// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "webkit/glue/media/video_renderer_impl.h"
#include "media/base/video_frame.h"
#include "media/base/yuv_convert.h"
#include "webkit/glue/webmediaplayer_impl.h"
namespace webkit_glue {
VideoRendererImpl::VideoRendererImpl(bool pts_logging)
: last_converted_frame_(NULL),
pts_logging_(pts_logging) {
}
VideoRendererImpl::~VideoRendererImpl() {}
bool VideoRendererImpl::OnInitialize(media::VideoDecoder* decoder) {
video_size_.SetSize(width(), height());
bitmap_.setConfig(SkBitmap::kARGB_8888_Config, width(), height());
if (bitmap_.allocPixels(NULL, NULL)) {
bitmap_.eraseRGB(0x00, 0x00, 0x00);
return true;
}
NOTREACHED();
return false;
}
void VideoRendererImpl::OnStop(media::FilterCallback* callback) {
if (callback) {
callback->Run();
delete callback;
}
}
void VideoRendererImpl::OnFrameAvailable() {
proxy_->Repaint();
}
void VideoRendererImpl::SetWebMediaPlayerImplProxy(
WebMediaPlayerImpl::Proxy* proxy) {
proxy_ = proxy;
}
void VideoRendererImpl::SetRect(const gfx::Rect& rect) {
}
// This method is always called on the renderer's thread.
void VideoRendererImpl::Paint(SkCanvas* canvas,
const gfx::Rect& dest_rect) {
scoped_refptr<media::VideoFrame> video_frame;
GetCurrentFrame(&video_frame);
if (!video_frame) {
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRectCoords(
static_cast<float>(dest_rect.x()),
static_cast<float>(dest_rect.y()),
static_cast<float>(dest_rect.right()),
static_cast<float>(dest_rect.bottom()),
paint);
} else {
if (CanFastPaint(canvas, dest_rect)) {
FastPaint(video_frame, canvas, dest_rect);
} else {
SlowPaint(video_frame, canvas, dest_rect);
}
// Presentation timestamp logging is primarily used to measure performance
// on low-end devices. When profiled on an Intel Atom N280 @ 1.66GHz this
// code had a ~63 microsecond perf hit when logging to a file (not stdout),
// which is neglible enough for measuring playback performance.
if (pts_logging_)
VLOG(1) << "pts=" << video_frame->GetTimestamp().InMicroseconds();
}
PutCurrentFrame(video_frame);
}
void VideoRendererImpl::GetCurrentFrame(
scoped_refptr<media::VideoFrame>* frame_out) {
VideoRendererBase::GetCurrentFrame(frame_out);
}
void VideoRendererImpl::PutCurrentFrame(
scoped_refptr<media::VideoFrame> frame) {
VideoRendererBase::PutCurrentFrame(frame);
}
// CanFastPaint is a helper method to determine the conditions for fast
// painting. The conditions are:
// 1. No skew in canvas matrix.
// 2. No flipping nor mirroring.
// 3. Canvas has pixel format ARGB8888.
// 4. Canvas is opaque.
// TODO(hclam): The fast paint method should support flipping and mirroring.
// Disable the flipping and mirroring checks once we have it.
bool VideoRendererImpl::CanFastPaint(SkCanvas* canvas,
const gfx::Rect& dest_rect) {
// Fast paint does not handle opacity value other than 1.0. Hence use slow
// paint if opacity is not 1.0. Since alpha = opacity * 0xFF, we check that
// alpha != 0xFF.
//
// Additonal notes: If opacity = 0.0, the chrome display engine does not try
// to render the video. So, this method is never called. However, if the
// opacity = 0.0001, alpha is again 0, but the display engine tries to render
// the video. If we use Fast paint, the video shows up with opacity = 1.0.
// Hence we use slow paint also in the case where alpha = 0. It would be ideal
// if rendering was never called even for cases where alpha is 0. Created
// bug 48090 for this.
SkCanvas::LayerIter layer_iter(canvas, false);
SkColor sk_color = layer_iter.paint().getColor();
SkAlpha sk_alpha = SkColorGetA(sk_color);
if (sk_alpha != 0xFF) {
return false;
}
const SkMatrix& total_matrix = canvas->getTotalMatrix();
// Perform the following checks here:
// 1. Check for skewing factors of the transformation matrix. They should be
// zero.
// 2. Check for mirroring and flipping. Make sure they are greater than zero.
if (SkScalarNearlyZero(total_matrix.getSkewX()) &&
SkScalarNearlyZero(total_matrix.getSkewY()) &&
total_matrix.getScaleX() > 0 &&
total_matrix.getScaleY() > 0) {
// Get the properties of the SkDevice and the clip rect.
SkDevice* device = canvas->getDevice();
// Get the boundary of the device.
SkIRect device_rect;
device->getBounds(&device_rect);
// Get the pixel config of the device.
const SkBitmap::Config config = device->config();
// Get the total clip rect associated with the canvas.
const SkRegion& total_clip = canvas->getTotalClip();
SkIRect dest_irect;
TransformToSkIRect(canvas->getTotalMatrix(), dest_rect, &dest_irect);
if (config == SkBitmap::kARGB_8888_Config && device->isOpaque() &&
device_rect.contains(total_clip.getBounds())) {
return true;
}
}
return false;
}
void VideoRendererImpl::SlowPaint(media::VideoFrame* video_frame,
SkCanvas* canvas,
const gfx::Rect& dest_rect) {
// 1. Convert YUV frame to RGB.
base::TimeDelta timestamp = video_frame->GetTimestamp();
if (video_frame != last_converted_frame_ ||
timestamp != last_converted_timestamp_) {
last_converted_frame_ = video_frame;
last_converted_timestamp_ = timestamp;
DCHECK(video_frame->format() == media::VideoFrame::YV12 ||
video_frame->format() == media::VideoFrame::YV16);
DCHECK(video_frame->stride(media::VideoFrame::kUPlane) ==
video_frame->stride(media::VideoFrame::kVPlane));
DCHECK(video_frame->planes() == media::VideoFrame::kNumYUVPlanes);
bitmap_.lockPixels();
media::YUVType yuv_type =
(video_frame->format() == media::VideoFrame::YV12) ?
media::YV12 : media::YV16;
media::ConvertYUVToRGB32(video_frame->data(media::VideoFrame::kYPlane),
video_frame->data(media::VideoFrame::kUPlane),
video_frame->data(media::VideoFrame::kVPlane),
static_cast<uint8*>(bitmap_.getPixels()),
video_frame->width(),
video_frame->height(),
video_frame->stride(media::VideoFrame::kYPlane),
video_frame->stride(media::VideoFrame::kUPlane),
bitmap_.rowBytes(),
yuv_type);
bitmap_.unlockPixels();
}
// 2. Paint the bitmap to canvas.
SkMatrix matrix;
matrix.setTranslate(static_cast<SkScalar>(dest_rect.x()),
static_cast<SkScalar>(dest_rect.y()));
if (dest_rect.width() != video_size_.width() ||
dest_rect.height() != video_size_.height()) {
matrix.preScale(SkIntToScalar(dest_rect.width()) /
SkIntToScalar(video_size_.width()),
SkIntToScalar(dest_rect.height()) /
SkIntToScalar(video_size_.height()));
}
SkPaint paint;
paint.setFlags(SkPaint::kFilterBitmap_Flag);
canvas->drawBitmapMatrix(bitmap_, matrix, &paint);
}
void VideoRendererImpl::FastPaint(media::VideoFrame* video_frame,
SkCanvas* canvas,
const gfx::Rect& dest_rect) {
DCHECK(video_frame->format() == media::VideoFrame::YV12 ||
video_frame->format() == media::VideoFrame::YV16);
DCHECK(video_frame->stride(media::VideoFrame::kUPlane) ==
video_frame->stride(media::VideoFrame::kVPlane));
DCHECK(video_frame->planes() == media::VideoFrame::kNumYUVPlanes);
const SkBitmap& bitmap = canvas->getDevice()->accessBitmap(true);
media::YUVType yuv_type = (video_frame->format() == media::VideoFrame::YV12) ?
media::YV12 : media::YV16;
int y_shift = yuv_type; // 1 for YV12, 0 for YV16.
// Create a rectangle backed by SkScalar.
SkRect scalar_dest_rect;
scalar_dest_rect.iset(dest_rect.x(), dest_rect.y(),
dest_rect.right(), dest_rect.bottom());
// Transform the destination rectangle to local coordinates.
const SkMatrix& local_matrix = canvas->getTotalMatrix();
SkRect local_dest_rect;
local_matrix.mapRect(&local_dest_rect, scalar_dest_rect);
// After projecting the destination rectangle to local coordinates, round
// the projected rectangle to integer values, this will give us pixel values
// of the rectangle.
SkIRect local_dest_irect, local_dest_irect_saved;
local_dest_rect.round(&local_dest_irect);
local_dest_rect.round(&local_dest_irect_saved);
// Only does the paint if the destination rect intersects with the clip
// rect.
if (local_dest_irect.intersect(canvas->getTotalClip().getBounds())) {
// At this point |local_dest_irect| contains the rect that we should draw
// to within the clipping rect.
// Calculate the address for the top left corner of destination rect in
// the canvas that we will draw to. The address is obtained by the base
// address of the canvas shifted by "left" and "top" of the rect.
uint8* dest_rect_pointer = static_cast<uint8*>(bitmap.getPixels()) +
local_dest_irect.fTop * bitmap.rowBytes() +
local_dest_irect.fLeft * 4;
// Project the clip rect to the original video frame, obtains the
// dimensions of the projected clip rect, "left" and "top" of the rect.
// The math here are all integer math so we won't have rounding error and
// write outside of the canvas.
// We have the assumptions of dest_rect.width() and dest_rect.height()
// being non-zero, these are valid assumptions since finding intersection
// above rejects empty rectangle so we just do a DCHECK here.
DCHECK_NE(0, dest_rect.width());
DCHECK_NE(0, dest_rect.height());
size_t frame_clip_width = local_dest_irect.width() *
video_frame->width() / local_dest_irect_saved.width();
size_t frame_clip_height = local_dest_irect.height() *
video_frame->height() / local_dest_irect_saved.height();
// Project the "left" and "top" of the final destination rect to local
// coordinates of the video frame, use these values to find the offsets
// in the video frame to start reading.
size_t frame_clip_left =
(local_dest_irect.fLeft - local_dest_irect_saved.fLeft) *
video_frame->width() / local_dest_irect_saved.width();
size_t frame_clip_top =
(local_dest_irect.fTop - local_dest_irect_saved.fTop) *
video_frame->height() / local_dest_irect_saved.height();
// Use the "left" and "top" of the destination rect to locate the offset
// in Y, U and V planes.
size_t y_offset = video_frame->stride(media::VideoFrame::kYPlane) *
frame_clip_top + frame_clip_left;
// For format YV12, there is one U, V value per 2x2 block.
// For format YV16, there is one u, V value per 2x1 block.
size_t uv_offset = (video_frame->stride(media::VideoFrame::kUPlane) *
(frame_clip_top >> y_shift)) + (frame_clip_left >> 1);
uint8* frame_clip_y =
video_frame->data(media::VideoFrame::kYPlane) + y_offset;
uint8* frame_clip_u =
video_frame->data(media::VideoFrame::kUPlane) + uv_offset;
uint8* frame_clip_v =
video_frame->data(media::VideoFrame::kVPlane) + uv_offset;
bitmap.lockPixels();
// TODO(hclam): do rotation and mirroring here.
// TODO(fbarchard): switch filtering based on performance.
media::ScaleYUVToRGB32(frame_clip_y,
frame_clip_u,
frame_clip_v,
dest_rect_pointer,
frame_clip_width,
frame_clip_height,
local_dest_irect.width(),
local_dest_irect.height(),
video_frame->stride(media::VideoFrame::kYPlane),
video_frame->stride(media::VideoFrame::kUPlane),
bitmap.rowBytes(),
yuv_type,
media::ROTATE_0,
media::FILTER_BILINEAR);
bitmap.unlockPixels();
}
}
void VideoRendererImpl::TransformToSkIRect(const SkMatrix& matrix,
const gfx::Rect& src_rect,
SkIRect* dest_rect) {
// Transform destination rect to local coordinates.
SkRect transformed_rect;
SkRect skia_dest_rect;
skia_dest_rect.iset(src_rect.x(), src_rect.y(),
src_rect.right(), src_rect.bottom());
matrix.mapRect(&transformed_rect, skia_dest_rect);
transformed_rect.round(dest_rect);
}
} // namespace webkit_glue