//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include <cmath>
#include <cstring>
using namespace llvm;
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals , "Number of global vars initialized");
ExecutionEngine *(*ExecutionEngine::JITCtor)(
Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
bool GVsWithCode,
TargetMachine *TM) = 0;
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
bool GVsWithCode,
TargetMachine *TM) = 0;
ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
std::string *ErrorStr) = 0;
ExecutionEngine::ExecutionEngine(Module *M)
: EEState(*this),
LazyFunctionCreator(0),
ExceptionTableRegister(0),
ExceptionTableDeregister(0) {
CompilingLazily = false;
GVCompilationDisabled = false;
SymbolSearchingDisabled = false;
Modules.push_back(M);
assert(M && "Module is null?");
}
ExecutionEngine::~ExecutionEngine() {
clearAllGlobalMappings();
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
delete Modules[i];
}
void ExecutionEngine::DeregisterAllTables() {
if (ExceptionTableDeregister) {
DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
for (; it != ite; ++it)
ExceptionTableDeregister(it->second);
AllExceptionTables.clear();
}
}
namespace {
/// \brief Helper class which uses a value handler to automatically deletes the
/// memory block when the GlobalVariable is destroyed.
class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable *GV)
: CallbackVH(const_cast<GlobalVariable*>(GV)) {}
public:
/// \brief Returns the address the GlobalVariable should be written into. The
/// GVMemoryBlock object prefixes that.
static char *Create(const GlobalVariable *GV, const TargetData& TD) {
Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
void *RawMemory = ::operator new(
TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
TD.getPreferredAlignment(GV))
+ GVSize);
new(RawMemory) GVMemoryBlock(GV);
return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
}
virtual void deleted() {
// We allocated with operator new and with some extra memory hanging off the
// end, so don't just delete this. I'm not sure if this is actually
// required.
this->~GVMemoryBlock();
::operator delete(this);
}
};
} // anonymous namespace
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
return GVMemoryBlock::Create(GV, *getTargetData());
}
bool ExecutionEngine::removeModule(Module *M) {
for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
Module *Found = *I;
if (Found == M) {
Modules.erase(I);
clearGlobalMappingsFromModule(M);
return true;
}
}
return false;
}
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Function *F = Modules[i]->getFunction(FnName))
return F;
}
return 0;
}
void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
const GlobalValue *ToUnmap) {
GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
void *OldVal;
// FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
// GlobalAddressMap.
if (I == GlobalAddressMap.end())
OldVal = 0;
else {
OldVal = I->second;
GlobalAddressMap.erase(I);
}
GlobalAddressReverseMap.erase(OldVal);
return OldVal;
}
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
<< "\' to [" << Addr << "]\n";);
void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
CurVal = Addr;
// If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
}
void ExecutionEngine::clearAllGlobalMappings() {
MutexGuard locked(lock);
EEState.getGlobalAddressMap(locked).clear();
EEState.getGlobalAddressReverseMap(locked).clear();
}
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
MutexGuard locked(lock);
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
EEState.RemoveMapping(locked, FI);
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI)
EEState.RemoveMapping(locked, GI);
}
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
ExecutionEngineState::GlobalAddressMapTy &Map =
EEState.getGlobalAddressMap(locked);
// Deleting from the mapping?
if (Addr == 0)
return EEState.RemoveMapping(locked, GV);
void *&CurVal = Map[GV];
void *OldVal = CurVal;
if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
CurVal = Addr;
// If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
return OldVal;
}
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
MutexGuard locked(lock);
ExecutionEngineState::GlobalAddressMapTy::iterator I =
EEState.getGlobalAddressMap(locked).find(GV);
return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
}
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
MutexGuard locked(lock);
// If we haven't computed the reverse mapping yet, do so first.
if (EEState.getGlobalAddressReverseMap(locked).empty()) {
for (ExecutionEngineState::GlobalAddressMapTy::iterator
I = EEState.getGlobalAddressMap(locked).begin(),
E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
I->second, I->first));
}
std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
EEState.getGlobalAddressReverseMap(locked).find(Addr);
return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
}
namespace {
class ArgvArray {
char *Array;
std::vector<char*> Values;
public:
ArgvArray() : Array(NULL) {}
~ArgvArray() { clear(); }
void clear() {
delete[] Array;
Array = NULL;
for (size_t I = 0, E = Values.size(); I != E; ++I) {
delete[] Values[I];
}
Values.clear();
}
/// Turn a vector of strings into a nice argv style array of pointers to null
/// terminated strings.
void *reset(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv);
};
} // anonymous namespace
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
clear(); // Free the old contents.
unsigned PtrSize = EE->getTargetData()->getPointerSize();
Array = new char[(InputArgv.size()+1)*PtrSize];
DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
Type *SBytePtr = Type::getInt8PtrTy(C);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
Values.push_back(Dest);
DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Array[i] = (PointerTy)Dest;
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
SBytePtr);
}
// Null terminate it
EE->StoreValueToMemory(PTOGV(0),
(GenericValue*)(Array+InputArgv.size()*PtrSize),
SBytePtr);
return Array;
}
void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
GlobalVariable *GV = module->getNamedGlobal(Name);
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
// this is the case, don't execute any of the global ctors, __main will do
// it.
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
// Should be an array of '{ i32, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (InitList == 0)
return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
if (CS == 0) continue;
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
continue; // Found a sentinal value, ignore.
// Strip off constant expression casts.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
// Execute the ctor/dtor function!
if (Function *F = dyn_cast<Function>(FP))
runFunction(F, std::vector<GenericValue>());
// FIXME: It is marginally lame that we just do nothing here if we see an
// entry we don't recognize. It might not be unreasonable for the verifier
// to not even allow this and just assert here.
}
}
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
runStaticConstructorsDestructors(Modules[i], isDtors);
}
#ifndef NDEBUG
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
unsigned PtrSize = EE->getTargetData()->getPointerSize();
for (unsigned i = 0; i < PtrSize; ++i)
if (*(i + (uint8_t*)Loc))
return false;
return true;
}
#endif
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
std::vector<GenericValue> GVArgs;
GenericValue GVArgc;
GVArgc.IntVal = APInt(32, argv.size());
// Check main() type
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
FunctionType *FTy = Fn->getFunctionType();
Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
// Check the argument types.
if (NumArgs > 3)
report_fatal_error("Invalid number of arguments of main() supplied");
if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
report_fatal_error("Invalid type for third argument of main() supplied");
if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
report_fatal_error("Invalid type for second argument of main() supplied");
if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
report_fatal_error("Invalid type for first argument of main() supplied");
if (!FTy->getReturnType()->isIntegerTy() &&
!FTy->getReturnType()->isVoidTy())
report_fatal_error("Invalid return type of main() supplied");
ArgvArray CArgv;
ArgvArray CEnv;
if (NumArgs) {
GVArgs.push_back(GVArgc); // Arg #0 = argc.
if (NumArgs > 1) {
// Arg #1 = argv.
GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
"argv[0] was null after CreateArgv");
if (NumArgs > 2) {
std::vector<std::string> EnvVars;
for (unsigned i = 0; envp[i]; ++i)
EnvVars.push_back(envp[i]);
// Arg #2 = envp.
GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
}
}
}
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}
ExecutionEngine *ExecutionEngine::create(Module *M,
bool ForceInterpreter,
std::string *ErrorStr,
CodeGenOpt::Level OptLevel,
bool GVsWithCode) {
EngineBuilder EB = EngineBuilder(M)
.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT)
.setErrorStr(ErrorStr)
.setOptLevel(OptLevel)
.setAllocateGVsWithCode(GVsWithCode);
return EB.create();
}
/// createJIT - This is the factory method for creating a JIT for the current
/// machine, it does not fall back to the interpreter. This takes ownership
/// of the module.
ExecutionEngine *ExecutionEngine::createJIT(Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
CodeGenOpt::Level OL,
bool GVsWithCode,
Reloc::Model RM,
CodeModel::Model CMM) {
if (ExecutionEngine::JITCtor == 0) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
return 0;
}
// Use the defaults for extra parameters. Users can use EngineBuilder to
// set them.
EngineBuilder EB(M);
EB.setEngineKind(EngineKind::JIT);
EB.setErrorStr(ErrorStr);
EB.setRelocationModel(RM);
EB.setCodeModel(CMM);
EB.setAllocateGVsWithCode(GVsWithCode);
EB.setOptLevel(OL);
EB.setJITMemoryManager(JMM);
// TODO: permit custom TargetOptions here
TargetMachine *TM = EB.selectTarget();
if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
}
ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
return 0;
// If the user specified a memory manager but didn't specify which engine to
// create, we assume they only want the JIT, and we fail if they only want
// the interpreter.
if (JMM) {
if (WhichEngine & EngineKind::JIT)
WhichEngine = EngineKind::JIT;
else {
if (ErrorStr)
*ErrorStr = "Cannot create an interpreter with a memory manager.";
return 0;
}
}
// Unless the interpreter was explicitly selected or the JIT is not linked,
// try making a JIT.
if ((WhichEngine & EngineKind::JIT) && TheTM) {
Triple TT(M->getTargetTriple());
if (!TM->getTarget().hasJIT()) {
errs() << "WARNING: This target JIT is not designed for the host"
<< " you are running. If bad things happen, please choose"
<< " a different -march switch.\n";
}
if (UseMCJIT && ExecutionEngine::MCJITCtor) {
ExecutionEngine *EE =
ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
AllocateGVsWithCode, TheTM.take());
if (EE) return EE;
} else if (ExecutionEngine::JITCtor) {
ExecutionEngine *EE =
ExecutionEngine::JITCtor(M, ErrorStr, JMM,
AllocateGVsWithCode, TheTM.take());
if (EE) return EE;
}
}
// If we can't make a JIT and we didn't request one specifically, try making
// an interpreter instead.
if (WhichEngine & EngineKind::Interpreter) {
if (ExecutionEngine::InterpCtor)
return ExecutionEngine::InterpCtor(M, ErrorStr);
if (ErrorStr)
*ErrorStr = "Interpreter has not been linked in.";
return 0;
}
if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
ExecutionEngine::MCJITCtor == 0) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
}
return 0;
}
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
MutexGuard locked(lock);
if (void *P = EEState.getGlobalAddressMap(locked)[GV])
return P;
// Global variable might have been added since interpreter started.
if (GlobalVariable *GVar =
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
EmitGlobalVariable(GVar);
else
llvm_unreachable("Global hasn't had an address allocated yet!");
return EEState.getGlobalAddressMap(locked)[GV];
}
/// \brief Converts a Constant* into a GenericValue, including handling of
/// ConstantExpr values.
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// If its undefined, return the garbage.
if (isa<UndefValue>(C)) {
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::IntegerTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
// Although the value is undefined, we still have to construct an APInt
// with the correct bit width.
Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
break;
default:
break;
}
return Result;
}
// Otherwise, if the value is a ConstantExpr...
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *Op0 = CE->getOperand(0);
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
// Compute the index
GenericValue Result = getConstantValue(Op0);
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
char* tmp = (char*) Result.PointerVal;
Result = PTOGV(tmp + Offset);
return Result;
}
case Instruction::Trunc: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.trunc(BitWidth);
return GV;
}
case Instruction::ZExt: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.zext(BitWidth);
return GV;
}
case Instruction::SExt: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.sext(BitWidth);
return GV;
}
case Instruction::FPTrunc: {
// FIXME long double
GenericValue GV = getConstantValue(Op0);
GV.FloatVal = float(GV.DoubleVal);
return GV;
}
case Instruction::FPExt:{
// FIXME long double
GenericValue GV = getConstantValue(Op0);
GV.DoubleVal = double(GV.FloatVal);
return GV;
}
case Instruction::UIToFP: {
GenericValue GV = getConstantValue(Op0);
if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.roundToDouble());
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.roundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
(void)apf.convertFromAPInt(GV.IntVal,
false,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
}
return GV;
}
case Instruction::SIToFP: {
GenericValue GV = getConstantValue(Op0);
if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
(void)apf.convertFromAPInt(GV.IntVal,
true,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
}
return GV;
}
case Instruction::FPToUI: // double->APInt conversion handles sign
case Instruction::FPToSI: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
if (Op0->getType()->isFloatTy())
GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
else if (Op0->getType()->isDoubleTy())
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
else if (Op0->getType()->isX86_FP80Ty()) {
APFloat apf = APFloat(GV.IntVal);
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
CE->getOpcode()==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
GV.IntVal = v; // endian?
}
return GV;
}
case Instruction::PtrToInt: {
GenericValue GV = getConstantValue(Op0);
uint32_t PtrWidth = TD->getPointerSizeInBits();
GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
return GV;
}
case Instruction::IntToPtr: {
GenericValue GV = getConstantValue(Op0);
uint32_t PtrWidth = TD->getPointerSizeInBits();
if (PtrWidth != GV.IntVal.getBitWidth())
GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
return GV;
}
case Instruction::BitCast: {
GenericValue GV = getConstantValue(Op0);
Type* DestTy = CE->getType();
switch (Op0->getType()->getTypeID()) {
default: llvm_unreachable("Invalid bitcast operand");
case Type::IntegerTyID:
assert(DestTy->isFloatingPointTy() && "invalid bitcast");
if (DestTy->isFloatTy())
GV.FloatVal = GV.IntVal.bitsToFloat();
else if (DestTy->isDoubleTy())
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
case Type::FloatTyID:
assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
GV.IntVal = APInt::floatToBits(GV.FloatVal);
break;
case Type::DoubleTyID:
assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
break;
case Type::PointerTyID:
assert(DestTy->isPointerTy() && "Invalid bitcast");
break; // getConstantValue(Op0) above already converted it
}
return GV;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
GenericValue LHS = getConstantValue(Op0);
GenericValue RHS = getConstantValue(CE->getOperand(1));
GenericValue GV;
switch (CE->getOperand(0)->getType()->getTypeID()) {
default: llvm_unreachable("Bad add type!");
case Type::IntegerTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid integer opcode");
case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
}
break;
case Type::FloatTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid float opcode");
case Instruction::FAdd:
GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
case Instruction::FSub:
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
case Instruction::FMul:
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
case Instruction::FDiv:
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
case Instruction::FRem:
GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
}
break;
case Type::DoubleTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid double opcode");
case Instruction::FAdd:
GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
case Instruction::FSub:
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
case Instruction::FMul:
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
case Instruction::FDiv:
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
case Instruction::FRem:
GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
}
break;
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
APFloat apfLHS = APFloat(LHS.IntVal);
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid long double opcode");
case Instruction::FAdd:
apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FSub:
apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FMul:
apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FDiv:
apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FRem:
apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
}
}
break;
}
return GV;
}
default:
break;
}
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "ConstantExpr not handled: " << *CE;
report_fatal_error(OS.str());
}
// Otherwise, we have a simple constant.
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::FloatTyID:
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
break;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
break;
case Type::IntegerTyID:
Result.IntVal = cast<ConstantInt>(C)->getValue();
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C))
Result.PointerVal = 0;
else if (const Function *F = dyn_cast<Function>(C))
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
BA->getBasicBlock())));
else
llvm_unreachable("Unknown constant pointer type!");
break;
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "ERROR: Constant unimplemented for type: " << *C->getType();
report_fatal_error(OS.str());
}
return Result;
}
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
/// with the integer held in IntVal.
static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
unsigned StoreBytes) {
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
if (sys::isLittleEndianHost()) {
// Little-endian host - the source is ordered from LSB to MSB. Order the
// destination from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, StoreBytes);
} else {
// Big-endian host - the source is an array of 64 bit words ordered from
// LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
// from MSB to LSB: Reverse the word order, but not the bytes in a word.
while (StoreBytes > sizeof(uint64_t)) {
StoreBytes -= sizeof(uint64_t);
// May not be aligned so use memcpy.
memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
Src += sizeof(uint64_t);
}
memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
}
}
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
GenericValue *Ptr, Type *Ty) {
const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
break;
case Type::FloatTyID:
*((float*)Ptr) = Val.FloatVal;
break;
case Type::DoubleTyID:
*((double*)Ptr) = Val.DoubleVal;
break;
case Type::X86_FP80TyID:
memcpy(Ptr, Val.IntVal.getRawData(), 10);
break;
case Type::PointerTyID:
// Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
if (StoreBytes != sizeof(PointerTy))
memset(&(Ptr->PointerVal), 0, StoreBytes);
*((PointerTy*)Ptr) = Val.PointerVal;
break;
default:
dbgs() << "Cannot store value of type " << *Ty << "!\n";
}
if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
// Host and target are different endian - reverse the stored bytes.
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
}
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
uint8_t *Dst = (uint8_t *)IntVal.getRawData();
if (sys::isLittleEndianHost())
// Little-endian host - the destination must be ordered from LSB to MSB.
// The source is ordered from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, LoadBytes);
else {
// Big-endian - the destination is an array of 64 bit words ordered from
// LSW to MSW. Each word must be ordered from MSB to LSB. The source is
// ordered from MSB to LSB: Reverse the word order, but not the bytes in
// a word.
while (LoadBytes > sizeof(uint64_t)) {
LoadBytes -= sizeof(uint64_t);
// May not be aligned so use memcpy.
memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
Dst += sizeof(uint64_t);
}
memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
}
}
/// FIXME: document
///
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
GenericValue *Ptr,
Type *Ty) {
const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
// An APInt with all words initially zero.
Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
break;
case Type::FloatTyID:
Result.FloatVal = *((float*)Ptr);
break;
case Type::DoubleTyID:
Result.DoubleVal = *((double*)Ptr);
break;
case Type::PointerTyID:
Result.PointerVal = *((PointerTy*)Ptr);
break;
case Type::X86_FP80TyID: {
// This is endian dependent, but it will only work on x86 anyway.
// FIXME: Will not trap if loading a signaling NaN.
uint64_t y[2];
memcpy(y, Ptr, 10);
Result.IntVal = APInt(80, y);
break;
}
default:
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "Cannot load value of type " << *Ty << "!";
report_fatal_error(OS.str());
}
}
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
if (isa<UndefValue>(Init))
return;
if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
unsigned ElementSize =
getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
return;
}
if (isa<ConstantAggregateZero>(Init)) {
memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
return;
}
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
unsigned ElementSize =
getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
return;
}
if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
const StructLayout *SL =
getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
return;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(Init)) {
// CDS is already laid out in host memory order.
StringRef Data = CDS->getRawDataValues();
memcpy(Addr, Data.data(), Data.size());
return;
}
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
llvm_unreachable("Unknown constant type to initialize memory with!");
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
void ExecutionEngine::emitGlobals() {
// Loop over all of the global variables in the program, allocating the memory
// to hold them. If there is more than one module, do a prepass over globals
// to figure out how the different modules should link together.
std::map<std::pair<std::string, Type*>,
const GlobalValue*> LinkedGlobalsMap;
if (Modules.size() != 1) {
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m];
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
const GlobalValue *GV = I;
if (GV->hasLocalLinkage() || GV->isDeclaration() ||
GV->hasAppendingLinkage() || !GV->hasName())
continue;// Ignore external globals and globals with internal linkage.
const GlobalValue *&GVEntry =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
// If this is the first time we've seen this global, it is the canonical
// version.
if (!GVEntry) {
GVEntry = GV;
continue;
}
// If the existing global is strong, never replace it.
if (GVEntry->hasExternalLinkage() ||
GVEntry->hasDLLImportLinkage() ||
GVEntry->hasDLLExportLinkage())
continue;
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
// symbol. FIXME is this right for common?
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
GVEntry = GV;
}
}
}
std::vector<const GlobalValue*> NonCanonicalGlobals;
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m];
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
// In the multi-module case, see what this global maps to.
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
// If something else is the canonical global, ignore this one.
if (GVEntry != &*I) {
NonCanonicalGlobals.push_back(I);
continue;
}
}
}
if (!I->isDeclaration()) {
addGlobalMapping(I, getMemoryForGV(I));
} else {
// External variable reference. Try to use the dynamic loader to
// get a pointer to it.
if (void *SymAddr =
sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
addGlobalMapping(I, SymAddr);
else {
report_fatal_error("Could not resolve external global address: "
+I->getName());
}
}
}
// If there are multiple modules, map the non-canonical globals to their
// canonical location.
if (!NonCanonicalGlobals.empty()) {
for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
const GlobalValue *GV = NonCanonicalGlobals[i];
const GlobalValue *CGV =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
void *Ptr = getPointerToGlobalIfAvailable(CGV);
assert(Ptr && "Canonical global wasn't codegen'd!");
addGlobalMapping(GV, Ptr);
}
}
// Now that all of the globals are set up in memory, loop through them all
// and initialize their contents.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->isDeclaration()) {
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
if (GVEntry != &*I) // Not the canonical variable.
continue;
}
EmitGlobalVariable(I);
}
}
}
}
// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
void *GA = getPointerToGlobalIfAvailable(GV);
if (GA == 0) {
// If it's not already specified, allocate memory for the global.
GA = getMemoryForGV(GV);
addGlobalMapping(GV, GA);
}
// Don't initialize if it's thread local, let the client do it.
if (!GV->isThreadLocal())
InitializeMemory(GV->getInitializer(), GA);
Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
++NumGlobals;
}
ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
: EE(EE), GlobalAddressMap(this) {
}
sys::Mutex *
ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
return &EES->EE.lock;
}
void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
const GlobalValue *Old) {
void *OldVal = EES->GlobalAddressMap.lookup(Old);
EES->GlobalAddressReverseMap.erase(OldVal);
}
void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
const GlobalValue *,
const GlobalValue *) {
llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
" RAUW on a value it has a global mapping for.");
}