 32;
  }
  bool isAdrLabel() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, but it can't fit 
    // into shift immediate encoding, we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
    else return (isARMSOImm() || isARMSOImmNeg());
  }
  bool isARMSOImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getSOImmVal(Value) != -1;
  }
  bool isARMSOImmNot() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getSOImmVal(~Value) != -1;
  }
  bool isARMSOImmNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // Only use this when not representable as a plain so_imm.
    return ARM_AM::getSOImmVal(Value) == -1 &&
      ARM_AM::getSOImmVal(-Value) != -1;
  }
  bool isT2SOImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getT2SOImmVal(Value) != -1;
  }
  bool isT2SOImmNot() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getT2SOImmVal(~Value) != -1;
  }
  bool isT2SOImmNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // Only use this when not representable as a plain so_imm.
    return ARM_AM::getT2SOImmVal(Value) == -1 &&
      ARM_AM::getT2SOImmVal(-Value) != -1;
  }
  bool isSetEndImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value == 1 || Value == 0;
  }
  bool isReg() const { return Kind == k_Register; }
  bool isRegList() const { return Kind == k_RegisterList; }
  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
  bool isToken() const { return Kind == k_Token; }
  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
  bool isMemory() const { return Kind == k_Memory; }
  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
  bool isRotImm() const { return Kind == k_RotateImmediate; }
  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
  bool isPostIdxReg() const {
    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
  }
  bool isMemNoOffset(bool alignOK = false) const {
    if (!isMemory())
      return false;
    // No offset of any kind.
    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
     (alignOK || Memory.Alignment == 0);
  }
  bool isMemPCRelImm12() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base register must be PC.
    if (Memory.BaseRegNum != ARM::PC)
      return false;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
  }
  bool isAlignedMemory() const {
    return isMemNoOffset(true);
  }
  bool isAddrMode2() const {
    if (!isMemory() || Memory.Alignment != 0) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return true;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val > -4096 && Val < 4096;
  }
  bool isAM2OffsetImm() const {
    if (!isImm()) return false;
    // Immediate offset in range [-4095, 4095].
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return Val > -4096 && Val < 4096;
  }
  bool isAddrMode3() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isMemory() || Memory.Alignment != 0) return false;
    // No shifts are legal for AM3.
    if (Memory.ShiftType != ARM_AM::no_shift) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return true;
    // Immediate offset in range [-255, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    // The #-0 offset is encoded as INT32_MIN, and we have to check 
    // for this too.
    return (Val > -256 && Val < 256) || Val == INT32_MIN;
  }
  bool isAM3Offset() const {
    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
      return false;
    if (Kind == k_PostIndexRegister)
      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
    // Immediate offset in range [-255, 255].
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    // Special case, #-0 is INT32_MIN.
    return (Val > -256 && Val < 256) || Val == INT32_MIN;
  }
  bool isAddrMode5() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isMemory() || Memory.Alignment != 0) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return false;
    // Immediate offset in range [-1020, 1020] and a multiple of 4.
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
      Val == INT32_MIN;
  }
  bool isMemTBB() const {
    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
      return false;
    return true;
  }
  bool isMemTBH() const {
    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
        Memory.Alignment != 0 )
      return false;
    return true;
  }
  bool isMemRegOffset() const {
    if (!isMemory() || !Memory.OffsetRegNum || Memory.Alignment != 0)
      return false;
    return true;
  }
  bool isT2MemRegOffset() const {
    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.Alignment != 0)
      return false;
    // Only lsl #{0, 1, 2, 3} allowed.
    if (Memory.ShiftType == ARM_AM::no_shift)
      return true;
    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
      return false;
    return true;
  }
  bool isMemThumbRR() const {
    // Thumb reg+reg addressing is simple. Just two registers, a base and
    // an offset. No shifts, negations or any other complicating factors.
    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
      return false;
    return isARMLowRegister(Memory.BaseRegNum) &&
      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
  }
  bool isMemThumbRIs4() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 124].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
  }
  bool isMemThumbRIs2() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 62].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
  }
  bool isMemThumbRIs1() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 31].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 31;
  }
  bool isMemThumbSPI() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 ||
        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
  }
  bool isMemImm8s4Offset() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset a multiple of 4 in range [-1020, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    // Special case, #-0 is INT32_MIN.
    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
  }
  bool isMemImm0_1020s4Offset() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset a multiple of 4 in range [0, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
  }
  bool isMemImm8Offset() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base reg of PC isn't allowed for these encodings.
    if (Memory.BaseRegNum == ARM::PC) return false;
    // Immediate offset in range [-255, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
  }
  bool isMemPosImm8Offset() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val < 256;
  }
  bool isMemNegImm8Offset() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base reg of PC isn't allowed for these encodings.
    if (Memory.BaseRegNum == ARM::PC) return false;
    // Immediate offset in range [-255, -1].
    if (!Memory.OffsetImm) return false;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
  }
  bool isMemUImm12Offset() const {
    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val >= 0 && Val < 4096);
  }
  bool isMemImm12Offset() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;

    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
  }
  bool isPostIdxImm8() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
  }
  bool isPostIdxImm8s4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
      (Val == INT32_MIN);
  }

  bool isMSRMask() const { return Kind == k_MSRMask; }
  bool isProcIFlags() const { return Kind == k_ProcIFlags; }

  // NEON operands.
  bool isSingleSpacedVectorList() const {
    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
  }
  bool isDoubleSpacedVectorList() const {
    return Kind == k_VectorList && VectorList.isDoubleSpaced;
  }
  bool isVecListOneD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 1;
  }

  bool isVecListDPair() const {
    if (!isSingleSpacedVectorList()) return false;
    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListThreeD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 4;
  }

  bool isVecListDPairSpaced() const {
    if (isSingleSpacedVectorList()) return false;
    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListThreeQ() const {
    if (!isDoubleSpacedVectorList()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourQ() const {
    if (!isDoubleSpacedVectorList()) return false;
    return VectorList.Count == 4;
  }

  bool isSingleSpacedVectorAllLanes() const {
    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
  }
  bool isDoubleSpacedVectorAllLanes() const {
    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
  }
  bool isVecListOneDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 1;
  }

  bool isVecListDPairAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListDPairSpacedAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 2;
  }

  bool isVecListThreeDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListThreeQAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 4;
  }

  bool isVecListFourQAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 4;
  }

  bool isSingleSpacedVectorIndexed() const {
    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
  }
  bool isDoubleSpacedVectorIndexed() const {
    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
  }
  bool isVecListOneDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
  }

  bool isVecListOneDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
  }

  bool isVecListOneDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
  }

  bool isVecListTwoDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
  }

  bool isVecListTwoDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
  }

  bool isVecListTwoQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
  }

  bool isVecListTwoQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
  }

  bool isVecListTwoDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
  }

  bool isVecListThreeDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
  }

  bool isVecListThreeDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
  }

  bool isVecListThreeQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
  }

  bool isVecListThreeQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
  }

  bool isVecListThreeDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
  }

  bool isVecListFourDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
  }

  bool isVecListFourDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
  }

  bool isVecListFourQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
  }

  bool isVecListFourQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
  }

  bool isVecListFourDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
  }

  bool isVectorIndex8() const {
    if (Kind != k_VectorIndex) return false;
    return VectorIndex.Val < 8;
  }
  bool isVectorIndex16() const {
    if (Kind != k_VectorIndex) return false;
    return VectorIndex.Val < 4;
  }
  bool isVectorIndex32() const {
    if (Kind != k_VectorIndex) return false;
    return VectorIndex.Val < 2;
  }

  bool isNEONi8splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
    // value.
    return Value >= 0 && Value < 256;
  }

  bool isNEONi16splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // i16 value in the range [0,255] or [0x0100, 0xff00]
    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
  }

  bool isNEONi32splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
    return (Value >= 0 && Value < 256) ||
      (Value >= 0x0100 && Value <= 0xff00) ||
      (Value >= 0x010000 && Value <= 0xff0000) ||
      (Value >= 0x01000000 && Value <= 0xff000000);
  }

  bool isNEONi32vmov() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
    return (Value >= 0 && Value < 256) ||
      (Value >= 0x0100 && Value <= 0xff00) ||
      (Value >= 0x010000 && Value <= 0xff0000) ||
      (Value >= 0x01000000 && Value <= 0xff000000) ||
      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
  }
  bool isNEONi32vmovNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = ~CE->getValue();
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
    return (Value >= 0 && Value < 256) ||
      (Value >= 0x0100 && Value <= 0xff00) ||
      (Value >= 0x010000 && Value <= 0xff0000) ||
      (Value >= 0x01000000 && Value <= 0xff000000) ||
      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
  }

  bool isNEONi64splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    uint64_t Value = CE->getValue();
    // i64 value with each byte being either 0 or 0xff.
    for (unsigned i = 0; i < 8; ++i)
      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
    return true;
  }

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    // Add as immediates when possible.  Null MCExpr = 0.
    if (Expr == 0)
      Inst.addOperand(MCOperand::CreateImm(0));
    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
    else
      Inst.addOperand(MCOperand::CreateExpr(Expr));
  }

  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
    Inst.addOperand(MCOperand::CreateReg(RegNum));
  }

  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
  }

  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
  }

  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
  }

  void addITMaskOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
  }

  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
  }

  void addCCOutOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(getReg()));
  }

  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(getReg()));
  }

  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    assert(isRegShiftedReg() &&
           "addRegShiftedRegOperands() on non RegShiftedReg!");
    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
    Inst.addOperand(MCOperand::CreateImm(
      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
  }

  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    assert(isRegShiftedImm() &&
           "addRegShiftedImmOperands() on non RegShiftedImm!");
    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
    // Shift of #32 is encoded as 0 where permitted
    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
    Inst.addOperand(MCOperand::CreateImm(
      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
  }

  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
                                         ShifterImm.Imm));
  }

  void addRegListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const SmallVectorImpl<unsigned> &RegList = getRegList();
    for (SmallVectorImpl<unsigned>::const_iterator
           I = RegList.begin(), E = RegList.end(); I != E; ++I)
      Inst.addOperand(MCOperand::CreateReg(*I));
  }

  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addRotImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // Encoded as val>>3. The printer handles display as 8, 16, 24.
    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
  }

  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // Munge the lsb/width into a bitfield mask.
    unsigned lsb = Bitfield.LSB;
    unsigned width = Bitfield.Width;
    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
                      (32 - (lsb + width)));
    Inst.addOperand(MCOperand::CreateImm(Mask));
  }

  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addFBits16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
  }

  void addFBits32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
  }

  void addFPImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // FIXME: We really want to scale the value here, but the LDRD/STRD
    // instruction don't encode operands that way yet.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
  }

  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
  }

  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
  }

  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
  }

  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate-1, and we store in the instruction
    // the bits as encoded, so subtract off one here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
  }

  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate-1, and we store in the instruction
    // the bits as encoded, so subtract off one here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
  }

  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate, except for 32, which encodes as
    // zero.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    unsigned Imm = CE->getValue();
    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
  }

  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // An ASR value of 32 encodes as 0, so that's how we want to add it to
    // the instruction as well.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    int Val = CE->getValue();
    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
  }

  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a t2_so_imm, but we have its bitwise
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
  }

  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a t2_so_imm, but we have its
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
  }

  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually an imm0_4095, but we have its
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
  }

  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a so_imm, but we have its bitwise
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
  }

  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a so_imm, but we have its
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
  }

  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
  }

  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
  }

  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    int32_t Imm = Memory.OffsetImm->getValue();
    // FIXME: Handle #-0
    if (Imm == INT32_MIN) Imm = 0;
    Inst.addOperand(MCOperand::CreateImm(Imm));
  }

  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(isImm() && "Not an immediate!");

    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. 
    if (!isa<MCConstantExpr>(getImm())) {
      Inst.addOperand(MCOperand::CreateExpr(getImm()));
      return;
    }

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    int Val = CE->getValue();
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
  }

  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    if (!Memory.OffsetRegNum) {
      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
      // Special case for #-0
      if (Val == INT32_MIN) Val = 0;
      if (Val < 0) Val = -Val;
      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
    } else {
      // For register offset, we encode the shift type and negation flag
      // here.
      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
                              Memory.ShiftImm, Memory.ShiftType);
    }
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant AM2OffsetImm operand!");
    int32_t Val = CE->getValue();
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == INT32_MIN) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
    Inst.addOperand(MCOperand::CreateReg(0));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::CreateExpr(getImm()));
      Inst.addOperand(MCOperand::CreateReg(0));
      Inst.addOperand(MCOperand::CreateImm(0));
      return;
    }

    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    if (!Memory.OffsetRegNum) {
      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
      // Special case for #-0
      if (Val == INT32_MIN) Val = 0;
      if (Val < 0) Val = -Val;
      Val = ARM_AM::getAM3Opc(AddSub, Val);
    } else {
      // For register offset, we encode the shift type and negation flag
      // here.
      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
    }
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    if (Kind == k_PostIndexRegister) {
      int32_t Val =
        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
      Inst.addOperand(MCOperand::CreateImm(Val));
      return;
    }

    // Constant offset.
    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
    int32_t Val = CE->getValue();
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == INT32_MIN) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM3Opc(AddSub, Val);
    Inst.addOperand(MCOperand::CreateReg(0));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::CreateExpr(getImm()));
      Inst.addOperand(MCOperand::CreateImm(0));
      return;
    }

    // The lower two bits are always zero and as such are not encoded.
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == INT32_MIN) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM5Opc(AddSub, Val);
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::CreateExpr(getImm()));
      Inst.addOperand(MCOperand::CreateImm(0));
      return;
    }

    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // The lower two bits are always zero and as such are not encoded.
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
    addMemImm8OffsetOperands(Inst, N);
  }

  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
    addMemImm8OffsetOperands(Inst, N);
  }

  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If this is an immediate, it's a label reference.
    if (isImm()) {
      addExpr(Inst, getImm());
      Inst.addOperand(MCOperand::CreateImm(0));
      return;
    }

    // Otherwise, it's a normal memory reg+offset.
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If this is an immediate, it's a label reference.
    if (isImm()) {
      addExpr(Inst, getImm());
      Inst.addOperand(MCOperand::CreateImm(0));
      return;
    }

    // Otherwise, it's a normal memory reg+offset.
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
  }

  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
  }

  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    unsigned Val =
      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
                        Memory.ShiftImm, Memory.ShiftType);
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
  }

  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
  }

  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::CreateImm(Val));
  }

  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant post-idx-imm8 operand!");
    int Imm = CE->getValue();
    bool isAdd = Imm >= 0;
    if (Imm == INT32_MIN) Imm = 0;
    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
    Inst.addOperand(MCOperand::CreateImm(Imm));
  }

  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant post-idx-imm8s4 operand!");
    int Imm = CE->getValue();
    bool isAdd = Imm >= 0;
    if (Imm == INT32_MIN) Imm = 0;
    // Immediate is scaled by 4.
    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
    Inst.addOperand(MCOperand::CreateImm(Imm));
  }

  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
  }

  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
    // The sign, shift type, and shift amount are encoded in a single operand
    // using the AM2 encoding helpers.
    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
                                     PostIdxReg.ShiftTy);
    Inst.addOperand(MCOperand::CreateImm(Imm));
  }

  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
  }

  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
  }

  void addVecListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
  }

  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
  }

  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
  }

  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
  }

  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
  }

  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    // Mask in that this is an i8 splat.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
  }

  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    if (Value >= 256)
      Value = (Value >> 8) | 0xa00;
    else
      Value |= 0x800;
    Inst.addOperand(MCOperand::CreateImm(Value));
  }

  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    if (Value >= 256 && Value <= 0xff00)
      Value = (Value >> 8) | 0x200;
    else if (Value > 0xffff && Value <= 0xff0000)
      Value = (Value >> 16) | 0x400;
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    Inst.addOperand(MCOperand::CreateImm(Value));
  }

  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    if (Value >= 256 && Value <= 0xffff)
      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
    else if (Value > 0xffff && Value <= 0xffffff)
      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    Inst.addOperand(MCOperand::CreateImm(Value));
  }

  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    unsigned Value = ~CE->getValue();
    if (Value >= 256 && Value <= 0xffff)
      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
    else if (Value > 0xffff && Value <= 0xffffff)
      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    Inst.addOperand(MCOperand::CreateImm(Value));
  }

  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    uint64_t Value = CE->getValue();
    unsigned Imm = 0;
    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
      Imm |= (Value & 1) << i;
    }
    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
  }

  virtual void print(raw_ostream &OS) const;

  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_ITCondMask);
    Op->ITMask.Mask = Mask;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_CondCode);
    Op->CC.Val = CC;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_CoprocNum);
    Op->Cop.Val = CopVal;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_CoprocReg);
    Op->Cop.Val = CopVal;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_CoprocOption);
    Op->Cop.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_CCOut);
    Op->Reg.RegNum = RegNum;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_Token);
    Op->Tok.Data = Str.data();
    Op->Tok.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_Register);
    Op->Reg.RegNum = RegNum;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
                                           unsigned SrcReg,
                                           unsigned ShiftReg,
                                           unsigned ShiftImm,
                                           SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
    Op->RegShiftedReg.ShiftTy = ShTy;
    Op->RegShiftedReg.SrcReg = SrcReg;
    Op->RegShiftedReg.ShiftReg = ShiftReg;
    Op->RegShiftedReg.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
                                            unsigned SrcReg,
                                            unsigned ShiftImm,
                                            SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
    Op->RegShiftedImm.ShiftTy = ShTy;
    Op->RegShiftedImm.SrcReg = SrcReg;
    Op->RegShiftedImm.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
                                   SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
    Op->ShifterImm.isASR = isASR;
    Op->ShifterImm.Imm = Imm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
    Op->RotImm.Imm = Imm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
                                    SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
    Op->Bitfield.LSB = LSB;
    Op->Bitfield.Width = Width;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *
  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
                SMLoc StartLoc, SMLoc EndLoc) {
    KindTy Kind = k_RegisterList;

    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
      Kind = k_DPRRegisterList;
    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
             contains(Regs.front().first))
      Kind = k_SPRRegisterList;

    ARMOperand *Op = new ARMOperand(Kind);
    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
           I = Regs.begin(), E = Regs.end(); I != E; ++I)
      Op->Registers.push_back(I->first);
    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
    Op->StartLoc = StartLoc;
    Op->EndLoc = EndLoc;
    return Op;
  }

  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_VectorList);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
                                              bool isDoubleSpaced,
                                              SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
                                             unsigned Index,
                                             bool isDoubleSpaced,
                                             SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.LaneIndex = Index;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
                                       MCContext &Ctx) {
    ARMOperand *Op = new ARMOperand(k_VectorIndex);
    Op->VectorIndex.Val = Idx;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_Immediate);
    Op->Imm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateMem(unsigned BaseRegNum,
                               const MCConstantExpr *OffsetImm,
                               unsigned OffsetRegNum,
                               ARM_AM::ShiftOpc ShiftType,
                               unsigned ShiftImm,
                               unsigned Alignment,
                               bool isNegative,
                               SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_Memory);
    Op->Memory.BaseRegNum = BaseRegNum;
    Op->Memory.OffsetImm = OffsetImm;
    Op->Memory.OffsetRegNum = OffsetRegNum;
    Op->Memory.ShiftType = ShiftType;
    Op->Memory.ShiftImm = ShiftImm;
    Op->Memory.Alignment = Alignment;
    Op->Memory.isNegative = isNegative;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
                                      ARM_AM::ShiftOpc ShiftTy,
                                      unsigned ShiftImm,
                                      SMLoc S, SMLoc E) {
    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
    Op->PostIdxReg.RegNum = RegNum;
    Op->PostIdxReg.isAdd = isAdd;
    Op->PostIdxReg.ShiftTy = ShiftTy;
    Op->PostIdxReg.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
    Op->MBOpt.Val = Opt;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
    Op->IFlags.Val = IFlags;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
    ARMOperand *Op = new ARMOperand(k_MSRMask);
    Op->MMask.Val = MMask;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }
};

} // end anonymous namespace.

void ARMOperand::print(raw_ostream &OS) const {
  switch (Kind) {
  case k_CondCode:
    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
    break;
  case k_CCOut:
    OS << "<ccout " << getReg() << ">";
    break;
  case k_ITCondMask: {
    static const char *const MaskStr[] = {
      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
    };
    assert((ITMask.Mask & 0xf) == ITMask.Mask);
    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
    break;
  }
  case k_CoprocNum:
    OS << "<coprocessor number: " << getCoproc() << ">";
    break;
  case k_CoprocReg:
    OS << "<coprocessor register: " << getCoproc() << ">";
    break;
  case k_CoprocOption:
    OS << "<coprocessor option: " << CoprocOption.Val << ">";
    break;
  case k_MSRMask:
    OS << "<mask: " << getMSRMask() << ">";
    break;
  case k_Immediate:
    getImm()->print(OS);
    break;
  case k_MemBarrierOpt:
    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
    break;
  case k_Memory:
    OS << "<memory "
       << " base:" << Memory.BaseRegNum;
    OS << ">";
    break;
  case k_PostIndexRegister:
    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
       << PostIdxReg.RegNum;
    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
         << PostIdxReg.ShiftImm;
    OS << ">";
    break;
  case k_ProcIFlags: {
    OS << "<ARM_PROC::";
    unsigned IFlags = getProcIFlags();
    for (int i=2; i >= 0; --i)
      if (IFlags & (1 << i))
        OS << ARM_PROC::IFlagsToString(1 << i);
    OS << ">";
    break;
  }
  case k_Register:
    OS << "<register " << getReg() << ">";
    break;
  case k_ShifterImmediate:
    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
       << " #" << ShifterImm.Imm << ">";
    break;
  case k_ShiftedRegister:
    OS << "<so_reg_reg "
       << RegShiftedReg.SrcReg << " "
       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
       << " " << RegShiftedReg.ShiftReg << ">";
    break;
  case k_ShiftedImmediate:
    OS << "<so_reg_imm "
       << RegShiftedImm.SrcReg << " "
       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
       << " #" << RegShiftedImm.ShiftImm << ">";
    break;
  case k_RotateImmediate:
    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
    break;
  case k_BitfieldDescriptor:
    OS << "<bitfield " << "lsb: " << Bitfield.LSB
       << ", width: " << Bitfield.Width << ">";
    break;
  case k_RegisterList:
  case k_DPRRegisterList:
  case k_SPRRegisterList: {
    OS << "<register_list ";

    const SmallVectorImpl<unsigned> &RegList = getRegList();
    for (SmallVectorImpl<unsigned>::const_iterator
           I = RegList.begin(), E = RegList.end(); I != E; ) {
      OS << *I;
      if (++I < E) OS << ", ";
    }

    OS << ">";
    break;
  }
  case k_VectorList:
    OS << "<vector_list " << VectorList.Count << " * "
       << VectorList.RegNum << ">";
    break;
  case k_VectorListAllLanes:
    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
       << VectorList.RegNum << ">";
    break;
  case k_VectorListIndexed:
    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
       << VectorList.Count << " * " << VectorList.RegNum << ">";
    break;
  case k_Token:
    OS << "'" << getToken() << "'";
    break;
  case k_VectorIndex:
    OS << "<vectorindex " << getVectorIndex() << ">";
    break;
  }
}

/// @name Auto-generated Match Functions
/// {

static unsigned MatchRegisterName(StringRef Name);

/// }

bool ARMAsmParser::ParseRegister(unsigned &RegNo,
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
  StartLoc = Parser.getTok().getLoc();
  RegNo = tryParseRegister();
  EndLoc = Parser.getTok().getLoc();

  return (RegNo == (unsigned)-1);
}

/// Try to parse a register name.  The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned.  Otherwise return -1.
///
int ARMAsmParser::tryParseRegister() {
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) return -1;

  std::string lowerCase = Tok.getString().lower();
  unsigned RegNum = MatchRegisterName(lowerCase);
  if (!RegNum) {
    RegNum = StringSwitch<unsigned>(lowerCase)
      .Case("r13", ARM::SP)
      .Case("r14", ARM::LR)
      .Case("r15", ARM::PC)
      .Case("ip", ARM::R12)
      // Additional register name aliases for 'gas' compatibility.
      .Case("a1", ARM::R0)
      .Case("a2", ARM::R1)
      .Case("a3", ARM::R2)
      .Case("a4", ARM::R3)
      .Case("v1", ARM::R4)
      .Case("v2", ARM::R5)
      .Case("v3", ARM::R6)
      .Case("v4", ARM::R7)
      .Case("v5", ARM::R8)
      .Case("v6", ARM::R9)
      .Case("v7", ARM::R10)
      .Case("v8", ARM::R11)
      .Case("sb", ARM::R9)
      .Case("sl", ARM::R10)
      .Case("fp", ARM::R11)
      .Default(0);
  }
  if (!RegNum) {
    // Check for aliases registered via .req. Canonicalize to lower case.
    // That's more consistent since register names are case insensitive, and
    // it's how the original entry was passed in from MC/MCParser/AsmParser.
    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
    // If no match, return failure.
    if (Entry == RegisterReqs.end())
      return -1;
    Parser.Lex(); // Eat identifier token.
    return Entry->getValue();
  }

  Parser.Lex(); // Eat identifier token.

  return RegNum;
}

// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
// If a recoverable error occurs, return 1. If an irrecoverable error
// occurs, return -1. An irrecoverable error is one where tokens have been
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");

  std::string lowerCase = Tok.getString().lower();
  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
      .Case("asl", ARM_AM::lsl)
      .Case("lsl", ARM_AM::lsl)
      .Case("lsr", ARM_AM::lsr)
      .Case("asr", ARM_AM::asr)
      .Case("ror", ARM_AM::ror)
      .Case("rrx", ARM_AM::rrx)
      .Default(ARM_AM::no_shift);

  if (ShiftTy == ARM_AM::no_shift)
    return 1;

  Parser.Lex(); // Eat the operator.

  // The source register for the shift has already been added to the
  // operand list, so we need to pop it off and combine it into the shifted
  // register operand instead.
  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
  if (!PrevOp->isReg())
    return Error(PrevOp->getStartLoc(), "shift must be of a register");
  int SrcReg = PrevOp->getReg();
  int64_t Imm = 0;
  int ShiftReg = 0;
  if (ShiftTy == ARM_AM::rrx) {
    // RRX Doesn't have an explicit shift amount. The encoder expects
    // the shift register to be the same as the source register. Seems odd,
    // but OK.
    ShiftReg = SrcReg;
  } else {
    // Figure out if this is shifted by a constant or a register (for non-RRX).
    if (Parser.getTok().is(AsmToken::Hash) ||
        Parser.getTok().is(AsmToken::Dollar)) {
      Parser.Lex(); // Eat hash.
      SMLoc ImmLoc = Parser.getTok().getLoc();
      const MCExpr *ShiftExpr = 0;
      if (getParser().ParseExpression(ShiftExpr)) {
        Error(ImmLoc, "invalid immediate shift value");
        return -1;
      }
      // The expression must be evaluatable as an immediate.
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
      if (!CE) {
        Error(ImmLoc, "invalid immediate shift value");
        return -1;
      }
      // Range check the immediate.
      // lsl, ror: 0 <= imm <= 31
      // lsr, asr: 0 <= imm <= 32
      Imm = CE->getValue();
      if (Imm < 0 ||
          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
        Error(ImmLoc, "immediate shift value out of range");
        return -1;
      }
      // shift by zero is a nop. Always send it through as lsl.
      // ('as' compatibility)
      if (Imm == 0)
        ShiftTy = ARM_AM::lsl;
    } else if (Parser.getTok().is(AsmToken::Identifier)) {
      ShiftReg = tryParseRegister();
      SMLoc L = Parser.getTok().getLoc();
      if (ShiftReg == -1) {
        Error (L, "expected immediate or register in shift operand");
        return -1;
      }
    } else {
      Error (Parser.getTok().getLoc(),
                    "expected immediate or register in shift operand");
      return -1;
    }
  }

  if (ShiftReg && ShiftTy != ARM_AM::rrx)
    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
                                                         ShiftReg, Imm,
                                               S, Parser.getTok().getLoc()));
  else
    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
                                               S, Parser.getTok().getLoc()));

  return 0;
}


/// Try to parse a register name.  The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::
tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  int RegNo = tryParseRegister();
  if (RegNo == -1)
    return true;

  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));

  const AsmToken &ExclaimTok = Parser.getTok();
  if (ExclaimTok.is(AsmToken::Exclaim)) {
    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
                                               ExclaimTok.getLoc()));
    Parser.Lex(); // Eat exclaim token
    return false;
  }

  // Also check for an index operand. This is only legal for vector registers,
  // but that'll get caught OK in operand matching, so we don't need to
  // explicitly filter everything else out here.
  if (Parser.getTok().is(AsmToken::LBrac)) {
    SMLoc SIdx = Parser.getTok().getLoc();
    Parser.Lex(); // Eat left bracket token.

    const MCExpr *ImmVal;
    if (getParser().ParseExpression(ImmVal))
      return true;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE)
      return TokError("immediate value expected for vector index");

    SMLoc E = Parser.getTok().getLoc();
    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(E, "']' expected");

    Parser.Lex(); // Eat right bracket token.

    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
                                                     SIdx, E,
                                                     getContext()));
  }

  return false;
}

/// MatchCoprocessorOperandName - Try to parse an coprocessor related
/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
/// "c5", ...
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
  // Use the same layout as the tablegen'erated register name matcher. Ugly,
  // but efficient.
  switch (Name.size()) {
  default: return -1;
  case 2:
    if (Name[0] != CoprocOp)
      return -1;
    switch (Name[1]) {
    default:  return -1;
    case '0': return 0;
    case '1': return 1;
    case '2': return 2;
    case '3': return 3;
    case '4': return 4;
    case '5': return 5;
    case '6': return 6;
    case '7': return 7;
    case '8': return 8;
    case '9': return 9;
    }
  case 3:
    if (Name[0] != CoprocOp || Name[1] != '1')
      return -1;
    switch (Name[2]) {
    default:  return -1;
    case '0': return 10;
    case '1': return 11;
    case '2': return 12;
    case '3': return 13;
    case '4': return 14;
    case '5': return 15;
    }
  }
}

/// parseITCondCode - Try to parse a condition code for an IT instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
    .Case("eq", ARMCC::EQ)
    .Case("ne", ARMCC::NE)
    .Case("hs", ARMCC::HS)
    .Case("cs", ARMCC::HS)
    .Case("lo", ARMCC::LO)
    .Case("cc", ARMCC::LO)
    .Case("mi", ARMCC::MI)
    .Case("pl", ARMCC::PL)
    .Case("vs", ARMCC::VS)
    .Case("vc", ARMCC::VC)
    .Case("hi", ARMCC::HI)
    .Case("ls", ARMCC::LS)
    .Case("ge", ARMCC::GE)
    .Case("lt", ARMCC::LT)
    .Case("gt", ARMCC::GT)
    .Case("le", ARMCC::LE)
    .Case("al", ARMCC::AL)
    .Default(~0U);
  if (CC == ~0U)
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the token.

  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));

  return MatchOperand_Success;
}

/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
  if (Num == -1)
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
  return MatchOperand_Success;
}

/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
  if (Reg == -1)
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
  return MatchOperand_Success;
}

/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
/// coproc_option : '{' imm0_255 '}'
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();

  // If this isn't a '{', this isn't a coprocessor immediate operand.
  if (Parser.getTok().isNot(AsmToken::LCurly))
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the '{'

  const MCExpr *Expr;
  SMLoc Loc = Parser.getTok().getLoc();
  if (getParser().ParseExpression(Expr)) {
    Error(Loc, "illegal expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
    return MatchOperand_ParseFail;
  }
  int Val = CE->getValue();

  // Check for and consume the closing '}'
  if (Parser.getTok().isNot(AsmToken::RCurly))
    return MatchOperand_ParseFail;
  SMLoc E = Parser.getTok().getLoc();
  Parser.Lex(); // Eat the '}'

  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
  return MatchOperand_Success;
}

// For register list parsing, we need to map from raw GPR register numbering
// to the enumeration values. The enumeration values aren't sorted by
// register number due to our using "sp", "lr" and "pc" as canonical names.
static unsigned getNextRegister(unsigned Reg) {
  // If this is a GPR, we need to do it manually, otherwise we can rely
  // on the sort ordering of the enumeration since the other reg-classes
  // are sane.
  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
    return Reg + 1;
  switch(Reg) {
  default: llvm_unreachable("Invalid GPR number!");
  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
  }
}

// Return the low-subreg of a given Q register.
static unsigned getDRegFromQReg(unsigned QReg) {
  switch (QReg) {
  default: llvm_unreachable("expected a Q register!");
  case ARM::Q0:  return ARM::D0;
  case ARM::Q1:  return ARM::D2;
  case ARM::Q2:  return ARM::D4;
  case ARM::Q3:  return ARM::D6;
  case ARM::Q4:  return ARM::D8;
  case ARM::Q5:  return ARM::D10;
  case ARM::Q6:  return ARM::D12;
  case ARM::Q7:  return ARM::D14;
  case ARM::Q8:  return ARM::D16;
  case ARM::Q9:  return ARM::D18;
  case ARM::Q10: return ARM::D20;
  case ARM::Q11: return ARM::D22;
  case ARM::Q12: return ARM::D24;
  case ARM::Q13: return ARM::D26;
  case ARM::Q14: return ARM::D28;
  case ARM::Q15: return ARM::D30;
  }
}

/// Parse a register list.
bool ARMAsmParser::
parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  assert(Parser.getTok().is(AsmToken::LCurly) &&
         "Token is not a Left Curly Brace");
  SMLoc S = Parser.getTok().getLoc();
  Parser.Lex(); // Eat '{' token.
  SMLoc RegLoc = Parser.getTok().getLoc();

  // Check the first register in the list to see what register class
  // this is a list of.
  int Reg = tryParseRegister();
  if (Reg == -1)
    return Error(RegLoc, "register expected");

  // The reglist instructions have at most 16 registers, so reserve
  // space for that many.
  SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;

  // Allow Q regs and just interpret them as the two D sub-registers.
  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
    Reg = getDRegFromQReg(Reg);
    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
    ++Reg;
  }
  const MCRegisterClass *RC;
  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
  else
    return Error(RegLoc, "invalid register in register list");

  // Store the register.
  Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));

  // This starts immediately after the first register token in the list,
  // so we can see either a comma or a minus (range separator) as a legal
  // next token.
  while (Parser.getTok().is(AsmToken::Comma) ||
         Parser.getTok().is(AsmToken::Minus)) {
    if (Parser.getTok().is(AsmToken::Minus)) {
      Parser.Lex(); // Eat the minus.
      SMLoc EndLoc = Parser.getTok().getLoc();
      int EndReg = tryParseRegister();
      if (EndReg == -1)
        return Error(EndLoc, "register expected");
      // Allow Q regs and just interpret them as the two D sub-registers.
      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
        EndReg = getDRegFromQReg(EndReg) + 1;
      // If the register is the same as the start reg, there's nothing
      // more to do.
      if (Reg == EndReg)
        continue;
      // The register must be in the same register class as the first.
      if (!RC->contains(EndReg))
        return Error(EndLoc, "invalid register in register list");
      // Ranges must go from low to high.
      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
        return Error(EndLoc, "bad range in register list");

      // Add all the registers in the range to the register list.
      while (Reg != EndReg) {
        Reg = getNextRegister(Reg);
        Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
      }
      continue;
    }
    Parser.Lex(); // Eat the comma.
    RegLoc = Parser.getTok().getLoc();
    int OldReg = Reg;
    const AsmToken RegTok = Parser.getTok();
    Reg = tryParseRegister();
    if (Reg == -1)
      return Error(RegLoc, "register expected");
    // Allow Q regs and just interpret them as the two D sub-registers.
    bool isQReg = false;
    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      Reg = getDRegFromQReg(Reg);
      isQReg = true;
    }
    // The register must be in the same register class as the first.
    if (!RC->contains(Reg))
      return Error(RegLoc, "invalid register in register list");
    // List must be monotonically increasing.
    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
        Warning(RegLoc, "register list not in ascending order");
      else
        return Error(RegLoc, "register list not in ascending order");
    }
    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
              ") in register list");
      continue;
    }
    // VFP register lists must also be contiguous.
    // It's OK to use the enumeration values directly here rather, as the
    // VFP register classes have the enum sorted properly.
    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
        Reg != OldReg + 1)
      return Error(RegLoc, "non-contiguous register range");
    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
    if (isQReg)
      Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
  }

  SMLoc E = Parser.getTok().getLoc();
  if (Parser.getTok().isNot(AsmToken::RCurly))
    return Error(E, "'}' expected");
  Parser.Lex(); // Eat '}' token.

  // Push the register list operand.
  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));

  // The ARM system instruction variants for LDM/STM have a '^' token here.
  if (Parser.getTok().is(AsmToken::Caret)) {
    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
    Parser.Lex(); // Eat '^' token.
  }

  return false;
}

// Helper function to parse the lane index for vector lists.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index) {
  Index = 0; // Always return a defined index value.
  if (Parser.getTok().is(AsmToken::LBrac)) {
    Parser.Lex(); // Eat the '['.
    if (Parser.getTok().is(AsmToken::RBrac)) {
      // "Dn[]" is the 'all lanes' syntax.
      LaneKind = AllLanes;
      Parser.Lex(); // Eat the ']'.
      return MatchOperand_Success;
    }

    // There's an optional '#' token here. Normally there wouldn't be, but
    // inline assemble puts one in, and it's friendly to accept that.
    if (Parser.getTok().is(AsmToken::Hash))
      Parser.Lex(); // Eat the '#'

    const MCExpr *LaneIndex;
    SMLoc Loc = Parser.getTok().getLoc();
    if (getParser().ParseExpression(LaneIndex)) {
      Error(Loc, "illegal expression");
      return MatchOperand_ParseFail;
    }
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
    if (!CE) {
      Error(Loc, "lane index must be empty or an integer");
      return MatchOperand_ParseFail;
    }
    if (Parser.getTok().isNot(AsmToken::RBrac)) {
      Error(Parser.getTok().getLoc(), "']' expected");
      return MatchOperand_ParseFail;
    }
    Parser.Lex(); // Eat the ']'.
    int64_t Val = CE->getValue();

    // FIXME: Make this range check context sensitive for .8, .16, .32.
    if (Val < 0 || Val > 7) {
      Error(Parser.getTok().getLoc(), "lane index out of range");
      return MatchOperand_ParseFail;
    }
    Index = Val;
    LaneKind = IndexedLane;
    return MatchOperand_Success;
  }
  LaneKind = NoLanes;
  return MatchOperand_Success;
}

// parse a vector register list
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  VectorLaneTy LaneKind;
  unsigned LaneIndex;
  SMLoc S = Parser.getTok().getLoc();
  // As an extension (to match gas), support a plain D register or Q register
  // (without encosing curly braces) as a single or double entry list,
  // respectively.
  if (Parser.getTok().is(AsmToken::Identifier)) {
    int Reg = tryParseRegister();
    if (Reg == -1)
      return MatchOperand_NoMatch;
    SMLoc E = Parser.getTok().getLoc();
    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
      if (Res != MatchOperand_Success)
        return Res;
      switch (LaneKind) {
      case NoLanes:
        E = Parser.getTok().getLoc();
        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
        break;
      case AllLanes:
        E = Parser.getTok().getLoc();
        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
                                                                S, E));
        break;
      case IndexedLane:
        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
                                                               LaneIndex,
                                                               false, S, E));
        break;
      }
      return MatchOperand_Success;
    }
    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      Reg = getDRegFromQReg(Reg);
      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
      if (Res != MatchOperand_Success)
        return Res;
      switch (LaneKind) {
      case NoLanes:
        E = Parser.getTok().getLoc();
        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
        break;
      case AllLanes:
        E = Parser.getTok().getLoc();
        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
                                                                S, E));
        break;
      case IndexedLane:
        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
                                                               LaneIndex,
                                                               false, S, E));
        break;
      }
      return MatchOperand_Success;
    }
    Error(S, "vector register expected");
    return MatchOperand_ParseFail;
  }

  if (Parser.getTok().isNot(AsmToken::LCurly))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat '{' token.
  SMLoc RegLoc = Parser.getTok().getLoc();

  int Reg = tryParseRegister();
  if (Reg == -1) {
    Error(RegLoc, "register expected");
    return MatchOperand_ParseFail;
  }
  unsigned Count = 1;
  int Spacing = 0;
  unsigned FirstReg = Reg;
  // The list is of D registers, but we also allow Q regs and just interpret
  // them as the two D sub-registers.
  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
    FirstReg = Reg = getDRegFromQReg(Reg);
    Spacing = 1; // double-spacing requires explicit D registers, otherwise
                 // it's ambiguous with four-register single spaced.
    ++Reg;
    ++Count;
  }
  if (parseVectorLane(LaneKind, LaneIndex) != MatchOperand_Success)
    return MatchOperand_ParseFail;

  while (Parser.getTok().is(AsmToken::Comma) ||
         Parser.getTok().is(AsmToken::Minus)) {
    if (Parser.getTok().is(AsmToken::Minus)) {
      if (!Spacing)
        Spacing = 1; // Register range implies a single spaced list.
      else if (Spacing == 2) {
        Error(Parser.getTok().getLoc(),
              "sequential registers in double spaced list");
        return MatchOperand_ParseFail;
      }
      Parser.Lex(); // Eat the minus.
      SMLoc EndLoc = Parser.getTok().getLoc();
      int EndReg = tryParseRegister();
      if (EndReg == -1) {
        Error(EndLoc, "register expected");
        return MatchOperand_ParseFail;
      }
      // Allow Q regs and just interpret them as the two D sub-registers.
      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
        EndReg = getDRegFromQReg(EndReg) + 1;
      // If the register is the same as the start reg, there's nothing
      // more to do.
      if (Reg == EndReg)
        continue;
      // The register must be in the same register class as the first.
      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
        Error(EndLoc, "invalid register in register list");
        return MatchOperand_ParseFail;
      }
      // Ranges must go from low to high.
      if (Reg > EndReg) {
        Error(EndLoc, "bad range in register list");
        return MatchOperand_ParseFail;
      }
      // Parse the lane specifier if present.
      VectorLaneTy NextLaneKind;
      unsigned NextLaneIndex;
      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
        return MatchOperand_ParseFail;
      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
        Error(EndLoc, "mismatched lane index in register list");
        return MatchOperand_ParseFail;
      }
      EndLoc = Parser.getTok().getLoc();

      // Add all the registers in the range to the register list.
      Count += EndReg - Reg;
      Reg = EndReg;
      continue;
    }
    Parser.Lex(); // Eat the comma.
    RegLoc = Parser.getTok().getLoc();
    int OldReg = Reg;
    Reg = tryParseRegister();
    if (Reg == -1) {
      Error(RegLoc, "register expected");
      return MatchOperand_ParseFail;
    }
    // vector register lists must be contiguous.
    // It's OK to use the enumeration values directly here rather, as the
    // VFP register classes have the enum sorted properly.
    //
    // The list is of D registers, but we also allow Q regs and just interpret
    // them as the two D sub-registers.
    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      if (!Spacing)
        Spacing = 1; // Register range implies a single spaced list.
      else if (Spacing == 2) {
        Error(RegLoc,
              "invalid register in double-spaced list (must be 'D' register')");
        return MatchOperand_ParseFail;
      }
      Reg = getDRegFromQReg(Reg);
      if (Reg != OldReg + 1) {
        Error(RegLoc, "non-contiguous register range");
        return MatchOperand_ParseFail;
      }
      ++Reg;
      Count += 2;
      // Parse the lane specifier if present.
      VectorLaneTy NextLaneKind;
      unsigned NextLaneIndex;
      SMLoc EndLoc = Parser.getTok().getLoc();
      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
        return MatchOperand_ParseFail;
      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
        Error(EndLoc, "mismatched lane index in register list");
        return MatchOperand_ParseFail;
      }
      continue;
    }
    // Normal D register.
    // Figure out the register spacing (single or double) of the list if
    // we don't know it already.
    if (!Spacing)
      Spacing = 1 + (Reg == OldReg + 2);

    // Just check that it's contiguous and keep going.
    if (Reg != OldReg + Spacing) {
      Error(RegLoc, "non-contiguous register range");
      return MatchOperand_ParseFail;
    }
    ++Count;
    // Parse the lane specifier if present.
    VectorLaneTy NextLaneKind;
    unsigned NextLaneIndex;
    SMLoc EndLoc = Parser.getTok().getLoc();
    if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
      return MatchOperand_ParseFail;
    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
      Error(EndLoc, "mismatched lane index in register list");
      return MatchOperand_ParseFail;
    }
  }

  SMLoc E = Parser.getTok().getLoc();
  if (Parser.getTok().isNot(AsmToken::RCurly)) {
    Error(E, "'}' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat '}' token.

  switch (LaneKind) {
  case NoLanes:
    // Two-register operands have been converted to the
    // composite register classes.
    if (Count == 2) {
      const MCRegisterClass *RC = (Spacing == 1) ?
        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
    }

    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
                                                    (Spacing == 2), S, E));
    break;
  case AllLanes:
    // Two-register operands have been converted to the
    // composite register classes.
    if (Count == 2) {
      const MCRegisterClass *RC = (Spacing == 1) ?
        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
    }
    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
                                                            (Spacing == 2),
                                                            S, E));
    break;
  case IndexedLane:
    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
                                                           LaneIndex,
                                                           (Spacing == 2),
                                                           S, E));
    break;
  }
  return MatchOperand_Success;
}

/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  unsigned Opt;

  if (Tok.is(AsmToken::Identifier)) {
    StringRef OptStr = Tok.getString();

    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
      .Case("sy",    ARM_MB::SY)
      .Case("st",    ARM_MB::ST)
      .Case("sh",    ARM_MB::ISH)
      .Case("ish",   ARM_MB::ISH)
      .Case("shst",  ARM_MB::ISHST)
      .Case("ishst", ARM_MB::ISHST)
      .Case("nsh",   ARM_MB::NSH)
      .Case("un",    ARM_MB::NSH)
      .Case("nshst", ARM_MB::NSHST)
      .Case("unst",  ARM_MB::NSHST)
      .Case("osh",   ARM_MB::OSH)
      .Case("oshst", ARM_MB::OSHST)
      .Default(~0U);

    if (Opt == ~0U)
      return MatchOperand_NoMatch;

    Parser.Lex(); // Eat identifier token.
  } else if (Tok.is(AsmToken::Hash) ||
             Tok.is(AsmToken::Dollar) ||
             Tok.is(AsmToken::Integer)) {
    if (Parser.getTok().isNot(AsmToken::Integer))
      Parser.Lex(); // Eat the '#'.
    SMLoc Loc = Parser.getTok().getLoc();

    const MCExpr *MemBarrierID;
    if (getParser().ParseExpression(MemBarrierID)) {
      Error(Loc, "illegal expression");
      return MatchOperand_ParseFail;
    }
    
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
    if (!CE) {
      Error(Loc, "constant expression expected");
      return MatchOperand_ParseFail;
    }

    int Val = CE->getValue();
    if (Val & ~0xf) {
      Error(Loc, "immediate value out of range");
      return MatchOperand_ParseFail;
    }

    Opt = ARM_MB::RESERVED_0 + Val;
  } else
    return MatchOperand_ParseFail;

  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
  return MatchOperand_Success;
}

/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Identifier)) 
    return MatchOperand_NoMatch;
  StringRef IFlagsStr = Tok.getString();

  // An iflags string of "none" is interpreted to mean that none of the AIF
  // bits are set.  Not a terribly useful instruction, but a valid encoding.
  unsigned IFlags = 0;
  if (IFlagsStr != "none") {
        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
        .Case("a", ARM_PROC::A)
        .Case("i", ARM_PROC::I)
        .Case("f", ARM_PROC::F)
        .Default(~0U);

      // If some specific iflag is already set, it means that some letter is
      // present more than once, this is not acceptable.
      if (Flag == ~0U || (IFlags & Flag))
        return MatchOperand_NoMatch;

      IFlags |= Flag;
    }
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
  return MatchOperand_Success;
}

/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
  StringRef Mask = Tok.getString();

  if (isMClass()) {
    // See ARMv6-M 10.1.1
    std::string Name = Mask.lower();
    unsigned FlagsVal = StringSwitch<unsigned>(Name)
      // Note: in the documentation:
      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
      //  for MSR APSR_nzcvq.
      // but we do make it an alias here.  This is so to get the "mask encoding"
      // bits correct on MSR APSR writes.
      //
      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
      // should really only be allowed when writing a special register.  Note
      // they get dropped in the MRS instruction reading a special register as
      // the SYSm field is only 8 bits.
      //
      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
      // includes the DSP extension but that is not checked.
      .Case("apsr", 0x800)
      .Case("apsr_nzcvq", 0x800)
      .Case("apsr_g", 0x400)
      .Case("apsr_nzcvqg", 0xc00)
      .Case("iapsr", 0x801)
      .Case("iapsr_nzcvq", 0x801)
      .Case("iapsr_g", 0x401)
      .Case("iapsr_nzcvqg", 0xc01)
      .Case("eapsr", 0x802)
      .Case("eapsr_nzcvq", 0x802)
      .Case("eapsr_g", 0x402)
      .Case("eapsr_nzcvqg", 0xc02)
      .Case("xpsr", 0x803)
      .Case("xpsr_nzcvq", 0x803)
      .Case("xpsr_g", 0x403)
      .Case("xpsr_nzcvqg", 0xc03)
      .Case("ipsr", 0x805)
      .Case("epsr", 0x806)
      .Case("iepsr", 0x807)
      .Case("msp", 0x808)
      .Case("psp", 0x809)
      .Case("primask", 0x810)
      .Case("basepri", 0x811)
      .Case("basepri_max", 0x812)
      .Case("faultmask", 0x813)
      .Case("control", 0x814)
      .Default(~0U);

    if (FlagsVal == ~0U)
      return MatchOperand_NoMatch;

    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
      // basepri, basepri_max and faultmask only valid for V7m.
      return MatchOperand_NoMatch;

    Parser.Lex(); // Eat identifier token.
    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
    return MatchOperand_Success;
  }

  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
  size_t Start = 0, Next = Mask.find('_');
  StringRef Flags = "";
  std::string SpecReg = Mask.slice(Start, Next).lower();
  if (Next != StringRef::npos)
    Flags = Mask.slice(Next+1, Mask.size());

  // FlagsVal contains the complete mask:
  // 3-0: Mask
  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
  unsigned FlagsVal = 0;

  if (SpecReg == "apsr") {
    FlagsVal = StringSwitch<unsigned>(Flags)
    .Case("nzcvq",  0x8) // same as CPSR_f
    .Case("g",      0x4) // same as CPSR_s
    .Case("nzcvqg", 0xc) // same as CPSR_fs
    .Default(~0U);

    if (FlagsVal == ~0U) {
      if (!Flags.empty())
        return MatchOperand_NoMatch;
      else
        FlagsVal = 8; // No flag
    }
  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
    if (Flags == "all" || Flags == "")
      Flags = "fc";
    for (int i = 0, e = Flags.size(); i != e; ++i) {
      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
      .Case("c", 1)
      .Case("x", 2)
      .Case("s", 4)
      .Case("f", 8)
      .Default(~0U);

      // If some specific flag is already set, it means that some letter is
      // present more than once, this is not acceptable.
      if (FlagsVal == ~0U || (FlagsVal & Flag))
        return MatchOperand_NoMatch;
      FlagsVal |= Flag;
    }
  } else // No match for special register.
    return MatchOperand_NoMatch;

  // Special register without flags is NOT equivalent to "fc" flags.
  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
  // two lines would enable gas compatibility at the expense of breaking
  // round-tripping.
  //
  // if (!FlagsVal)
  //  FlagsVal = 0x9;

  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
  if (SpecReg == "spsr")
    FlagsVal |= 16;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
  return MatchOperand_Success;
}

ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
            int Low, int High) {
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(Parser.getTok().getLoc(), Op + " operand expected.");
    return MatchOperand_ParseFail;
  }
  StringRef ShiftName = Tok.getString();
  std::string LowerOp = Op.lower();
  std::string UpperOp = Op.upper();
  if (ShiftName != LowerOp && ShiftName != UpperOp) {
    Error(Parser.getTok().getLoc(), Op + " operand expected.");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat shift type token.

  // There must be a '#' and a shift amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *ShiftAmount;
  SMLoc Loc = Parser.getTok().getLoc();
  if (getParser().ParseExpression(ShiftAmount)) {
    Error(Loc, "illegal expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(Loc, "constant expression expected");
    return MatchOperand_ParseFail;
  }
  int Val = CE->getValue();
  if (Val < Low || Val > High) {
    Error(Loc, "immediate value out of range");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));

  return MatchOperand_Success;
}

ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(Tok.getLoc(), "'be' or 'le' operand expected");
    return MatchOperand_ParseFail;
  }
  int Val = StringSwitch<int>(Tok.getString())
    .Case("be", 1)
    .Case("le", 0)
    .Default(-1);
  Parser.Lex(); // Eat the token.

  if (Val == -1) {
    Error(Tok.getLoc(), "'be' or 'le' operand expected");
    return MatchOperand_ParseFail;
  }
  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
                                                                  getContext()),
                                           S, Parser.getTok().getLoc()));
  return MatchOperand_Success;
}

/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
/// instructions. Legal values are:
///     lsl #n  'n' in [0,31]
///     asr #n  'n' in [1,32]
///             n == 32 encoded as n == 0.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(S, "shift operator 'asr' or 'lsl' expected");
    return MatchOperand_ParseFail;
  }
  StringRef ShiftName = Tok.getString();
  bool isASR;
  if (ShiftName == "lsl" || ShiftName == "LSL")
    isASR = false;
  else if (ShiftName == "asr" || ShiftName == "ASR")
    isASR = true;
  else {
    Error(S, "shift operator 'asr' or 'lsl' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat the operator.

  // A '#' and a shift amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *ShiftAmount;
  SMLoc E = Parser.getTok().getLoc();
  if (getParser().ParseExpression(ShiftAmount)) {
    Error(E, "malformed shift expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(E, "shift amount must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Val = CE->getValue();
  if (isASR) {
    // Shift amount must be in [1,32]
    if (Val < 1 || Val > 32) {
      Error(E, "'asr' shift amount must be in range [1,32]");
      return MatchOperand_ParseFail;
    }
    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
    if (isThumb() && Val == 32) {
      Error(E, "'asr #32' shift amount not allowed in Thumb mode");
      return MatchOperand_ParseFail;
    }
    if (Val == 32) Val = 0;
  } else {
    // Shift amount must be in [1,32]
    if (Val < 0 || Val > 31) {
      Error(E, "'lsr' shift amount must be in range [0,31]");
      return MatchOperand_ParseFail;
    }
  }

  E = Parser.getTok().getLoc();
  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));

  return MatchOperand_Success;
}

/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
/// of instructions. Legal values are:
///     ror #n  'n' in {0, 8, 16, 24}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  StringRef ShiftName = Tok.getString();
  if (ShiftName != "ror" && ShiftName != "ROR")
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the operator.

  // A '#' and a rotate amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *ShiftAmount;
  SMLoc E = Parser.getTok().getLoc();
  if (getParser().ParseExpression(ShiftAmount)) {
    Error(E, "malformed rotate expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(E, "rotate amount must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Val = CE->getValue();
  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
  // normally, zero is represented in asm by omitting the rotate operand
  // entirely.
  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
    Error(E, "'ror' rotate amount must be 8, 16, or 24");
    return MatchOperand_ParseFail;
  }

  E = Parser.getTok().getLoc();
  Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));

  return MatchOperand_Success;
}

ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S = Parser.getTok().getLoc();
  // The bitfield descriptor is really two operands, the LSB and the width.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *LSBExpr;
  SMLoc E = Parser.getTok().getLoc();
  if (getParser().ParseExpression(LSBExpr)) {
    Error(E, "malformed immediate expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
  if (!CE) {
    Error(E, "'lsb' operand must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t LSB = CE->getValue();
  // The LSB must be in the range [0,31]
  if (LSB < 0 || LSB > 31) {
    Error(E, "'lsb' operand must be in the range [0,31]");
    return MatchOperand_ParseFail;
  }
  E = Parser.getTok().getLoc();

  // Expect another immediate operand.
  if (Parser.getTok().isNot(AsmToken::Comma)) {
    Error(Parser.getTok().getLoc(), "too few operands");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *WidthExpr;
  if (getParser().ParseExpression(WidthExpr)) {
    Error(E, "malformed immediate expression");
    return MatchOperand_ParseFail;
  }
  CE = dyn_cast<MCConstantExpr>(WidthExpr);
  if (!CE) {
    Error(E, "'width' operand must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Width = CE->getValue();
  // The LSB must be in the range [1,32-lsb]
  if (Width < 1 || Width > 32 - LSB) {
    Error(E, "'width' operand must be in the range [1,32-lsb]");
    return MatchOperand_ParseFail;
  }
  E = Parser.getTok().getLoc();

  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));

  return MatchOperand_Success;
}

ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Check for a post-index addressing register operand. Specifically:
  // postidx_reg := '+' register {, shift}
  //              | '-' register {, shift}
  //              | register {, shift}

  // This method must return MatchOperand_NoMatch without consuming any tokens
  // in the case where there is no match, as other alternatives take other
  // parse methods.
  AsmToken Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  bool haveEaten = false;
  bool isAdd = true;
  int Reg = -1;
  if (Tok.is(AsmToken::Plus)) {
    Parser.Lex(); // Eat the '+' token.
    haveEaten = true;
  } else if (Tok.is(AsmToken::Minus)) {
    Parser.Lex(); // Eat the '-' token.
    isAdd = false;
    haveEaten = true;
  }
  if (Parser.getTok().is(AsmToken::Identifier))
    Reg = tryParseRegister();
  if (Reg == -1) {
    if (!haveEaten)
      return MatchOperand_NoMatch;
    Error(Parser.getTok().getLoc(), "register expected");
    return MatchOperand_ParseFail;
  }
  SMLoc E = Parser.getTok().getLoc();

  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
  unsigned ShiftImm = 0;
  if (Parser.getTok().is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the ','.
    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
      return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
                                                  ShiftImm, S, E));

  return MatchOperand_Success;
}

ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Check for a post-index addressing register operand. Specifically:
  // am3offset := '+' register
  //              | '-' register
  //              | register
  //              | # imm
  //              | # + imm
  //              | # - imm

  // This method must return MatchOperand_NoMatch without consuming any tokens
  // in the case where there is no match, as other alternatives take other
  // parse methods.
  AsmToken Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();

  // Do immediates first, as we always parse those if we have a '#'.
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar)) {
    Parser.Lex(); // Eat the '#'.
    // Explicitly look for a '-', as we need to encode negative zero
    // differently.
    bool isNegative = Parser.getTok().is(AsmToken::Minus);
    const MCExpr *Offset;
    if (getParser().ParseExpression(Offset))
      return MatchOperand_ParseFail;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
    if (!CE) {
      Error(S, "constant expression expected");
      return MatchOperand_ParseFail;
    }
    SMLoc E = Tok.getLoc();
    // Negative zero is encoded as the flag value INT32_MIN.
    int32_t Val = CE->getValue();
    if (isNegative && Val == 0)
      Val = INT32_MIN;

    Operands.push_back(
      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));

    return MatchOperand_Success;
  }


  bool haveEaten = false;
  bool isAdd = true;
  int Reg = -1;
  if (Tok.is(AsmToken::Plus)) {
    Parser.Lex(); // Eat the '+' token.
    haveEaten = true;
  } else if (Tok.is(AsmToken::Minus)) {
    Parser.Lex(); // Eat the '-' token.
    isAdd = false;
    haveEaten = true;
  }
  if (Parser.getTok().is(AsmToken::Identifier))
    Reg = tryParseRegister();
  if (Reg == -1) {
    if (!haveEaten)
      return MatchOperand_NoMatch;
    Error(Parser.getTok().getLoc(), "register expected");
    return MatchOperand_ParseFail;
  }
  SMLoc E = Parser.getTok().getLoc();

  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
                                                  0, S, E));

  return MatchOperand_Success;
}

/// cvtT2LdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtT2LdrdPre(MCInst &Inst,
             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Rt, Rt2
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateReg(0));
  // addr
  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtT2StrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtT2StrdPre(MCInst &Inst,
             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateReg(0));
  // Rt, Rt2
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
  // addr
  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);

  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));

  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdWriteBackRegAddrMode2(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);

  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));

  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);

  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));

  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}


/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStWriteBackRegAddrMode2(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStWriteBackRegAddrMode3(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdExtTWriteBackImm(MCInst &Inst,
                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Rt
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // addr
  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
  // offset
  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdExtTWriteBackReg(MCInst &Inst,
                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Rt
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // addr
  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
  // offset
  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStExtTWriteBackImm(MCInst &Inst,
                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Rt
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  // addr
  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
  // offset
  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStExtTWriteBackReg(MCInst &Inst,
                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Rt
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  // addr
  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
  // offset
  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdrdPre(MCInst &Inst,
           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Rt, Rt2
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // addr
  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtStrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtStrdPre(MCInst &Inst,
           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Rt, Rt2
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
  // addr
  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtLdWriteBackRegAddrMode3(MCInst &Inst,
                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// cvtThumbMultiply - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
void ARMAsmParser::
cvtThumbMultiply(MCInst &Inst,
           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
  // If we have a three-operand form, make sure to set Rn to be the operand
  // that isn't the same as Rd.
  unsigned RegOp = 4;
  if (Operands.size() == 6 &&
      ((ARMOperand*)Operands[4])->getReg() ==
        ((ARMOperand*)Operands[3])->getReg())
    RegOp = 5;
  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
  Inst.addOperand(Inst.getOperand(0));
  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::
cvtVLDwbFixed(MCInst &Inst,
              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Vd
  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Vn
  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::
cvtVLDwbRegister(MCInst &Inst,
                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Vd
  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Vn
  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
  // Vm
  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::
cvtVSTwbFixed(MCInst &Inst,
              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Vn
  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
  // Vt
  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::
cvtVSTwbRegister(MCInst &Inst,
                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Create a writeback register dummy placeholder.
  Inst.addOperand(MCOperand::CreateImm(0));
  // Vn
  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
  // Vm
  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
  // Vt
  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
  // pred
  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
}

/// Parse an ARM memory expression, return false if successful else return true
/// or an error.  The first token must be a '[' when called.
bool ARMAsmParser::
parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  SMLoc S, E;
  assert(Parser.getTok().is(AsmToken::LBrac) &&
         "Token is not a Left Bracket");
  S = Parser.getTok().getLoc();
  Parser.Lex(); // Eat left bracket token.

  const AsmToken &BaseRegTok = Parser.getTok();
  int BaseRegNum = tryParseRegister();
  if (BaseRegNum == -1)
    return Error(BaseRegTok.getLoc(), "register expected");

  // The next token must either be a comma or a closing bracket.
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
    return Error(Tok.getLoc(), "malformed memory operand");

  if (Tok.is(AsmToken::RBrac)) {
    E = Tok.getLoc();
    Parser.Lex(); // Eat right bracket token.

    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
                                             0, 0, false, S, E));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand. It's rather odd, but syntactically valid.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
  Parser.Lex(); // Eat the comma.

  // If we have a ':', it's an alignment specifier.
  if (Parser.getTok().is(AsmToken::Colon)) {
    Parser.Lex(); // Eat the ':'.
    E = Parser.getTok().getLoc();

    const MCExpr *Expr;
    if (getParser().ParseExpression(Expr))
     return true;

    // The expression has to be a constant. Memory references with relocations
    // don't come through here, as they use the <label> forms of the relevant
    // instructions.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
    if (!CE)
      return Error (E, "constant expression expected");

    unsigned Align = 0;
    switch (CE->getValue()) {
    default:
      return Error(E,
                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
    case 16:  Align = 2; break;
    case 32:  Align = 4; break;
    case 64:  Align = 8; break;
    case 128: Align = 16; break;
    case 256: Align = 32; break;
    }

    // Now we should have the closing ']'
    E = Parser.getTok().getLoc();
    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(E, "']' expected");
    Parser.Lex(); // Eat right bracket token.

    // Don't worry about range checking the value here. That's handled by
    // the is*() predicates.
    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
                                             ARM_AM::no_shift, 0, Align,
                                             false, S, E));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  // If we have a '#', it's an immediate offset, else assume it's a register
  // offset. Be friendly and also accept a plain integer (without a leading
  // hash) for gas compatibility.
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar) ||
      Parser.getTok().is(AsmToken::Integer)) {
    if (Parser.getTok().isNot(AsmToken::Integer))
      Parser.Lex(); // Eat the '#'.
    E = Parser.getTok().getLoc();

    bool isNegative = getParser().getTok().is(AsmToken::Minus);
    const MCExpr *Offset;
    if (getParser().ParseExpression(Offset))
     return true;

    // The expression has to be a constant. Memory references with relocations
    // don't come through here, as they use the <label> forms of the relevant
    // instructions.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
    if (!CE)
      return Error (E, "constant expression expected");

    // If the constant was #-0, represent it as INT32_MIN.
    int32_t Val = CE->getValue();
    if (isNegative && Val == 0)
      CE = MCConstantExpr::Create(INT32_MIN, getContext());

    // Now we should have the closing ']'
    E = Parser.getTok().getLoc();
    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(E, "']' expected");
    Parser.Lex(); // Eat right bracket token.

    // Don't worry about range checking the value here. That's handled by
    // the is*() predicates.
    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
                                             ARM_AM::no_shift, 0, 0,
                                             false, S, E));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  // The register offset is optionally preceded by a '+' or '-'
  bool isNegative = false;
  if (Parser.getTok().is(AsmToken::Minus)) {
    isNegative = true;
    Parser.Lex(); // Eat the '-'.
  } else if (Parser.getTok().is(AsmToken::Plus)) {
    // Nothing to do.
    Parser.Lex(); // Eat the '+'.
  }

  E = Parser.getTok().getLoc();
  int OffsetRegNum = tryParseRegister();
  if (OffsetRegNum == -1)
    return Error(E, "register expected");

  // If there's a shift operator, handle it.
  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
  unsigned ShiftImm = 0;
  if (Parser.getTok().is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the ','.
    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
      return true;
  }

  // Now we should have the closing ']'
  E = Parser.getTok().getLoc();
  if (Parser.getTok().isNot(AsmToken::RBrac))
    return Error(E, "']' expected");
  Parser.Lex(); // Eat right bracket token.

  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
                                           ShiftType, ShiftImm, 0, isNegative,
                                           S, E));

  // If there's a pre-indexing writeback marker, '!', just add it as a token
  // operand.
  if (Parser.getTok().is(AsmToken::Exclaim)) {
    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
    Parser.Lex(); // Eat the '!'.
  }

  return false;
}

/// parseMemRegOffsetShift - one of these two:
///   ( lsl | lsr | asr | ror ) , # shift_amount
///   rrx
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
                                          unsigned &Amount) {
  SMLoc Loc = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return true;
  StringRef ShiftName = Tok.getString();
  if (ShiftName == "lsl" || ShiftName == "LSL" ||
      ShiftName == "asl" || ShiftName == "ASL")
    St = ARM_AM::lsl;
  else if (ShiftName == "lsr" || ShiftName == "LSR")
    St = ARM_AM::lsr;
  else if (ShiftName == "asr" || ShiftName == "ASR")
    St = ARM_AM::asr;
  else if (ShiftName == "ror" || ShiftName == "ROR")
    St = ARM_AM::ror;
  else if (ShiftName == "rrx" || ShiftName == "RRX")
    St = ARM_AM::rrx;
  else
    return Error(Loc, "illegal shift operator");
  Parser.Lex(); // Eat shift type token.

  // rrx stands alone.
  Amount = 0;
  if (St != ARM_AM::rrx) {
    Loc = Parser.getTok().getLoc();
    // A '#' and a shift amount.
    const AsmToken &HashTok = Parser.getTok();
    if (HashTok.isNot(AsmToken::Hash) &&
        HashTok.isNot(AsmToken::Dollar))
      return Error(HashTok.getLoc(), "'#' expected");
    Parser.Lex(); // Eat hash token.

    const MCExpr *Expr;
    if (getParser().ParseExpression(Expr))
      return true;
    // Range check the immediate.
    // lsl, ror: 0 <= imm <= 31
    // lsr, asr: 0 <= imm <= 32
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
    if (!CE)
      return Error(Loc, "shift amount must be an immediate");
    int64_t Imm = CE->getValue();
    if (Imm < 0 ||
        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
      return Error(Loc, "immediate shift value out of range");
    Amount = Imm;
  }

  return false;
}

/// parseFPImm - A floating point immediate expression operand.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Anything that can accept a floating point constant as an operand
  // needs to go through here, as the regular ParseExpression is
  // integer only.
  //
  // This routine still creates a generic Immediate operand, containing
  // a bitcast of the 64-bit floating point value. The various operands
  // that accept floats can check whether the value is valid for them
  // via the standard is*() predicates.

  SMLoc S = Parser.getTok().getLoc();

  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar))
    return MatchOperand_NoMatch;

  // Disambiguate the VMOV forms that can accept an FP immediate.
  // vmov.f32 <sreg>, #imm
  // vmov.f64 <dreg>, #imm
  // vmov.f32 <dreg>, #imm  @ vector f32x2
  // vmov.f32 <qreg>, #imm  @ vector f32x4
  //
  // There are also the NEON VMOV instructions which expect an
  // integer constant. Make sure we don't try to parse an FPImm
  // for these:
  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
                           TyOp->getToken() != ".f64"))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat the '#'.

  // Handle negation, as that still comes through as a separate token.
  bool isNegative = false;
  if (Parser.getTok().is(AsmToken::Minus)) {
    isNegative = true;
    Parser.Lex();
  }
  const AsmToken &Tok = Parser.getTok();
  SMLoc Loc = Tok.getLoc();
  if (Tok.is(AsmToken::Real)) {
    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
    // If we had a '-' in front, toggle the sign bit.
    IntVal ^= (uint64_t)isNegative << 31;
    Parser.Lex(); // Eat the token.
    Operands.push_back(ARMOperand::CreateImm(
          MCConstantExpr::Create(IntVal, getContext()),
          S, Parser.getTok().getLoc()));
    return MatchOperand_Success;
  }
  // Also handle plain integers. Instructions which allow floating point
  // immediates also allow a raw encoded 8-bit value.
  if (Tok.is(AsmToken::Integer)) {
    int64_t Val = Tok.getIntVal();
    Parser.Lex(); // Eat the token.
    if (Val > 255 || Val < 0) {
      Error(Loc, "encoded floating point value out of range");
      return MatchOperand_ParseFail;
    }
    double RealVal = ARM_AM::getFPImmFloat(Val);
    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
    Operands.push_back(ARMOperand::CreateImm(
        MCConstantExpr::Create(Val, getContext()), S,
        Parser.getTok().getLoc()));
    return MatchOperand_Success;
  }

  Error(Loc, "invalid floating point immediate");
  return MatchOperand_ParseFail;
}

/// Parse a arm instruction operand.  For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
                                StringRef Mnemonic) {
  SMLoc S, E;

  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.
  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
  if (ResTy == MatchOperand_Success)
    return false;
  // If there wasn't a custom match, try the generic matcher below. Otherwise,
  // there was a match, but an error occurred, in which case, just return that
  // the operand parsing failed.
  if (ResTy == MatchOperand_ParseFail)
    return true;

  switch (getLexer().getKind()) {
  default:
    Error(Parser.getTok().getLoc(), "unexpected token in operand");
    return true;
  case AsmToken::Identifier: {
    if (!tryParseRegisterWithWriteBack(Operands))
      return false;
    int Res = tryParseShiftRegister(Operands);
    if (Res == 0) // success
      return false;
    else if (Res == -1) // irrecoverable error
      return true;
    // If this is VMRS, check for the apsr_nzcv operand.
    if (Mnemonic == "vmrs" &&
        Parser.getTok().getString().equals_lower("apsr_nzcv")) {
      S = Parser.getTok().getLoc();
      Parser.Lex();
      Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
      return false;
    }

    // Fall though for the Identifier case that is not a register or a
    // special name.
  }
  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
  case AsmToken::Integer: // things like 1f and 2b as a branch targets
  case AsmToken::String:  // quoted label names.
  case AsmToken::Dot: {   // . as a branch target
    // This was not a register so parse other operands that start with an
    // identifier (like labels) as expressions and create them as immediates.
    const MCExpr *IdVal;
    S = Parser.getTok().getLoc();
    if (getParser().ParseExpression(IdVal))
      return true;
    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
    return false;
  }
  case AsmToken::LBrac:
    return parseMemory(Operands);
  case AsmToken::LCurly:
    return parseRegisterList(Operands);
  case AsmToken::Dollar:
  case AsmToken::Hash: {
    // #42 -> immediate.
    S = Parser.getTok().getLoc();
    Parser.Lex();

    if (Parser.getTok().isNot(AsmToken::Colon)) {
      bool isNegative = Parser.getTok().is(AsmToken::Minus);
      const MCExpr *ImmVal;
      if (getParser().ParseExpression(ImmVal))
        return true;
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
      if (CE) {
        int32_t Val = CE->getValue();
        if (isNegative && Val == 0)
          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
      }
      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
      return false;
    }
    // w/ a ':' after the '#', it's just like a plain ':'.
    // FALLTHROUGH
  }
  case AsmToken::Colon: {
    // ":lower16:" and ":upper16:" expression prefixes
    // FIXME: Check it's an expression prefix,
    // e.g. (FOO - :lower16:BAR) isn't legal.
    ARMMCExpr::VariantKind RefKind;
    if (parsePrefix(RefKind))
      return true;

    const MCExpr *SubExprVal;
    if (getParser().ParseExpression(SubExprVal))
      return true;

    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
                                                   getContext());
    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
    return false;
  }
  }
}

// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
//  :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
  RefKind = ARMMCExpr::VK_ARM_None;

  // :lower16: and :upper16: modifiers
  assert(getLexer().is(AsmToken::Colon) && "expected a :");
  Parser.Lex(); // Eat ':'

  if (getLexer().isNot(AsmToken::Identifier)) {
    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
    return true;
  }

  StringRef IDVal = Parser.getTok().getIdentifier();
  if (IDVal == "lower16") {
    RefKind = ARMMCExpr::VK_ARM_LO16;
  } else if (IDVal == "upper16") {
    RefKind = ARMMCExpr::VK_ARM_HI16;
  } else {
    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
    return true;
  }
  Parser.Lex();

  if (getLexer().isNot(AsmToken::Colon)) {
    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
    return true;
  }
  Parser.Lex(); // Eat the last ':'
  return false;
}

/// \brief Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
// FIXME: This is a bit of a maze of special cases.
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
                                      unsigned &PredicationCode,
                                      bool &CarrySetting,
                                      unsigned &ProcessorIMod,
                                      StringRef &ITMask) {
  PredicationCode = ARMCC::AL;
  CarrySetting = false;
  ProcessorIMod = 0;

  // Ignore some mnemonics we know aren't predicated forms.
  //
  // FIXME: Would be nice to autogen this.
  if ((Mnemonic == "movs" && isThumb()) ||
      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
      Mnemonic == "fmuls")
    return Mnemonic;

  // First, split out any predication code. Ignore mnemonics we know aren't
  // predicated but do have a carry-set and so weren't caught above.
  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
      Mnemonic != "sbcs" && Mnemonic != "rscs") {
    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
      .Case("eq", ARMCC::EQ)
      .Case("ne", ARMCC::NE)
      .Case("hs", ARMCC::HS)
      .Case("cs", ARMCC::HS)
      .Case("lo", ARMCC::LO)
      .Case("cc", ARMCC::LO)
      .Case("mi", ARMCC::MI)
      .Case("pl", ARMCC::PL)
      .Case("vs", ARMCC::VS)
      .Case("vc", ARMCC::VC)
      .Case("hi", ARMCC::HI)
      .Case("ls", ARMCC::LS)
      .Case("ge", ARMCC::GE)
      .Case("lt", ARMCC::LT)
      .Case("gt", ARMCC::GT)
      .Case("le", ARMCC::LE)
      .Case("al", ARMCC::AL)
      .Default(~0U);
    if (CC != ~0U) {
      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
      PredicationCode = CC;
    }
  }

  // Next, determine if we have a carry setting bit. We explicitly ignore all
  // the instructions we know end in 's'.
  if (Mnemonic.endswith("s") &&
      !(Mnemonic == "cps" || Mnemonic == "mls" ||
        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
        (Mnemonic == "movs" && isThumb()))) {
    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
    CarrySetting = true;
  }

  // The "cps" instruction can have a interrupt mode operand which is glued into
  // the mnemonic. Check if this is the case, split it and parse the imod op
  if (Mnemonic.startswith("cps")) {
    // Split out any imod code.
    unsigned IMod =
      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
      .Case("ie", ARM_PROC::IE)
      .Case("id", ARM_PROC::ID)
      .Default(~0U);
    if (IMod != ~0U) {
      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
      ProcessorIMod = IMod;
    }
  }

  // The "it" instruction has the condition mask on the end of the mnemonic.
  if (Mnemonic.startswith("it")) {
    ITMask = Mnemonic.slice(2, Mnemonic.size());
    Mnemonic = Mnemonic.slice(0, 2);
  }

  return Mnemonic;
}

/// \brief Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
void ARMAsmParser::
getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
                      bool &CanAcceptPredicationCode) {
  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
      Mnemonic == "add" || Mnemonic == "adc" ||
      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
      Mnemonic == "orr" || Mnemonic == "mvn" ||
      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
                      Mnemonic == "mla" || Mnemonic == "smlal" ||
                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
    CanAcceptCarrySet = true;
  } else
    CanAcceptCarrySet = false;

  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
      Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
      (Mnemonic == "clrex" && !isThumb()) ||
      (Mnemonic == "nop" && isThumbOne()) ||
      ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
        Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
        Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
      ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
       !isThumb()) ||
      Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
    CanAcceptPredicationCode = false;
  } else
    CanAcceptPredicationCode = true;

  if (isThumb()) {
    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
      CanAcceptPredicationCode = false;
  }
}

bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // FIXME: This is all horribly hacky. We really need a better way to deal
  // with optional operands like this in the matcher table.

  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
  // another does not. Specifically, the MOVW instruction does not. So we
  // special case it here and remove the defaulted (non-setting) cc_out
  // operand if that's the instruction we're trying to match.
  //
  // We do this as post-processing of the explicit operands rather than just
  // conditionally adding the cc_out in the first place because we need
  // to check the type of the parsed immediate operand.
  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
    return true;

  // Register-register 'add' for thumb does not have a cc_out operand
  // when there are only two register operands.
  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
    return true;
  // Register-register 'add' for thumb does not have a cc_out operand
  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
  // have to check the immediate range here since Thumb2 has a variant
  // that can handle a different range and has a cc_out operand.
  if (((isThumb() && Mnemonic == "add") ||
       (isThumbTwo() && Mnemonic == "sub")) &&
      Operands.size() == 6 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
    return true;
  // For Thumb2, add/sub immediate does not have a cc_out operand for the
  // imm0_4095 variant. That's the least-preferred variant when
  // selecting via the generic "add" mnemonic, so to know that we
  // should remove the cc_out operand, we have to explicitly check that
  // it's not one of the other variants. Ugh.
  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
      Operands.size() == 6 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      static_cast<ARMOperand*>(Operands[5])->isImm()) {
    // Nest conditions rather than one big 'if' statement for readability.
    //
    // If either register is a high reg, it's either one of the SP
    // variants (handled above) or a 32-bit encoding, so we just
    // check against T3. If the second register is the PC, this is an
    // alternate form of ADR, which uses encoding T4, so check for that too.
    if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
         !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
        static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
      return false;
    // If both registers are low, we're in an IT block, and the immediate is
    // in range, we should use encoding T1 instead, which has a cc_out.
    if (inITBlock() &&
        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
      return false;

    // Otherwise, we use encoding T4, which does not have a cc_out
    // operand.
    return true;
  }

  // The thumb2 multiply instruction doesn't have a CCOut register, so
  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
  // use the 16-bit encoding or not.
  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      static_cast<ARMOperand*>(Operands[5])->isReg() &&
      // If the registers aren't low regs, the destination reg isn't the
      // same as one of the source regs, or the cc_out operand is zero
      // outside of an IT block, we have to use the 32-bit encoding, so
      // remove the cc_out operand.
      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
       !inITBlock() ||
       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
        static_cast<ARMOperand*>(Operands[5])->getReg() &&
        static_cast<ARMOperand*>(Operands[3])->getReg() !=
        static_cast<ARMOperand*>(Operands[4])->getReg())))
    return true;

  // Also check the 'mul' syntax variant that doesn't specify an explicit
  // destination register.
  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      // If the registers aren't low regs  or the cc_out operand is zero
      // outside of an IT block, we have to use the 32-bit encoding, so
      // remove the cc_out operand.
      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
       !inITBlock()))
    return true;



  // Register-register 'add/sub' for thumb does not have a cc_out operand
  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
  // right, this will result in better diagnostics (which operand is off)
  // anyway.
  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
      (Operands.size() == 5 || Operands.size() == 6) &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
       (Operands.size() == 6 &&
        static_cast<ARMOperand*>(Operands[5])->isImm())))
    return true;

  return false;
}

static bool isDataTypeToken(StringRef Tok) {
  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
    Tok == ".f" || Tok == ".d";
}

// FIXME: This bit should probably be handled via an explicit match class
// in the .td files that matches the suffix instead of having it be
// a literal string token the way it is now.
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
}

static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  // Apply mnemonic aliases before doing anything else, as the destination
  // mnemnonic may include suffices and we want to handle them normally.
  // The generic tblgen'erated code does this later, at the start of
  // MatchInstructionImpl(), but that's too late for aliases that include
  // any sort of suffix.
  unsigned AvailableFeatures = getAvailableFeatures();
  applyMnemonicAliases(Name, AvailableFeatures);

  // First check for the ARM-specific .req directive.
  if (Parser.getTok().is(AsmToken::Identifier) &&
      Parser.getTok().getIdentifier() == ".req") {
    parseDirectiveReq(Name, NameLoc);
    // We always return 'error' for this, as we're done with this
    // statement and don't need to match the 'instruction."
    return true;
  }

  // Create the leading tokens for the mnemonic, split by '.' characters.
  size_t Start = 0, Next = Name.find('.');
  StringRef Mnemonic = Name.slice(Start, Next);

  // Split out the predication code and carry setting flag from the mnemonic.
  unsigned PredicationCode;
  unsigned ProcessorIMod;
  bool CarrySetting;
  StringRef ITMask;
  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
                           ProcessorIMod, ITMask);

  // In Thumb1, only the branch (B) instruction can be predicated.
  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
    Parser.EatToEndOfStatement();
    return Error(NameLoc, "conditional execution not supported in Thumb1");
  }

  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));

  // Handle the IT instruction ITMask. Convert it to a bitmask. This
  // is the mask as it will be for the IT encoding if the conditional
  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
  // where the conditional bit0 is zero, the instruction post-processing
  // will adjust the mask accordingly.
  if (Mnemonic == "it") {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
    if (ITMask.size() > 3) {
      Parser.EatToEndOfStatement();
      return Error(Loc, "too many conditions on IT instruction");
    }
    unsigned Mask = 8;
    for (unsigned i = ITMask.size(); i != 0; --i) {
      char pos = ITMask[i - 1];
      if (pos != 't' && pos != 'e') {
        Parser.EatToEndOfStatement();
        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
      }
      Mask >>= 1;
      if (ITMask[i - 1] == 't')
        Mask |= 8;
    }
    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
  }

  // FIXME: This is all a pretty gross hack. We should automatically handle
  // optional operands like this via tblgen.

  // Next, add the CCOut and ConditionCode operands, if needed.
  //
  // For mnemonics which can ever incorporate a carry setting bit or predication
  // code, our matching model involves us always generating CCOut and
  // ConditionCode operands to match the mnemonic "as written" and then we let
  // the matcher deal with finding the right instruction or generating an
  // appropriate error.
  bool CanAcceptCarrySet, CanAcceptPredicationCode;
  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);

  // If we had a carry-set on an instruction that can't do that, issue an
  // error.
  if (!CanAcceptCarrySet && CarrySetting) {
    Parser.EatToEndOfStatement();
    return Error(NameLoc, "instruction '" + Mnemonic +
                 "' can not set flags, but 's' suffix specified");
  }
  // If we had a predication code on an instruction that can't do that, issue an
  // error.
  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
    Parser.EatToEndOfStatement();
    return Error(NameLoc, "instruction '" + Mnemonic +
                 "' is not predicable, but condition code specified");
  }

  // Add the carry setting operand, if necessary.
  if (CanAcceptCarrySet) {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
                                               Loc));
  }

  // Add the predication code operand, if necessary.
  if (CanAcceptPredicationCode) {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
                                      CarrySetting);
    Operands.push_back(ARMOperand::CreateCondCode(
                         ARMCC::CondCodes(PredicationCode), Loc));
  }

  // Add the processor imod operand, if necessary.
  if (ProcessorIMod) {
    Operands.push_back(ARMOperand::CreateImm(
          MCConstantExpr::Create(ProcessorIMod, getContext()),
                                 NameLoc, NameLoc));
  }

  // Add the remaining tokens in the mnemonic.
  while (Next != StringRef::npos) {
    Start = Next;
    Next = Name.find('.', Start + 1);
    StringRef ExtraToken = Name.slice(Start, Next);

    // Some NEON instructions have an optional datatype suffix that is
    // completely ignored. Check for that.
    if (isDataTypeToken(ExtraToken) &&
        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
      continue;

    if (ExtraToken != ".n") {
      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
    }
  }

  // Read the remaining operands.
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    // Read the first operand.
    if (parseOperand(Operands, Mnemonic)) {
      Parser.EatToEndOfStatement();
      return true;
    }

    while (getLexer().is(AsmToken::Comma)) {
      Parser.Lex();  // Eat the comma.

      // Parse and remember the operand.
      if (parseOperand(Operands, Mnemonic)) {
        Parser.EatToEndOfStatement();
        return true;
      }
    }
  }

  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    SMLoc Loc = getLexer().getLoc();
    Parser.EatToEndOfStatement();
    return Error(Loc, "unexpected token in argument list");
  }

  Parser.Lex(); // Consume the EndOfStatement

  // Some instructions, mostly Thumb, have forms for the same mnemonic that
  // do and don't have a cc_out optional-def operand. With some spot-checks
  // of the operand list, we can figure out which variant we're trying to
  // parse and adjust accordingly before actually matching. We shouldn't ever
  // try to remove a cc_out operand that was explicitly set on the the
  // mnemonic, of course (CarrySetting == true). Reason number #317 the
  // table driven matcher doesn't fit well with the ARM instruction set.
  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
    Operands.erase(Operands.begin() + 1);
    delete Op;
  }

  // ARM mode 'blx' need special handling, as the register operand version
  // is predicable, but the label operand version is not. So, we can't rely
  // on the Mnemonic based checking to correctly figure out when to put
  // a k_CondCode operand in the list. If we're trying to match the label
  // version, remove the k_CondCode operand here.
  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
      static_cast<ARMOperand*>(Operands[2])->isImm()) {
    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
    Operands.erase(Operands.begin() + 1);
    delete Op;
  }

  // The vector-compare-to-zero instructions have a literal token "#0" at
  // the end that comes to here as an immediate operand. Convert it to a
  // token to play nicely with the matcher.
  if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
      Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
      static_cast<ARMOperand*>(Operands[5])->isImm()) {
    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
    if (CE && CE->getValue() == 0) {
      Operands.erase(Operands.begin() + 5);
      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
      delete Op;
    }
  }
  // VCMP{E} does the same thing, but with a different operand count.
  if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 &&
      static_cast<ARMOperand*>(Operands[4])->isImm()) {
    ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]);
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
    if (CE && CE->getValue() == 0) {
      Operands.erase(Operands.begin() + 4);
      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
      delete Op;
    }
  }
  // Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
  // end. Convert it to a token here. Take care not to convert those
  // that should hit the Thumb2 encoding.
  if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
      static_cast<ARMOperand*>(Operands[3])->isReg() &&
      static_cast<ARMOperand*>(Operands[4])->isReg() &&
      static_cast<ARMOperand*>(Operands[5])->isImm()) {
    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
    if (CE && CE->getValue() == 0 &&
        (isThumbOne() ||
         // The cc_out operand matches the IT block.
         ((inITBlock() != CarrySetting) &&
         // Neither register operand is a high register.
         (isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
          isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()))))){
      Operands.erase(Operands.begin() + 5);
      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
      delete Op;
    }
  }

  return false;
}

// Validate context-sensitive operand constraints.

// return 'true' if register list contains non-low GPR registers,
// 'false' otherwise. If Reg is in the register list or is HiReg, set
// 'containsReg' to true.
static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
                                 unsigned HiReg, bool &containsReg) {
  containsReg = false;
  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
    unsigned OpReg = Inst.getOperand(i).getReg();
    if (OpReg == Reg)
      containsReg = true;
    // Anything other than a low register isn't legal here.
    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
      return true;
  }
  return false;
}

// Check if the specified regisgter is in the register list of the inst,
// starting at the indicated operand number.
static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
    unsigned OpReg = Inst.getOperand(i).getReg();
    if (OpReg == Reg)
      return true;
  }
  return false;
}

// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
// the ARMInsts array) instead. Getting that here requires awkward
// API changes, though. Better way?
namespace llvm {
extern const MCInstrDesc ARMInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
  return ARMInsts[Opcode];
}

// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::
validateInstruction(MCInst &Inst,
                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
  SMLoc Loc = Operands[0]->getStartLoc();
  // Check the IT block state first.
  // NOTE: BKPT instruction has the interesting property of being
  // allowed in IT blocks, but not being predicable.  It just always
  // executes.
  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
      Inst.getOpcode() != ARM::BKPT) {
    unsigned bit = 1;
    if (ITState.FirstCond)
      ITState.FirstCond = false;
    else
      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
    // The instruction must be predicable.
    if (!MCID.isPredicable())
      return Error(Loc, "instructions in IT block must be predicable");
    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
    unsigned ITCond = bit ? ITState.Cond :
      ARMCC::getOppositeCondition(ITState.Cond);
    if (Cond != ITCond) {
      // Find the condition code Operand to get its SMLoc information.
      SMLoc CondLoc;
      for (unsigned i = 1; i < Operands.size(); ++i)
        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
          CondLoc = Operands[i]->getStartLoc();
      return Error(CondLoc, "incorrect condition in IT block; got '" +
                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
                   "', but expected '" +
                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
    }
  // Check for non-'al' condition codes outside of the IT block.
  } else if (isThumbTwo() && MCID.isPredicable() &&
             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
             ARMCC::AL && Inst.getOpcode() != ARM::tB &&
             Inst.getOpcode() != ARM::t2B)
    return Error(Loc, "predicated instructions must be in IT block");

  switch (Inst.getOpcode()) {
  case ARM::LDRD:
  case ARM::LDRD_PRE:
  case ARM::LDRD_POST:
  case ARM::LDREXD: {
    // Rt2 must be Rt + 1.
    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    if (Rt2 != Rt + 1)
      return Error(Operands[3]->getStartLoc(),
                   "destination operands must be sequential");
    return false;
  }
  case ARM::STRD: {
    // Rt2 must be Rt + 1.
    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    if (Rt2 != Rt + 1)
      return Error(Operands[3]->getStartLoc(),
                   "source operands must be sequential");
    return false;
  }
  case ARM::STRD_PRE:
  case ARM::STRD_POST:
  case ARM::STREXD: {
    // Rt2 must be Rt + 1.
    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
    if (Rt2 != Rt + 1)
      return Error(Operands[3]->getStartLoc(),
                   "source operands must be sequential");
    return false;
  }
  case ARM::SBFX:
  case ARM::UBFX: {
    // width must be in range [1, 32-lsb]
    unsigned lsb = Inst.getOperand(2).getImm();
    unsigned widthm1 = Inst.getOperand(3).getImm();
    if (widthm1 >= 32 - lsb)
      return Error(Operands[5]->getStartLoc(),
                   "bitfield width must be in range [1,32-lsb]");
    return false;
  }
  case ARM::tLDMIA: {
    // If we're parsing Thumb2, the .w variant is available and handles
    // most cases that are normally illegal for a Thumb1 LDM
    // instruction. We'll make the transformation in processInstruction()
    // if necessary.
    //
    // Thumb LDM instructions are writeback iff the base register is not
    // in the register list.
    unsigned Rn = Inst.getOperand(0).getReg();
    bool hasWritebackToken =
      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
                   "registers must be in range r0-r7");
    // If we should have writeback, then there should be a '!' token.
    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "writeback operator '!' expected");
    // If we should not have writeback, there must not be a '!'. This is
    // true even for the 32-bit wide encodings.
    if (listContainsBase && hasWritebackToken)
      return Error(Operands[3]->getStartLoc(),
                   "writeback operator '!' not allowed when base register "
                   "in register list");

    break;
  }
  case ARM::t2LDMIA_UPD: {
    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
      return Error(Operands[4]->getStartLoc(),
                   "writeback operator '!' not allowed when base register "
                   "in register list");
    break;
  }
  case ARM::tMUL: {
    // The second source operand must be the same register as the destination
    // operand.
    //
    // In this case, we must directly check the parsed operands because the
    // cvtThumbMultiply() function is written in such a way that it guarantees
    // this first statement is always true for the new Inst.  Essentially, the
    // destination is unconditionally copied into the second source operand
    // without checking to see if it matches what we actually parsed.
    if (Operands.size() == 6 &&
        (((ARMOperand*)Operands[3])->getReg() !=
         ((ARMOperand*)Operands[5])->getReg()) &&
        (((ARMOperand*)Operands[3])->getReg() !=
         ((ARMOperand*)Operands[4])->getReg())) {
      return Error(Operands[3]->getStartLoc(),
                   "destination register must match source register");
    }
    break;
  }
  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
  // so only issue a diagnostic for thumb1. The instructions will be
  // switched to the t2 encodings in processInstruction() if necessary.
  case ARM::tPOP: {
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
        !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "registers must be in range r0-r7 or pc");
    break;
  }
  case ARM::tPUSH: {
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
        !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "registers must be in range r0-r7 or lr");
    break;
  }
  case ARM::tSTMIA_UPD: {
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
      return Error(Operands[4]->getStartLoc(),
                   "registers must be in range r0-r7");
    break;
  }
  case ARM::tADDrSP: {
    // If the non-SP source operand and the destination operand are not the
    // same, we need thumb2 (for the wide encoding), or we have an error.
    if (!isThumbTwo() &&
        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
      return Error(Operands[4]->getStartLoc(),
                   "source register must be the same as destination");
    }
    break;
  }
  }

  return false;
}

static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
  switch(Opc) {
  default: llvm_unreachable("unexpected opcode!");
  // VST1LN
  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;

  // VST2LN
  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;

  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;

  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;

  // VST3LN
  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;

  // VST3
  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;

  // VST4LN
  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;

  // VST4
  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
  }
}

static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
  switch(Opc) {
  default: llvm_unreachable("unexpected opcode!");
  // VLD1LN
  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;

  // VLD2LN
  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;

  // VLD3DUP
  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;

  // VLD3LN
  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;

  // VLD3
  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;

  // VLD4LN
  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;

  // VLD4DUP
  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;

  // VLD4
  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
  }
}

bool ARMAsmParser::
processInstruction(MCInst &Inst,
                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
  switch (Inst.getOpcode()) {
  // Aliases for alternate PC+imm syntax of LDR instructions.
  case ARM::t2LDRpcrel:
    Inst.setOpcode(ARM::t2LDRpci);
    return true;
  case ARM::t2LDRBpcrel:
    Inst.setOpcode(ARM::t2LDRBpci);
    return true;
  case ARM::t2LDRHpcrel:
    Inst.setOpcode(ARM::t2LDRHpci);
    return true;
  case ARM::t2LDRSBpcrel:
    Inst.setOpcode(ARM::t2LDRSBpci);
    return true;
  case ARM::t2LDRSHpcrel:
    Inst.setOpcode(ARM::t2LDRSHpci);
    return true;
  // Handle NEON VST complex aliases.
  case ARM::VST1LNdWB_register_Asm_8:
  case ARM::VST1LNdWB_register_Asm_16:
  case ARM::VST1LNdWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdWB_register_Asm_8:
  case ARM::VST2LNdWB_register_Asm_16:
  case ARM::VST2LNdWB_register_Asm_32:
  case ARM::VST2LNqWB_register_Asm_16:
  case ARM::VST2LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdWB_register_Asm_8:
  case ARM::VST3LNdWB_register_Asm_16:
  case ARM::VST3LNdWB_register_Asm_32:
  case ARM::VST3LNqWB_register_Asm_16:
  case ARM::VST3LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdWB_register_Asm_8:
  case ARM::VST4LNdWB_register_Asm_16:
  case ARM::VST4LNdWB_register_Asm_32:
  case ARM::VST4LNqWB_register_Asm_16:
  case ARM::VST4LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST1LNdWB_fixed_Asm_8:
  case ARM::VST1LNdWB_fixed_Asm_16:
  case ARM::VST1LNdWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdWB_fixed_Asm_8:
  case ARM::VST2LNdWB_fixed_Asm_16:
  case ARM::VST2LNdWB_fixed_Asm_32:
  case ARM::VST2LNqWB_fixed_Asm_16:
  case ARM::VST2LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdWB_fixed_Asm_8:
  case ARM::VST3LNdWB_fixed_Asm_16:
  case ARM::VST3LNdWB_fixed_Asm_32:
  case ARM::VST3LNqWB_fixed_Asm_16:
  case ARM::VST3LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdWB_fixed_Asm_8:
  case ARM::VST4LNdWB_fixed_Asm_16:
  case ARM::VST4LNdWB_fixed_Asm_32:
  case ARM::VST4LNqWB_fixed_Asm_16:
  case ARM::VST4LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST1LNdAsm_8:
  case ARM::VST1LNdAsm_16:
  case ARM::VST1LNdAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdAsm_8:
  case ARM::VST2LNdAsm_16:
  case ARM::VST2LNdAsm_32:
  case ARM::VST2LNqAsm_16:
  case ARM::VST2LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdAsm_8:
  case ARM::VST3LNdAsm_16:
  case ARM::VST3LNdAsm_32:
  case ARM::VST3LNqAsm_16:
  case ARM::VST3LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdAsm_8:
  case ARM::VST4LNdAsm_16:
  case ARM::VST4LNdAsm_32:
  case ARM::VST4LNqAsm_16:
  case ARM::VST4LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // Handle NEON VLD complex aliases.
  case ARM::VLD1LNdWB_register_Asm_8:
  case ARM::VLD1LNdWB_register_Asm_16:
  case ARM::VLD1LNdWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdWB_register_Asm_8:
  case ARM::VLD2LNdWB_register_Asm_16:
  case ARM::VLD2LNdWB_register_Asm_32:
  case ARM::VLD2LNqWB_register_Asm_16:
  case ARM::VLD2LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdWB_register_Asm_8:
  case ARM::VLD3LNdWB_register_Asm_16:
  case ARM::VLD3LNdWB_register_Asm_32:
  case ARM::VLD3LNqWB_register_Asm_16:
  case ARM::VLD3LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdWB_register_Asm_8:
  case ARM::VLD4LNdWB_register_Asm_16:
  case ARM::VLD4LNdWB_register_Asm_32:
  case ARM::VLD4LNqWB_register_Asm_16:
  case ARM::VLD4LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD1LNdWB_fixed_Asm_8:
  case ARM::VLD1LNdWB_fixed_Asm_16:
  case ARM::VLD1LNdWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdWB_fixed_Asm_8:
  case ARM::VLD2LNdWB_fixed_Asm_16:
  case ARM::VLD2LNdWB_fixed_Asm_32:
  case ARM::VLD2LNqWB_fixed_Asm_16:
  case ARM::VLD2LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdWB_fixed_Asm_8:
  case ARM::VLD3LNdWB_fixed_Asm_16:
  case ARM::VLD3LNdWB_fixed_Asm_32:
  case ARM::VLD3LNqWB_fixed_Asm_16:
  case ARM::VLD3LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdWB_fixed_Asm_8:
  case ARM::VLD4LNdWB_fixed_Asm_16:
  case ARM::VLD4LNdWB_fixed_Asm_32:
  case ARM::VLD4LNqWB_fixed_Asm_16:
  case ARM::VLD4LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD1LNdAsm_8:
  case ARM::VLD1LNdAsm_16:
  case ARM::VLD1LNdAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdAsm_8:
  case ARM::VLD2LNdAsm_16:
  case ARM::VLD2LNdAsm_32:
  case ARM::VLD2LNqAsm_16:
  case ARM::VLD2LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdAsm_8:
  case ARM::VLD3LNdAsm_16:
  case ARM::VLD3LNdAsm_32:
  case ARM::VLD3LNqAsm_16:
  case ARM::VLD3LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdAsm_8:
  case ARM::VLD4LNdAsm_16:
  case ARM::VLD4LNdAsm_32:
  case ARM::VLD4LNqAsm_16:
  case ARM::VLD4LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD3DUP single 3-element structure to all lanes instructions.
  case ARM::VLD3DUPdAsm_8:
  case ARM::VLD3DUPdAsm_16:
  case ARM::VLD3DUPdAsm_32:
  case ARM::VLD3DUPqAsm_8:
  case ARM::VLD3DUPqAsm_16:
  case ARM::VLD3DUPqAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3DUPdWB_fixed_Asm_8:
  case ARM::VLD3DUPdWB_fixed_Asm_16:
  case ARM::VLD3DUPdWB_fixed_Asm_32:
  case ARM::VLD3DUPqWB_fixed_Asm_8:
  case ARM::VLD3DUPqWB_fixed_Asm_16:
  case ARM::VLD3DUPqWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3DUPdWB_register_Asm_8:
  case ARM::VLD3DUPdWB_register_Asm_16:
  case ARM::VLD3DUPdWB_register_Asm_32:
  case ARM::VLD3DUPqWB_register_Asm_8:
  case ARM::VLD3DUPqWB_register_Asm_16:
  case ARM::VLD3DUPqWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD3 multiple 3-element structure instructions.
  case ARM::VLD3dAsm_8:
  case ARM::VLD3dAsm_16:
  case ARM::VLD3dAsm_32:
  case ARM::VLD3qAsm_8:
  case ARM::VLD3qAsm_16:
  case ARM::VLD3qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3dWB_fixed_Asm_8:
  case ARM::VLD3dWB_fixed_Asm_16:
  case ARM::VLD3dWB_fixed_Asm_32:
  case ARM::VLD3qWB_fixed_Asm_8:
  case ARM::VLD3qWB_fixed_Asm_16:
  case ARM::VLD3qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3dWB_register_Asm_8:
  case ARM::VLD3dWB_register_Asm_16:
  case ARM::VLD3dWB_register_Asm_32:
  case ARM::VLD3qWB_register_Asm_8:
  case ARM::VLD3qWB_register_Asm_16:
  case ARM::VLD3qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD4DUP single 3-element structure to all lanes instructions.
  case ARM::VLD4DUPdAsm_8:
  case ARM::VLD4DUPdAsm_16:
  case ARM::VLD4DUPdAsm_32:
  case ARM::VLD4DUPqAsm_8:
  case ARM::VLD4DUPqAsm_16:
  case ARM::VLD4DUPqAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4DUPdWB_fixed_Asm_8:
  case ARM::VLD4DUPdWB_fixed_Asm_16:
  case ARM::VLD4DUPdWB_fixed_Asm_32:
  case ARM::VLD4DUPqWB_fixed_Asm_8:
  case ARM::VLD4DUPqWB_fixed_Asm_16:
  case ARM::VLD4DUPqWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4DUPdWB_register_Asm_8:
  case ARM::VLD4DUPdWB_register_Asm_16:
  case ARM::VLD4DUPdWB_register_Asm_32:
  case ARM::VLD4DUPqWB_register_Asm_8:
  case ARM::VLD4DUPqWB_register_Asm_16:
  case ARM::VLD4DUPqWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD4 multiple 4-element structure instructions.
  case ARM::VLD4dAsm_8:
  case ARM::VLD4dAsm_16:
  case ARM::VLD4dAsm_32:
  case ARM::VLD4qAsm_8:
  case ARM::VLD4qAsm_16:
  case ARM::VLD4qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4dWB_fixed_Asm_8:
  case ARM::VLD4dWB_fixed_Asm_16:
  case ARM::VLD4dWB_fixed_Asm_32:
  case ARM::VLD4qWB_fixed_Asm_8:
  case ARM::VLD4qWB_fixed_Asm_16:
  case ARM::VLD4qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4dWB_register_Asm_8:
  case ARM::VLD4dWB_register_Asm_16:
  case ARM::VLD4dWB_register_Asm_32:
  case ARM::VLD4qWB_register_Asm_8:
  case ARM::VLD4qWB_register_Asm_16:
  case ARM::VLD4qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VST3 multiple 3-element structure instructions.
  case ARM::VST3dAsm_8:
  case ARM::VST3dAsm_16:
  case ARM::VST3dAsm_32:
  case ARM::VST3qAsm_8:
  case ARM::VST3qAsm_16:
  case ARM::VST3qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3dWB_fixed_Asm_8:
  case ARM::VST3dWB_fixed_Asm_16:
  case ARM::VST3dWB_fixed_Asm_32:
  case ARM::VST3qWB_fixed_Asm_8:
  case ARM::VST3qWB_fixed_Asm_16:
  case ARM::VST3qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3dWB_register_Asm_8:
  case ARM::VST3dWB_register_Asm_16:
  case ARM::VST3dWB_register_Asm_32:
  case ARM::VST3qWB_register_Asm_8:
  case ARM::VST3qWB_register_Asm_16:
  case ARM::VST3qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VST4 multiple 3-element structure instructions.
  case ARM::VST4dAsm_8:
  case ARM::VST4dAsm_16:
  case ARM::VST4dAsm_32:
  case ARM::VST4qAsm_8:
  case ARM::VST4qAsm_16:
  case ARM::VST4qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4dWB_fixed_Asm_8:
  case ARM::VST4dWB_fixed_Asm_16:
  case ARM::VST4dWB_fixed_Asm_32:
  case ARM::VST4qWB_fixed_Asm_8:
  case ARM::VST4qWB_fixed_Asm_16:
  case ARM::VST4qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4dWB_register_Asm_8:
  case ARM::VST4dWB_register_Asm_16:
  case ARM::VST4dWB_register_Asm_32:
  case ARM::VST4qWB_register_Asm_8:
  case ARM::VST4qWB_register_Asm_16:
  case ARM::VST4qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // Handle encoding choice for the shift-immediate instructions.
  case ARM::t2LSLri:
  case ARM::t2LSRri:
  case ARM::t2ASRri: {
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
      default: llvm_unreachable("unexpected opcode");
      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
      }
      // The Thumb1 operands aren't in the same order. Awesome, eh?
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;
  }

  // Handle the Thumb2 mode MOV complex aliases.
  case ARM::t2MOVsr:
  case ARM::t2MOVSsr: {
    // Which instruction to expand to depends on the CCOut operand and
    // whether we're in an IT block if the register operands are low
    // registers.
    bool isNarrow = false;
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        isARMLowRegister(Inst.getOperand(2).getReg()) &&
        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
      isNarrow = true;
    MCInst TmpInst;
    unsigned newOpc;
    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
    }
    TmpInst.setOpcode(newOpc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    if (isNarrow)
      TmpInst.addOperand(MCOperand::CreateReg(
          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    if (!isNarrow)
      TmpInst.addOperand(MCOperand::CreateReg(
          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2MOVsi:
  case ARM::t2MOVSsi: {
    // Which instruction to expand to depends on the CCOut operand and
    // whether we're in an IT block if the register operands are low
    // registers.
    bool isNarrow = false;
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
      isNarrow = true;
    MCInst TmpInst;
    unsigned newOpc;
    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
    }
    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
    if (Amount == 32) Amount = 0;
    TmpInst.setOpcode(newOpc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    if (isNarrow)
      TmpInst.addOperand(MCOperand::CreateReg(
          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    if (newOpc != ARM::t2RRX)
      TmpInst.addOperand(MCOperand::CreateImm(Amount));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    if (!isNarrow)
      TmpInst.addOperand(MCOperand::CreateReg(
          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
    Inst = TmpInst;
    return true;
  }
  // Handle the ARM mode MOV complex aliases.
  case ARM::ASRr:
  case ARM::LSRr:
  case ARM::LSLr:
  case ARM::RORr: {
    ARM_AM::ShiftOpc ShiftTy;
    switch(Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
    }
    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::MOVsr);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // Rm
    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::ASRi:
  case ARM::LSRi:
  case ARM::LSLi:
  case ARM::RORi: {
    ARM_AM::ShiftOpc ShiftTy;
    switch(Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
    }
    // A shift by zero is a plain MOVr, not a MOVsi.
    unsigned Amt = Inst.getOperand(2).getImm();
    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
    // A shift by 32 should be encoded as 0 when permitted
    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
      Amt = 0;
    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
    MCInst TmpInst;
    TmpInst.setOpcode(Opc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    if (Opc == ARM::MOVsi)
      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::RRXi: {
    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::MOVsi);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::t2LDMIA_UPD: {
    // If this is a load of a single register, then we should use
    // a post-indexed LDR instruction instead, per the ARM ARM.
    if (Inst.getNumOperands() != 5)
      return false;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::t2LDR_POST);
    TmpInst.addOperand(Inst.getOperand(4)); // Rt
    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::CreateImm(4));
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2STMDB_UPD: {
    // If this is a store of a single register, then we should use
    // a pre-indexed STR instruction instead, per the ARM ARM.
    if (Inst.getNumOperands() != 5)
      return false;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::t2STR_PRE);
    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(4)); // Rt
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::CreateImm(-4));
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  case ARM::LDMIA_UPD:
    // If this is a load of a single register via a 'pop', then we should use
    // a post-indexed LDR instruction instead, per the ARM ARM.
    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
        Inst.getNumOperands() == 5) {
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::LDR_POST_IMM);
      TmpInst.addOperand(Inst.getOperand(4)); // Rt
      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
      TmpInst.addOperand(Inst.getOperand(1)); // Rn
      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
      TmpInst.addOperand(MCOperand::CreateImm(4));
      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;
  case ARM::STMDB_UPD:
    // If this is a store of a single register via a 'push', then we should use
    // a pre-indexed STR instruction instead, per the ARM ARM.
    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
        Inst.getNumOperands() == 5) {
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::STR_PRE_IMM);
      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
      TmpInst.addOperand(Inst.getOperand(4)); // Rt
      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
      TmpInst.addOperand(MCOperand::CreateImm(-4));
      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
    }
    break;
  case ARM::t2ADDri12:
    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
    // mnemonic was used (not "addw"), encoding T3 is preferred.
    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
      break;
    Inst.setOpcode(ARM::t2ADDri);
    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
    break;
  case ARM::t2SUBri12:
    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
    // mnemonic was used (not "subw"), encoding T3 is preferred.
    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
      break;
    Inst.setOpcode(ARM::t2SUBri);
    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
    break;
  case ARM::tADDi8:
    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
    // to encoding T1 if <Rd> is omitted."
    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
      Inst.setOpcode(ARM::tADDi3);
      return true;
    }
    break;
  case ARM::tSUBi8:
    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
    // to encoding T1 if <Rd> is omitted."
    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
      Inst.setOpcode(ARM::tSUBi3);
      return true;
    }
    break;
  case ARM::t2ADDri:
  case ARM::t2SUBri: {
    // If the destination and first source operand are the same, and
    // the flags are compatible with the current IT status, use encoding T2
    // instead of T3. For compatibility with the system 'as'. Make sure the
    // wide encoding wasn't explicit.
    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
        (unsigned)Inst.getOperand(2).getImm() > 255 ||
        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
      break;
    MCInst TmpInst;
    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
                      ARM::tADDi8 : ARM::tSUBi8);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(5));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(2));
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2ADDrr: {
    // If the destination and first source operand are the same, and
    // there's no setting of the flags, use encoding T2 instead of T3.
    // Note that this is only for ADD, not SUB. This mirrors the system
    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
        Inst.getOperand(5).getReg() != 0 ||
        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
      break;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::tADDhirr);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(2));
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  case ARM::tADDrSP: {
    // If the non-SP source operand and the destination operand are not the
    // same, we need to use the 32-bit encoding if it's available.
    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
      Inst.setOpcode(ARM::t2ADDrr);
      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
      return true;
    }
    break;
  }
  case ARM::tB:
    // A Thumb conditional branch outside of an IT block is a tBcc.
    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
      Inst.setOpcode(ARM::tBcc);
      return true;
    }
    break;
  case ARM::t2B:
    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
      Inst.setOpcode(ARM::t2Bcc);
      return true;
    }
    break;
  case ARM::t2Bcc:
    // If the conditional is AL or we're in an IT block, we really want t2B.
    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
      Inst.setOpcode(ARM::t2B);
      return true;
    }
    break;
  case ARM::tBcc:
    // If the conditional is AL, we really want tB.
    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
      Inst.setOpcode(ARM::tB);
      return true;
    }
    break;
  case ARM::tLDMIA: {
    // If the register list contains any high registers, or if the writeback
    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
    // instead if we're in Thumb2. Otherwise, this should have generated
    // an error in validateInstruction().
    unsigned Rn = Inst.getOperand(0).getReg();
    bool hasWritebackToken =
      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
        (!listContainsBase && !hasWritebackToken) ||
        (listContainsBase && hasWritebackToken)) {
      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
      assert (isThumbTwo());
      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
      // If we're switching to the updating version, we need to insert
      // the writeback tied operand.
      if (hasWritebackToken)
        Inst.insert(Inst.begin(),
                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
      return true;
    }
    break;
  }
  case ARM::tSTMIA_UPD: {
    // If the register list contains any high registers, we need to use
    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
    // should have generated an error in validateInstruction().
    unsigned Rn = Inst.getOperand(0).getReg();
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
      assert (isThumbTwo());
      Inst.setOpcode(ARM::t2STMIA_UPD);
      return true;
    }
    break;
  }
  case ARM::tPOP: {
    bool listContainsBase;
    // If the register list contains any high registers, we need to use
    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
    // should have generated an error in validateInstruction().
    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
      return false;
    assert (isThumbTwo());
    Inst.setOpcode(ARM::t2LDMIA_UPD);
    // Add the base register and writeback operands.
    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
    return true;
  }
  case ARM::tPUSH: {
    bool listContainsBase;
    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
      return false;
    assert (isThumbTwo());
    Inst.setOpcode(ARM::t2STMDB_UPD);
    // Add the base register and writeback operands.
    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
    return true;
  }
  case ARM::t2MOVi: {
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
         Inst.getOperand(4).getReg() == ARM::CPSR) ||
        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
      // The operands aren't in the same order for tMOVi8...
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::tMOVi8);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;
  }
  case ARM::t2MOVr: {
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        Inst.getOperand(2).getImm() == ARMCC::AL &&
        Inst.getOperand(4).getReg() == ARM::CPSR &&
        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
      // The operands aren't the same for tMOV[S]r... (no cc_out)
      MCInst TmpInst;
      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;
  }
  case ARM::t2SXTH:
  case ARM::t2SXTB:
  case ARM::t2UXTH:
  case ARM::t2UXTB: {
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        Inst.getOperand(2).getImm() == 0 &&
        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
      default: llvm_unreachable("Illegal opcode!");
      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
      }
      // The operands aren't the same for thumb1 (no rotate operand).
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    break;
  }
  case ARM::MOVsi: {
    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
    // rrx shifts and asr/lsr of #32 is encoded as 0
    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 
      return false;
    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
      // Shifting by zero is accepted as a vanilla 'MOVr'
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::MOVr);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(5));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  case ARM::ANDrsi:
  case ARM::ORRrsi:
  case ARM::EORrsi:
  case ARM::BICrsi:
  case ARM::SUBrsi:
  case ARM::ADDrsi: {
    unsigned newOpc;
    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
    if (SOpc == ARM_AM::rrx) return false;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
    case ARM::EORrsi: newOpc = ARM::EORrr; break;
    case ARM::BICrsi: newOpc = ARM::BICrr; break;
    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
    }
    // If the shift is by zero, use the non-shifted instruction definition.
    // The exception is for right shifts, where 0 == 32
    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
      MCInst TmpInst;
      TmpInst.setOpcode(newOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(6));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  case ARM::ITasm:
  case ARM::t2IT: {
    // The mask bits for all but the first condition are represented as
    // the low bit of the condition code value implies 't'. We currently
    // always have 1 implies 't', so XOR toggle the bits if the low bit
    // of the condition code is zero. 
    MCOperand &MO = Inst.getOperand(1);
    unsigned Mask = MO.getImm();
    unsigned OrigMask = Mask;
    unsigned TZ = CountTrailingZeros_32(Mask);
    if ((Inst.getOperand(0).getImm() & 1) == 0) {
      assert(Mask && TZ <= 3 && "illegal IT mask value!");
      for (unsigned i = 3; i != TZ; --i)
        Mask ^= 1 << i;
    }
    MO.setImm(Mask);

    // Set up the IT block state according to the IT instruction we just
    // matched.
    assert(!inITBlock() && "nested IT blocks?!");
    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
    ITState.CurPosition = 0;
    ITState.FirstCond = true;
    break;
  }
  case ARM::t2LSLrr:
  case ARM::t2LSRrr:
  case ARM::t2ASRrr:
  case ARM::t2SBCrr:
  case ARM::t2RORrr:
  case ARM::t2BICrr:
  {
    // Assemblers should use the narrow encodings of these instructions when permissible.
    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
         isARMLowRegister(Inst.getOperand(2).getReg())) &&
        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 
        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
        default: llvm_unreachable("unexpected opcode");
        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
      }
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  case ARM::t2ANDrr:
  case ARM::t2EORrr:
  case ARM::t2ADCrr:
  case ARM::t2ORRrr:
  {
    // Assemblers should use the narrow encodings of these instructions when permissible.
    // These instructions are special in that they are commutable, so shorter encodings
    // are available more often.
    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
         isARMLowRegister(Inst.getOperand(2).getReg())) &&
        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 
        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
        default: llvm_unreachable("unexpected opcode");
        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
      }
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
        TmpInst.addOperand(Inst.getOperand(1));
        TmpInst.addOperand(Inst.getOperand(2));
      } else {
        TmpInst.addOperand(Inst.getOperand(2));
        TmpInst.addOperand(Inst.getOperand(1));
      }
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  }
  return false;
}

unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
  // suffix depending on whether they're in an IT block or not.
  unsigned Opc = Inst.getOpcode();
  const MCInstrDesc &MCID = getInstDesc(Opc);
  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
    assert(MCID.hasOptionalDef() &&
           "optionally flag setting instruction missing optional def operand");
    assert(MCID.NumOperands == Inst.getNumOperands() &&
           "operand count mismatch!");
    // Find the optional-def operand (cc_out).
    unsigned OpNo;
    for (OpNo = 0;
         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
         ++OpNo)
      ;
    // If we're parsing Thumb1, reject it completely.
    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
      return Match_MnemonicFail;
    // If we're parsing Thumb2, which form is legal depends on whether we're
    // in an IT block.
    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
        !inITBlock())
      return Match_RequiresITBlock;
    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
        inITBlock())
      return Match_RequiresNotITBlock;
  }
  // Some high-register supporting Thumb1 encodings only allow both registers
  // to be from r0-r7 when in Thumb2.
  else if (Opc == ARM::tADDhirr && isThumbOne() &&
           isARMLowRegister(Inst.getOperand(1).getReg()) &&
           isARMLowRegister(Inst.getOperand(2).getReg()))
    return Match_RequiresThumb2;
  // Others only require ARMv6 or later.
  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
           isARMLowRegister(Inst.getOperand(0).getReg()) &&
           isARMLowRegister(Inst.getOperand(1).getReg()))
    return Match_RequiresV6;
  return Match_Success;
}

static const char *getSubtargetFeatureName(unsigned Val);
bool ARMAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
                        MCStreamer &Out) {
  MCInst Inst;
  unsigned Kind;
  unsigned ErrorInfo;
  unsigned MatchResult;

  MatchResult = MatchInstructionImpl(Operands, Kind, Inst, ErrorInfo);
  switch (MatchResult) {
  default: break;
  case Match_Success:
    // Context sensitive operand constraints aren't handled by the matcher,
    // so check them here.
    if (validateInstruction(Inst, Operands)) {
      // Still progress the IT block, otherwise one wrong condition causes
      // nasty cascading errors.
      forwardITPosition();
      return true;
    }

    // Some instructions need post-processing to, for example, tweak which
    // encoding is selected. Loop on it while changes happen so the
    // individual transformations can chain off each other. E.g.,
    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
    while (processInstruction(Inst, Operands))
      ;

    // Only move forward at the very end so that everything in validate
    // and process gets a consistent answer about whether we're in an IT
    // block.
    forwardITPosition();

    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
    // doesn't actually encode.
    if (Inst.getOpcode() == ARM::ITasm)
      return false;

    Inst.setLoc(IDLoc);
    Out.EmitInstruction(Inst);
    return false;
  case Match_MissingFeature: {
    assert(ErrorInfo && "Unknown missing feature!");
    // Special case the error message for the very common case where only
    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
    std::string Msg = "instruction requires:";
    unsigned Mask = 1;
    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
      if (ErrorInfo & Mask) {
        Msg += " ";
        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
      }
      Mask <<= 1;
    }
    return Error(IDLoc, Msg);
  }
  case Match_InvalidOperand: {
    SMLoc ErrorLoc = IDLoc;
    if (ErrorInfo != ~0U) {
      if (ErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction");

      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
    }

    return Error(ErrorLoc, "invalid operand for instruction");
  }
  case Match_MnemonicFail:
    return Error(IDLoc, "invalid instruction",
                 ((ARMOperand*)Operands[0])->getLocRange());
  case Match_RequiresNotITBlock:
    return Error(IDLoc, "flag setting instruction only valid outside IT block");
  case Match_RequiresITBlock:
    return Error(IDLoc, "instruction only valid inside IT block");
  case Match_RequiresV6:
    return Error(IDLoc, "instruction variant requires ARMv6 or later");
  case Match_RequiresThumb2:
    return Error(IDLoc, "instruction variant requires Thumb2");
  case Match_ImmRange0_15: {
    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
  }
  }

  llvm_unreachable("Implement any new match types added!");
}

/// parseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
  StringRef IDVal = DirectiveID.getIdentifier();
  if (IDVal == ".word")
    return parseDirectiveWord(4, DirectiveID.getLoc());
  else if (IDVal == ".thumb")
    return parseDirectiveThumb(DirectiveID.getLoc());
  else if (IDVal == ".arm")
    return parseDirectiveARM(DirectiveID.getLoc());
  else if (IDVal == ".thumb_func")
    return parseDirectiveThumbFunc(DirectiveID.getLoc());
  else if (IDVal == ".code")
    return parseDirectiveCode(DirectiveID.getLoc());
  else if (IDVal == ".syntax")
    return parseDirectiveSyntax(DirectiveID.getLoc());
  else if (IDVal == ".unreq")
    return parseDirectiveUnreq(DirectiveID.getLoc());
  else if (IDVal == ".arch")
    return parseDirectiveArch(DirectiveID.getLoc());
  else if (IDVal == ".eabi_attribute")
    return parseDirectiveEabiAttr(DirectiveID.getLoc());
  return true;
}

/// parseDirectiveWord
///  ::= .word [ expression (, expression)* ]
bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    for (;;) {
      const MCExpr *Value;
      if (getParser().ParseExpression(Value))
        return true;

      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);

      if (getLexer().is(AsmToken::EndOfStatement))
        break;

      // FIXME: Improve diagnostic.
      if (getLexer().isNot(AsmToken::Comma))
        return Error(L, "unexpected token in directive");
      Parser.Lex();
    }
  }

  Parser.Lex();
  return false;
}

/// parseDirectiveThumb
///  ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
  if (getLexer().isNot(AsmToken::EndOfStatement))
    return Error(L, "unexpected token in directive");
  Parser.Lex();

  if (!isThumb())
    SwitchMode();
  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
  return false;
}

/// parseDirectiveARM
///  ::= .arm
bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
  if (getLexer().isNot(AsmToken::EndOfStatement))
    return Error(L, "unexpected token in directive");
  Parser.Lex();

  if (isThumb())
    SwitchMode();
  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
  return false;
}

/// parseDirectiveThumbFunc
///  ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
  const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
  bool isMachO = MAI.hasSubsectionsViaSymbols();
  StringRef Name;
  bool needFuncName = true;

  // Darwin asm has (optionally) function name after .thumb_func direction
  // ELF doesn't
  if (isMachO) {
    const AsmToken &Tok = Parser.getTok();
    if (Tok.isNot(AsmToken::EndOfStatement)) {
      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
        return Error(L, "unexpected token in .thumb_func directive");
      Name = Tok.getIdentifier();
      Parser.Lex(); // Consume the identifier token.
      needFuncName = false;
    }
  }

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return Error(L, "unexpected token in directive");

  // Eat the end of statement and any blank lines that follow.
  while (getLexer().is(AsmToken::EndOfStatement))
    Parser.Lex();

  // FIXME: assuming function name will be the line following .thumb_func
  // We really should be checking the next symbol definition even if there's
  // stuff in between.
  if (needFuncName) {
    Name = Parser.getTok().getIdentifier();
  }

  // Mark symbol as a thumb symbol.
  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
  getParser().getStreamer().EmitThumbFunc(Func);
  return false;
}

/// parseDirectiveSyntax
///  ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return Error(L, "unexpected token in .syntax directive");
  StringRef Mode = Tok.getString();
  if (Mode == "unified" || Mode == "UNIFIED")
    Parser.Lex();
  else if (Mode == "divided" || Mode == "DIVIDED")
    return Error(L, "'.syntax divided' arm asssembly not supported");
  else
    return Error(L, "unrecognized syntax mode in .syntax directive");

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
  Parser.Lex();

  // TODO tell the MC streamer the mode
  // getParser().getStreamer().Emit???();
  return false;
}

/// parseDirectiveCode
///  ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Integer))
    return Error(L, "unexpected token in .code directive");
  int64_t Val = Parser.getTok().getIntVal();
  if (Val == 16)
    Parser.Lex();
  else if (Val == 32)
    Parser.Lex();
  else
    return Error(L, "invalid operand to .code directive");

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
  Parser.Lex();

  if (Val == 16) {
    if (!isThumb())
      SwitchMode();
    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
  } else {
    if (isThumb())
      SwitchMode();
    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
  }

  return false;
}

/// parseDirectiveReq
///  ::= name .req registername
bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
  Parser.Lex(); // Eat the '.req' token.
  unsigned Reg;
  SMLoc SRegLoc, ERegLoc;
  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
    Parser.EatToEndOfStatement();
    return Error(SRegLoc, "register name expected");
  }

  // Shouldn't be anything else.
  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
    Parser.EatToEndOfStatement();
    return Error(Parser.getTok().getLoc(),
                 "unexpected input in .req directive.");
  }

  Parser.Lex(); // Consume the EndOfStatement

  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
    return Error(SRegLoc, "redefinition of '" + Name +
                          "' does not match original.");

  return false;
}

/// parseDirectiveUneq
///  ::= .unreq registername
bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
  if (Parser.getTok().isNot(AsmToken::Identifier)) {
    Parser.EatToEndOfStatement();
    return Error(L, "unexpected input in .unreq directive.");
  }
  RegisterReqs.erase(Parser.getTok().getIdentifier());
  Parser.Lex(); // Eat the identifier.
  return false;
}

/// parseDirectiveArch
///  ::= .arch token
bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
  return true;
}

/// parseDirectiveEabiAttr
///  ::= .eabi_attribute int, int
bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
  return true;
}

extern "C" void LLVMInitializeARMAsmLexer();

/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
  LLVMInitializeARMAsmLexer();
}

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"