// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdio.h>
#include <stdlib.h>
#include <algorithm> // for min()
#include "base/atomicops.h"
#include "base/logging.h"
#include "testing/gtest/include/gtest/gtest.h"
// Number of bits in a size_t.
static const int kSizeBits = 8 * sizeof(size_t);
// The maximum size of a size_t.
static const size_t kMaxSize = ~static_cast<size_t>(0);
// Maximum positive size of a size_t if it were signed.
static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
// An allocation size which is not too big to be reasonable.
static const size_t kNotTooBig = 100000;
// An allocation size which is just too big.
static const size_t kTooBig = ~static_cast<size_t>(0);
namespace {
using std::min;
// Fill a buffer of the specified size with a predetermined pattern
static void Fill(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
buffer[i] = (i & 0xff);
}
}
// Check that the specified buffer has the predetermined pattern
// generated by Fill()
static bool Valid(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
if (buffer[i] != (i & 0xff)) {
return false;
}
}
return true;
}
// Check that a buffer is completely zeroed.
static bool IsZeroed(unsigned char* buffer, int n) {
for (int i = 0; i < n; i++) {
if (buffer[i] != 0) {
return false;
}
}
return true;
}
// Check alignment
static void CheckAlignment(void* p, int align) {
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
}
// Return the next interesting size/delta to check. Returns -1 if no more.
static int NextSize(int size) {
if (size < 100)
return size+1;
if (size < 100000) {
// Find next power of two
int power = 1;
while (power < size)
power <<= 1;
// Yield (power-1, power, power+1)
if (size < power-1)
return power-1;
if (size == power-1)
return power;
assert(size == power);
return power+1;
} else {
return -1;
}
}
#define GG_ULONGLONG(x) static_cast<uint64>(x)
template <class AtomicType>
static void TestAtomicIncrement() {
// For now, we just test single threaded execution
// use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
// outside the expected address bounds. This is in particular to
// test that some future change to the asm code doesn't cause the
// 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
struct {
AtomicType prev_word;
AtomicType count;
AtomicType next_word;
} s;
AtomicType prev_word_value, next_word_value;
memset(&prev_word_value, 0xFF, sizeof(AtomicType));
memset(&next_word_value, 0xEE, sizeof(AtomicType));
s.prev_word = prev_word_value;
s.count = 0;
s.next_word = next_word_value;
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
EXPECT_EQ(s.count, 1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
EXPECT_EQ(s.count, 3);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
EXPECT_EQ(s.count, 6);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
EXPECT_EQ(s.count, 3);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
EXPECT_EQ(s.count, 1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
EXPECT_EQ(s.count, 0);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
EXPECT_EQ(s.count, -1);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
EXPECT_EQ(s.count, -5);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
EXPECT_EQ(s.count, 0);
EXPECT_EQ(s.prev_word, prev_word_value);
EXPECT_EQ(s.next_word, next_word_value);
}
#define NUM_BITS(T) (sizeof(T) * 8)
template <class AtomicType>
static void TestCompareAndSwap() {
AtomicType value = 0;
AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
EXPECT_EQ(1, value);
EXPECT_EQ(0, prev);
// Use test value that has non-zero bits in both halves, more for testing
// 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
(NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
EXPECT_EQ(k_test_val, value);
EXPECT_EQ(k_test_val, prev);
value = k_test_val;
prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
EXPECT_EQ(5, value);
EXPECT_EQ(k_test_val, prev);
}
template <class AtomicType>
static void TestAtomicExchange() {
AtomicType value = 0;
AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
EXPECT_EQ(1, value);
EXPECT_EQ(0, new_value);
// Use test value that has non-zero bits in both halves, more for testing
// 64-bit implementation on 32-bit platforms.
const AtomicType k_test_val = (GG_ULONGLONG(1) <<
(NUM_BITS(AtomicType) - 2)) + 11;
value = k_test_val;
new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
EXPECT_EQ(k_test_val, value);
EXPECT_EQ(k_test_val, new_value);
value = k_test_val;
new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
EXPECT_EQ(5, value);
EXPECT_EQ(k_test_val, new_value);
}
template <class AtomicType>
static void TestAtomicIncrementBounds() {
// Test increment at the half-width boundary of the atomic type.
// It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
AtomicType value = test_val - 1;
AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
EXPECT_EQ(test_val, value);
EXPECT_EQ(value, new_value);
base::subtle::NoBarrier_AtomicIncrement(&value, -1);
EXPECT_EQ(test_val - 1, value);
}
// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestStore() {
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
base::subtle::NoBarrier_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::NoBarrier_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
base::subtle::Acquire_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::Acquire_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
base::subtle::Release_Store(&value, kVal1);
EXPECT_EQ(kVal1, value);
base::subtle::Release_Store(&value, kVal2);
EXPECT_EQ(kVal2, value);
}
// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestLoad() {
const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
const AtomicType kVal2 = static_cast<AtomicType>(-1);
AtomicType value;
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
value = kVal1;
EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
value = kVal2;
EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
}
template <class AtomicType>
static void TestAtomicOps() {
TestCompareAndSwap<AtomicType>();
TestAtomicExchange<AtomicType>();
TestAtomicIncrementBounds<AtomicType>();
TestStore<AtomicType>();
TestLoad<AtomicType>();
}
static void TestCalloc(size_t n, size_t s, bool ok) {
char* p = reinterpret_cast<char*>(calloc(n, s));
if (!ok) {
EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
} else {
EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
"calloc(n, s) should succeed";
for (int i = 0; i < n*s; i++) {
EXPECT_EQ('\0', p[i]);
}
free(p);
}
}
// A global test counter for number of times the NewHandler is called.
static int news_handled = 0;
static void TestNewHandler() {
++news_handled;
throw std::bad_alloc();
}
// Because we compile without exceptions, we expect these will not throw.
static void TestOneNewWithoutExceptions(void* (*func)(size_t),
bool should_throw) {
// success test
try {
void* ptr = (*func)(kNotTooBig);
EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
"allocation should not have failed.";
} catch(...) {
EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
}
// failure test
try {
void* rv = (*func)(kTooBig);
EXPECT_EQ(NULL, rv);
EXPECT_FALSE(should_throw) << "allocation should have thrown.";
} catch(...) {
EXPECT_TRUE(should_throw) << "allocation threw unexpected exception.";
}
}
static void TestNothrowNew(void* (*func)(size_t)) {
news_handled = 0;
// test without new_handler:
std::new_handler saved_handler = std::set_new_handler(0);
TestOneNewWithoutExceptions(func, false);
// test with new_handler:
std::set_new_handler(TestNewHandler);
TestOneNewWithoutExceptions(func, true);
EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
std::set_new_handler(saved_handler);
}
} // namespace
//-----------------------------------------------------------------------------
TEST(Atomics, AtomicIncrementWord) {
TestAtomicIncrement<AtomicWord>();
}
TEST(Atomics, AtomicIncrement32) {
TestAtomicIncrement<Atomic32>();
}
TEST(Atomics, AtomicOpsWord) {
TestAtomicIncrement<AtomicWord>();
}
TEST(Atomics, AtomicOps32) {
TestAtomicIncrement<Atomic32>();
}
TEST(Allocators, Malloc) {
// Try allocating data with a bunch of alignments and sizes
for (int size = 1; size < 1048576; size *= 2) {
unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
CheckAlignment(ptr, 2); // Should be 2 byte aligned
Fill(ptr, size);
EXPECT_TRUE(Valid(ptr, size));
free(ptr);
}
}
TEST(Allocators, Calloc) {
TestCalloc(0, 0, true);
TestCalloc(0, 1, true);
TestCalloc(1, 1, true);
TestCalloc(1<<10, 0, true);
TestCalloc(1<<20, 0, true);
TestCalloc(0, 1<<10, true);
TestCalloc(0, 1<<20, true);
TestCalloc(1<<20, 2, true);
TestCalloc(2, 1<<20, true);
TestCalloc(1000, 1000, true);
TestCalloc(kMaxSize, 2, false);
TestCalloc(2, kMaxSize, false);
TestCalloc(kMaxSize, kMaxSize, false);
TestCalloc(kMaxSignedSize, 3, false);
TestCalloc(3, kMaxSignedSize, false);
TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
}
TEST(Allocators, New) {
TestNothrowNew(&::operator new);
TestNothrowNew(&::operator new[]);
}
// This makes sure that reallocing a small number of bytes in either
// direction doesn't cause us to allocate new memory.
TEST(Allocators, Realloc1) {
int start_sizes[] = { 100, 1000, 10000, 100000 };
int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
void* p = malloc(start_sizes[s]);
CHECK(p);
// The larger the start-size, the larger the non-reallocing delta.
for (int d = 0; d < s*2; ++d) {
void* new_p = realloc(p, start_sizes[s] + deltas[d]);
CHECK_EQ(p, new_p); // realloc should not allocate new memory
}
// Test again, but this time reallocing smaller first.
for (int d = 0; d < s*2; ++d) {
void* new_p = realloc(p, start_sizes[s] - deltas[d]);
CHECK_EQ(p, new_p); // realloc should not allocate new memory
}
free(p);
}
}
TEST(Allocators, Realloc2) {
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
Fill(src, src_size);
unsigned char* dst =
reinterpret_cast<unsigned char*>(realloc(src, dst_size));
EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
Fill(dst, dst_size);
EXPECT_TRUE(Valid(dst, dst_size));
if (dst != NULL) free(dst);
}
}
// Now make sure realloc works correctly even when we overflow the
// packed cache, so some entries are evicted from the cache.
// The cache has 2^12 entries, keyed by page number.
const int kNumEntries = 1 << 14;
int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
int sum = 0;
for (int i = 0; i < kNumEntries; i++) {
// no page size is likely to be bigger than 8192?
p[i] = reinterpret_cast<int*>(malloc(8192));
p[i][1000] = i; // use memory deep in the heart of p
}
for (int i = 0; i < kNumEntries; i++) {
p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
}
for (int i = 0; i < kNumEntries; i++) {
sum += p[i][1000];
free(p[i]);
}
EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
free(p);
}
TEST(Allocators, ReallocZero) {
// Test that realloc to zero does not return NULL.
for (int size = 0; size >= 0; size = NextSize(size)) {
char* ptr = reinterpret_cast<char*>(malloc(size));
EXPECT_NE(static_cast<char*>(NULL), ptr);
ptr = reinterpret_cast<char*>(realloc(ptr, 0));
EXPECT_NE(static_cast<char*>(NULL), ptr);
if (ptr)
free(ptr);
}
}
#ifdef WIN32
// Test recalloc
TEST(Allocators, Recalloc) {
for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
unsigned char* src =
reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
EXPECT_TRUE(IsZeroed(src, src_size));
Fill(src, src_size);
unsigned char* dst =
reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
Fill(dst, dst_size);
EXPECT_TRUE(Valid(dst, dst_size));
if (dst != NULL)
free(dst);
}
}
}
#endif
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}