// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PASTIXSUPPORT_H
#define EIGEN_PASTIXSUPPORT_H
namespace Eigen {
/** \ingroup PaStiXSupport_Module
* \brief Interface to the PaStix solver
*
* This class is used to solve the linear systems A.X = B via the PaStix library.
* The matrix can be either real or complex, symmetric or not.
*
* \sa TutorialSparseDirectSolvers
*/
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
template<typename _MatrixType, int Options> class PastixLLT;
template<typename _MatrixType, int Options> class PastixLDLT;
namespace internal
{
template<class Pastix> struct pastix_traits;
template<typename _MatrixType>
struct pastix_traits< PastixLU<_MatrixType> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::Index Index;
};
template<typename _MatrixType, int Options>
struct pastix_traits< PastixLLT<_MatrixType,Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::Index Index;
};
template<typename _MatrixType, int Options>
struct pastix_traits< PastixLDLT<_MatrixType,Options> >
{
typedef _MatrixType MatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef typename _MatrixType::Index Index;
};
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) {x = NULL; nbrhs=1;}
s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) {x = NULL; nbrhs=1;}
d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) {x = NULL; nbrhs=1;}
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) {x = NULL; nbrhs=1;}
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
}
// Convert the matrix to Fortran-style Numbering
template <typename MatrixType>
void c_to_fortran_numbering (MatrixType& mat)
{
if ( !(mat.outerIndexPtr()[0]) )
{
int i;
for(i = 0; i <= mat.rows(); ++i)
++mat.outerIndexPtr()[i];
for(i = 0; i < mat.nonZeros(); ++i)
++mat.innerIndexPtr()[i];
}
}
// Convert to C-style Numbering
template <typename MatrixType>
void fortran_to_c_numbering (MatrixType& mat)
{
// Check the Numbering
if ( mat.outerIndexPtr()[0] == 1 )
{ // Convert to C-style numbering
int i;
for(i = 0; i <= mat.rows(); ++i)
--mat.outerIndexPtr()[i];
for(i = 0; i < mat.nonZeros(); ++i)
--mat.innerIndexPtr()[i];
}
}
}
// This is the base class to interface with PaStiX functions.
// Users should not used this class directly.
template <class Derived>
class PastixBase : internal::noncopyable
{
public:
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
public:
PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
{
init();
}
~PastixBase()
{
clean();
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<PastixBase, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "Pastix solver is not initialized.");
eigen_assert(rows()==b.rows()
&& "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<PastixBase, Rhs>(*this, b.derived());
}
template<typename Rhs,typename Dest>
bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(rows()==b.rows());
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
static const int NbColsAtOnce = 1;
int rhsCols = b.cols();
int size = b.rows();
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
{
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
tmp.leftCols(actualCols) = b.middleCols(k,actualCols);
tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols));
dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView();
}
}
Derived& derived()
{
return *static_cast<Derived*>(this);
}
const Derived& derived() const
{
return *static_cast<const Derived*>(this);
}
/** Returns a reference to the integer vector IPARM of PaStiX parameters
* to modify the default parameters.
* The statistics related to the different phases of factorization and solve are saved here as well
* \sa analyzePattern() factorize()
*/
Array<Index,IPARM_SIZE,1>& iparm()
{
return m_iparm;
}
/** Return a reference to a particular index parameter of the IPARM vector
* \sa iparm()
*/
int& iparm(int idxparam)
{
return m_iparm(idxparam);
}
/** Returns a reference to the double vector DPARM of PaStiX parameters
* The statistics related to the different phases of factorization and solve are saved here as well
* \sa analyzePattern() factorize()
*/
Array<RealScalar,IPARM_SIZE,1>& dparm()
{
return m_dparm;
}
/** Return a reference to a particular index parameter of the DPARM vector
* \sa dparm()
*/
double& dparm(int idxparam)
{
return m_dparm(idxparam);
}
inline Index cols() const { return m_size; }
inline Index rows() const { return m_size; }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the PaStiX reports a problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::sparse_solve_retval<PastixBase, Rhs>
solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "Pastix LU, LLT or LDLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<PastixBase, Rhs>(*this, b.derived());
}
protected:
// Initialize the Pastix data structure, check the matrix
void init();
// Compute the ordering and the symbolic factorization
void analyzePattern(ColSpMatrix& mat);
// Compute the numerical factorization
void factorize(ColSpMatrix& mat);
// Free all the data allocated by Pastix
void clean()
{
eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
}
void compute(ColSpMatrix& mat);
int m_initisOk;
int m_analysisIsOk;
int m_factorizationIsOk;
bool m_isInitialized;
mutable ComputationInfo m_info;
mutable pastix_data_t *m_pastixdata; // Data structure for pastix
mutable int m_comm; // The MPI communicator identifier
mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
mutable Matrix<Index,Dynamic,1> m_perm; // Permutation vector
mutable Matrix<Index,Dynamic,1> m_invp; // Inverse permutation vector
mutable int m_size; // Size of the matrix
};
/** Initialize the PaStiX data structure.
*A first call to this function fills iparm and dparm with the default PaStiX parameters
* \sa iparm() dparm()
*/
template <class Derived>
void PastixBase<Derived>::init()
{
m_size = 0;
m_iparm.setZero(IPARM_SIZE);
m_dparm.setZero(DPARM_SIZE);
m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
pastix(&m_pastixdata, MPI_COMM_WORLD,
0, 0, 0, 0,
0, 0, 0, 1, m_iparm.data(), m_dparm.data());
m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
m_iparm[IPARM_VERBOSE] = 2;
m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
m_iparm[IPARM_INCOMPLETE] = API_NO;
m_iparm[IPARM_OOC_LIMIT] = 2000;
m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
m_iparm(IPARM_START_TASK) = API_TASK_INIT;
m_iparm(IPARM_END_TASK) = API_TASK_INIT;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
0, 0, 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER)) {
m_info = InvalidInput;
m_initisOk = false;
}
else {
m_info = Success;
m_initisOk = true;
}
}
template <class Derived>
void PastixBase<Derived>::compute(ColSpMatrix& mat)
{
eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
analyzePattern(mat);
factorize(mat);
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
m_isInitialized = m_factorizationIsOk;
}
template <class Derived>
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
{
eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
// clean previous calls
if(m_size>0)
clean();
m_size = mat.rows();
m_perm.resize(m_size);
m_invp.resize(m_size);
m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER))
{
m_info = NumericalIssue;
m_analysisIsOk = false;
}
else
{
m_info = Success;
m_analysisIsOk = true;
}
}
template <class Derived>
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
{
// if(&m_cpyMat != &mat) m_cpyMat = mat;
eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
m_size = mat.rows();
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER))
{
m_info = NumericalIssue;
m_factorizationIsOk = false;
m_isInitialized = false;
}
else
{
m_info = Success;
m_factorizationIsOk = true;
m_isInitialized = true;
}
}
/* Solve the system */
template<typename Base>
template<typename Rhs,typename Dest>
bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
{
eigen_assert(m_isInitialized && "The matrix should be factorized first");
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
int rhs = 1;
x = b; /* on return, x is overwritten by the computed solution */
for (int i = 0; i < b.cols(); i++){
m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
}
// Check the returned error
m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
return m_iparm(IPARM_ERROR_NUMBER)==0;
}
/** \ingroup PaStiXSupport_Module
* \class PastixLU
* \brief Sparse direct LU solver based on PaStiX library
*
* This class is used to solve the linear systems A.X = B with a supernodal LU
* factorization in the PaStiX library. The matrix A should be squared and nonsingular
* PaStiX requires that the matrix A has a symmetric structural pattern.
* This interface can symmetrize the input matrix otherwise.
* The vectors or matrices X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
* NOTE : Note that if the analysis and factorization phase are called separately,
* the input matrix will be symmetrized at each call, hence it is advised to
* symmetrize the matrix in a end-user program and set \p IsStrSym to true
*
* \sa \ref TutorialSparseDirectSolvers
*
*/
template<typename _MatrixType, bool IsStrSym>
class PastixLU : public PastixBase< PastixLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLU<MatrixType> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
typedef typename MatrixType::Index Index;
public:
PastixLU() : Base()
{
init();
}
PastixLU(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
/** Compute the LU supernodal factorization of \p matrix.
* iparm and dparm can be used to tune the PaStiX parameters.
* see the PaStiX user's manual
* \sa analyzePattern() factorize()
*/
void compute (const MatrixType& matrix)
{
m_structureIsUptodate = false;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
/** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
* Several ordering methods can be used at this step. See the PaStiX user's manual.
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
m_structureIsUptodate = false;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
/** Compute the LU supernodal factorization of \p matrix
* WARNING The matrix \p matrix should have the same structural pattern
* as the same used in the analysis phase.
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
void init()
{
m_structureIsUptodate = false;
m_iparm(IPARM_SYM) = API_SYM_NO;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
if(IsStrSym)
out = matrix;
else
{
if(!m_structureIsUptodate)
{
// update the transposed structure
m_transposedStructure = matrix.transpose();
// Set the elements of the matrix to zero
for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
it.valueRef() = 0.0;
m_structureIsUptodate = true;
}
out = m_transposedStructure + matrix;
}
internal::c_to_fortran_numbering(out);
}
using Base::m_iparm;
using Base::m_dparm;
ColSpMatrix m_transposedStructure;
bool m_structureIsUptodate;
};
/** \ingroup PaStiXSupport_Module
* \class PastixLLT
* \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
*
* This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
* available in the PaStiX library. The matrix A should be symmetric and positive definite
* WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
* The vectors or matrices X and B can be either dense or sparse
*
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo>
class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
{
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
PastixLLT() : Base()
{
init();
}
PastixLLT(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
/** Compute the L factor of the LL^T supernodal factorization of \p matrix
* \sa analyzePattern() factorize()
*/
void compute (const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
/** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
/** Compute the LL^T supernodal numerical factorization of \p matrix
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
using Base::m_iparm;
void init()
{
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
// Pastix supports only lower, column-major matrices
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
internal::c_to_fortran_numbering(out);
}
};
/** \ingroup PaStiXSupport_Module
* \class PastixLDLT
* \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
*
* This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
* available in the PaStiX library. The matrix A should be symmetric and positive definite
* WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
* The vectors or matrices X and B can be either dense or sparse
*
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo>
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
{
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
PastixLDLT():Base()
{
init();
}
PastixLDLT(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
/** Compute the L and D factors of the LDL^T factorization of \p matrix
* \sa analyzePattern() factorize()
*/
void compute (const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
/** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
/** Compute the LDL^T supernodal numerical factorization of \p matrix
*
*/
void factorize(const MatrixType& matrix)
{
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
using Base::m_iparm;
void init()
{
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
// Pastix supports only lower, column-major matrices
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
internal::c_to_fortran_numbering(out);
}
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<PastixBase<_MatrixType>, Rhs>
: solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
typedef PastixBase<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename _MatrixType, typename Rhs>
struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
: sparse_solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
typedef PastixBase<_MatrixType> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve_sparse(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif