//===-- tsan_mman.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_mman.h"
#include "tsan_rtl.h"
#include "tsan_report.h"
#include "tsan_flags.h"
namespace __tsan {
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
Allocator *allocator() {
return reinterpret_cast<Allocator*>(&allocator_placeholder);
}
void InitializeAllocator() {
allocator()->Init();
}
void AlloctorThreadFinish(ThreadState *thr) {
allocator()->SwallowCache(&thr->alloc_cache);
}
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
if (!thr->in_signal_handler || !flags()->report_signal_unsafe)
return;
StackTrace stack;
stack.ObtainCurrent(thr, pc);
ScopedReport rep(ReportTypeSignalUnsafe);
rep.AddStack(&stack);
OutputReport(rep, rep.GetReport()->stacks[0]);
}
void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
CHECK_GT(thr->in_rtl, 0);
void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
if (p == 0)
return 0;
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
b->size = sz;
b->alloc_tid = thr->unique_id;
b->alloc_stack_id = CurrentStackId(thr, pc);
if (CTX() && CTX()->initialized) {
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
}
DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
SignalUnsafeCall(thr, pc);
return p;
}
void user_free(ThreadState *thr, uptr pc, void *p) {
CHECK_GT(thr->in_rtl, 0);
CHECK_NE(p, (void*)0);
DPrintf("#%d: free(%p)\n", thr->tid, p);
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
if (b->head) {
Lock l(&b->mtx);
for (SyncVar *s = b->head; s;) {
SyncVar *res = s;
s = s->next;
StatInc(thr, StatSyncDestroyed);
res->mtx.Lock();
res->mtx.Unlock();
DestroyAndFree(res);
}
b->head = 0;
}
if (CTX() && CTX()->initialized && thr->in_rtl == 1) {
MemoryRangeFreed(thr, pc, (uptr)p, b->size);
}
allocator()->Deallocate(&thr->alloc_cache, p);
SignalUnsafeCall(thr, pc);
}
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
CHECK_GT(thr->in_rtl, 0);
void *p2 = 0;
// FIXME: Handle "shrinking" more efficiently,
// it seems that some software actually does this.
if (sz) {
p2 = user_alloc(thr, pc, sz);
if (p2 == 0)
return 0;
if (p) {
MBlock *b = user_mblock(thr, p);
internal_memcpy(p2, p, min(b->size, sz));
}
}
if (p) {
user_free(thr, pc, p);
}
return p2;
}
MBlock *user_mblock(ThreadState *thr, void *p) {
// CHECK_GT(thr->in_rtl, 0);
CHECK_NE(p, (void*)0);
return (MBlock*)allocator()->GetMetaData(p);
}
void *internal_alloc(MBlockType typ, uptr sz) {
ThreadState *thr = cur_thread();
CHECK_GT(thr->in_rtl, 0);
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
return InternalAlloc(sz);
}
void internal_free(void *p) {
ThreadState *thr = cur_thread();
CHECK_GT(thr->in_rtl, 0);
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
InternalFree(p);
}
} // namespace __tsan