/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "Dataflow.h"
#include "Loop.h"
#include "libdex/DexOpcodes.h"
/*
* Main table containing data flow attributes for each bytecode. The
* first kNumPackedOpcodes entries are for Dalvik bytecode
* instructions, where extended opcode at the MIR level are appended
* afterwards.
*
* TODO - many optimization flags are incomplete - they will only limit the
* scope of optimizations but will not cause mis-optimizations.
*/
int dvmCompilerDataFlowAttributes[kMirOpLast] = {
// 00 OP_NOP
DF_NOP,
// 01 OP_MOVE vA, vB
DF_DA | DF_UB | DF_IS_MOVE,
// 02 OP_MOVE_FROM16 vAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 03 OP_MOVE_16 vAAAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 04 OP_MOVE_WIDE vA, vB
DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,
// 05 OP_MOVE_WIDE_FROM16 vAA, vBBBB
DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,
// 06 OP_MOVE_WIDE_16 vAAAA, vBBBB
DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,
// 07 OP_MOVE_OBJECT vA, vB
DF_DA | DF_UB | DF_IS_MOVE,
// 08 OP_MOVE_OBJECT_FROM16 vAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 09 OP_MOVE_OBJECT_16 vAAAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 0A OP_MOVE_RESULT vAA
DF_DA,
// 0B OP_MOVE_RESULT_WIDE vAA
DF_DA_WIDE,
// 0C OP_MOVE_RESULT_OBJECT vAA
DF_DA,
// 0D OP_MOVE_EXCEPTION vAA
DF_DA,
// 0E OP_RETURN_VOID
DF_NOP,
// 0F OP_RETURN vAA
DF_UA,
// 10 OP_RETURN_WIDE vAA
DF_UA_WIDE,
// 11 OP_RETURN_OBJECT vAA
DF_UA,
// 12 OP_CONST_4 vA, #+B
DF_DA | DF_SETS_CONST,
// 13 OP_CONST_16 vAA, #+BBBB
DF_DA | DF_SETS_CONST,
// 14 OP_CONST vAA, #+BBBBBBBB
DF_DA | DF_SETS_CONST,
// 15 OP_CONST_HIGH16 VAA, #+BBBB0000
DF_DA | DF_SETS_CONST,
// 16 OP_CONST_WIDE_16 vAA, #+BBBB
DF_DA_WIDE | DF_SETS_CONST,
// 17 OP_CONST_WIDE_32 vAA, #+BBBBBBBB
DF_DA_WIDE | DF_SETS_CONST,
// 18 OP_CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
DF_DA_WIDE | DF_SETS_CONST,
// 19 OP_CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
DF_DA_WIDE | DF_SETS_CONST,
// 1A OP_CONST_STRING vAA, string@BBBB
DF_DA,
// 1B OP_CONST_STRING_JUMBO vAA, string@BBBBBBBB
DF_DA,
// 1C OP_CONST_CLASS vAA, type@BBBB
DF_DA,
// 1D OP_MONITOR_ENTER vAA
DF_UA,
// 1E OP_MONITOR_EXIT vAA
DF_UA,
// 1F OP_CHECK_CAST vAA, type@BBBB
DF_UA,
// 20 OP_INSTANCE_OF vA, vB, type@CCCC
DF_DA | DF_UB,
// 21 OP_ARRAY_LENGTH vA, vB
DF_DA | DF_UB,
// 22 OP_NEW_INSTANCE vAA, type@BBBB
DF_DA,
// 23 OP_NEW_ARRAY vA, vB, type@CCCC
DF_DA | DF_UB,
// 24 OP_FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 25 OP_FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
DF_FORMAT_3RC,
// 26 OP_FILL_ARRAY_DATA vAA, +BBBBBBBB
DF_UA,
// 27 OP_THROW vAA
DF_UA,
// 28 OP_GOTO
DF_NOP,
// 29 OP_GOTO_16
DF_NOP,
// 2A OP_GOTO_32
DF_NOP,
// 2B OP_PACKED_SWITCH vAA, +BBBBBBBB
DF_UA,
// 2C OP_SPARSE_SWITCH vAA, +BBBBBBBB
DF_UA,
// 2D OP_CMPL_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C,
// 2E OP_CMPG_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C,
// 2F OP_CMPL_DOUBLE vAA, vBB, vCC
DF_DA | DF_UB_WIDE | DF_UC_WIDE | DF_FP_B | DF_FP_C,
// 30 OP_CMPG_DOUBLE vAA, vBB, vCC
DF_DA | DF_UB_WIDE | DF_UC_WIDE | DF_FP_B | DF_FP_C,
// 31 OP_CMP_LONG vAA, vBB, vCC
DF_DA | DF_UB_WIDE | DF_UC_WIDE,
// 32 OP_IF_EQ vA, vB, +CCCC
DF_UA | DF_UB,
// 33 OP_IF_NE vA, vB, +CCCC
DF_UA | DF_UB,
// 34 OP_IF_LT vA, vB, +CCCC
DF_UA | DF_UB,
// 35 OP_IF_GE vA, vB, +CCCC
DF_UA | DF_UB,
// 36 OP_IF_GT vA, vB, +CCCC
DF_UA | DF_UB,
// 37 OP_IF_LE vA, vB, +CCCC
DF_UA | DF_UB,
// 38 OP_IF_EQZ vAA, +BBBB
DF_UA,
// 39 OP_IF_NEZ vAA, +BBBB
DF_UA,
// 3A OP_IF_LTZ vAA, +BBBB
DF_UA,
// 3B OP_IF_GEZ vAA, +BBBB
DF_UA,
// 3C OP_IF_GTZ vAA, +BBBB
DF_UA,
// 3D OP_IF_LEZ vAA, +BBBB
DF_UA,
// 3E OP_UNUSED_3E
DF_NOP,
// 3F OP_UNUSED_3F
DF_NOP,
// 40 OP_UNUSED_40
DF_NOP,
// 41 OP_UNUSED_41
DF_NOP,
// 42 OP_UNUSED_42
DF_NOP,
// 43 OP_UNUSED_43
DF_NOP,
// 44 OP_AGET vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 45 OP_AGET_WIDE vAA, vBB, vCC
DF_DA_WIDE | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 46 OP_AGET_OBJECT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 47 OP_AGET_BOOLEAN vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 48 OP_AGET_BYTE vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 49 OP_AGET_CHAR vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 4A OP_AGET_SHORT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0 | DF_IS_GETTER,
// 4B OP_APUT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 4C OP_APUT_WIDE vAA, vBB, vCC
DF_UA_WIDE | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_2 | DF_IS_SETTER,
// 4D OP_APUT_OBJECT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 4E OP_APUT_BOOLEAN vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 4F OP_APUT_BYTE vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 50 OP_APUT_CHAR vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 51 OP_APUT_SHORT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1 | DF_IS_SETTER,
// 52 OP_IGET vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 53 OP_IGET_WIDE vA, vB, field@CCCC
DF_DA_WIDE | DF_UB | DF_IS_GETTER,
// 54 OP_IGET_OBJECT vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 55 OP_IGET_BOOLEAN vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 56 OP_IGET_BYTE vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 57 OP_IGET_CHAR vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 58 OP_IGET_SHORT vA, vB, field@CCCC
DF_DA | DF_UB | DF_IS_GETTER,
// 59 OP_IPUT vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 5A OP_IPUT_WIDE vA, vB, field@CCCC
DF_UA_WIDE | DF_UB | DF_IS_SETTER,
// 5B OP_IPUT_OBJECT vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 5C OP_IPUT_BOOLEAN vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 5D OP_IPUT_BYTE vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 5E OP_IPUT_CHAR vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 5F OP_IPUT_SHORT vA, vB, field@CCCC
DF_UA | DF_UB | DF_IS_SETTER,
// 60 OP_SGET vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 61 OP_SGET_WIDE vAA, field@BBBB
DF_DA_WIDE | DF_IS_GETTER,
// 62 OP_SGET_OBJECT vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 63 OP_SGET_BOOLEAN vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 64 OP_SGET_BYTE vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 65 OP_SGET_CHAR vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 66 OP_SGET_SHORT vAA, field@BBBB
DF_DA | DF_IS_GETTER,
// 67 OP_SPUT vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 68 OP_SPUT_WIDE vAA, field@BBBB
DF_UA_WIDE | DF_IS_SETTER,
// 69 OP_SPUT_OBJECT vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 6A OP_SPUT_BOOLEAN vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 6B OP_SPUT_BYTE vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 6C OP_SPUT_CHAR vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 6D OP_SPUT_SHORT vAA, field@BBBB
DF_UA | DF_IS_SETTER,
// 6E OP_INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 6F OP_INVOKE_SUPER {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 70 OP_INVOKE_DIRECT {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 71 OP_INVOKE_STATIC {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 72 OP_INVOKE_INTERFACE {vD, vE, vF, vG, vA}
DF_FORMAT_35C,
// 73 OP_UNUSED_73
DF_NOP,
// 74 OP_INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC,
// 75 OP_INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC,
// 76 OP_INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC,
// 77 OP_INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC,
// 78 OP_INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC,
// 79 OP_UNUSED_79
DF_NOP,
// 7A OP_UNUSED_7A
DF_NOP,
// 7B OP_NEG_INT vA, vB
DF_DA | DF_UB,
// 7C OP_NOT_INT vA, vB
DF_DA | DF_UB,
// 7D OP_NEG_LONG vA, vB
DF_DA_WIDE | DF_UB_WIDE,
// 7E OP_NOT_LONG vA, vB
DF_DA_WIDE | DF_UB_WIDE,
// 7F OP_NEG_FLOAT vA, vB
DF_DA | DF_UB | DF_FP_A | DF_FP_B,
// 80 OP_NEG_DOUBLE vA, vB
DF_DA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// 81 OP_INT_TO_LONG vA, vB
DF_DA_WIDE | DF_UB,
// 82 OP_INT_TO_FLOAT vA, vB
DF_DA | DF_UB | DF_FP_A,
// 83 OP_INT_TO_DOUBLE vA, vB
DF_DA_WIDE | DF_UB | DF_FP_A,
// 84 OP_LONG_TO_INT vA, vB
DF_DA | DF_UB_WIDE,
// 85 OP_LONG_TO_FLOAT vA, vB
DF_DA | DF_UB_WIDE | DF_FP_A,
// 86 OP_LONG_TO_DOUBLE vA, vB
DF_DA_WIDE | DF_UB_WIDE | DF_FP_A,
// 87 OP_FLOAT_TO_INT vA, vB
DF_DA | DF_UB | DF_FP_B,
// 88 OP_FLOAT_TO_LONG vA, vB
DF_DA_WIDE | DF_UB | DF_FP_B,
// 89 OP_FLOAT_TO_DOUBLE vA, vB
DF_DA_WIDE | DF_UB | DF_FP_A | DF_FP_B,
// 8A OP_DOUBLE_TO_INT vA, vB
DF_DA | DF_UB_WIDE | DF_FP_B,
// 8B OP_DOUBLE_TO_LONG vA, vB
DF_DA_WIDE | DF_UB_WIDE | DF_FP_B,
// 8C OP_DOUBLE_TO_FLOAT vA, vB
DF_DA | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// 8D OP_INT_TO_BYTE vA, vB
DF_DA | DF_UB,
// 8E OP_INT_TO_CHAR vA, vB
DF_DA | DF_UB,
// 8F OP_INT_TO_SHORT vA, vB
DF_DA | DF_UB,
// 90 OP_ADD_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_IS_LINEAR,
// 91 OP_SUB_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_IS_LINEAR,
// 92 OP_MUL_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 93 OP_DIV_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 94 OP_REM_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 95 OP_AND_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 96 OP_OR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 97 OP_XOR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 98 OP_SHL_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 99 OP_SHR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 9A OP_USHR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC,
// 9B OP_ADD_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// 9C OP_SUB_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// 9D OP_MUL_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// 9E OP_DIV_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// 9F OP_REM_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// A0 OP_AND_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// A1 OP_OR_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// A2 OP_XOR_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,
// A3 OP_SHL_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC,
// A4 OP_SHR_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC,
// A5 OP_USHR_LONG vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC,
// A6 OP_ADD_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A7 OP_SUB_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A8 OP_MUL_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A9 OP_DIV_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// AA OP_REM_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// AB OP_ADD_DOUBLE vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AC OP_SUB_DOUBLE vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AD OP_MUL_DOUBLE vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AE OP_DIV_DOUBLE vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AF OP_REM_DOUBLE vAA, vBB, vCC
DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// B0 OP_ADD_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B1 OP_SUB_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B2 OP_MUL_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B3 OP_DIV_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B4 OP_REM_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B5 OP_AND_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B6 OP_OR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B7 OP_XOR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B8 OP_SHL_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// B9 OP_SHR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// BA OP_USHR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB,
// BB OP_ADD_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// BC OP_SUB_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// BD OP_MUL_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// BE OP_DIV_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// BF OP_REM_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// C0 OP_AND_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// C1 OP_OR_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// C2 OP_XOR_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,
// C3 OP_SHL_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB,
// C4 OP_SHR_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB,
// C5 OP_USHR_LONG_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB,
// C6 OP_ADD_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C7 OP_SUB_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C8 OP_MUL_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C9 OP_DIV_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// CA OP_REM_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// CB OP_ADD_DOUBLE_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// CC OP_SUB_DOUBLE_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// CD OP_MUL_DOUBLE_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// CE OP_DIV_DOUBLE_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// CF OP_REM_DOUBLE_2ADDR vA, vB
DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,
// D0 OP_ADD_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D1 OP_RSUB_INT vA, vB, #+CCCC
DF_DA | DF_UB,
// D2 OP_MUL_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D3 OP_DIV_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D4 OP_REM_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D5 OP_AND_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D6 OP_OR_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D7 OP_XOR_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB,
// D8 OP_ADD_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_IS_LINEAR,
// D9 OP_RSUB_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DA OP_MUL_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DB OP_DIV_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DC OP_REM_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DD OP_AND_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DE OP_OR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// DF OP_XOR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// E0 OP_SHL_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// E1 OP_SHR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// E2 OP_USHR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB,
// E3 OP_IGET_VOLATILE
DF_DA | DF_UB,
// E4 OP_IPUT_VOLATILE
DF_UA | DF_UB,
// E5 OP_SGET_VOLATILE
DF_DA,
// E6 OP_SPUT_VOLATILE
DF_UA,
// E7 OP_IGET_OBJECT_VOLATILE
DF_DA | DF_UB,
// E8 OP_IGET_WIDE_VOLATILE
DF_DA_WIDE | DF_UB,
// E9 OP_IPUT_WIDE_VOLATILE
DF_UA_WIDE | DF_UB,
// EA OP_SGET_WIDE_VOLATILE
DF_DA_WIDE,
// EB OP_SPUT_WIDE_VOLATILE
DF_UA_WIDE,
// EC OP_BREAKPOINT
DF_NOP,
// ED OP_THROW_VERIFICATION_ERROR
DF_NOP,
// EE OP_EXECUTE_INLINE
DF_FORMAT_35C,
// EF OP_EXECUTE_INLINE_RANGE
DF_FORMAT_3RC,
// F0 OP_INVOKE_OBJECT_INIT_RANGE
DF_NOP,
// F1 OP_RETURN_VOID_BARRIER
DF_NOP,
// F2 OP_IGET_QUICK
DF_DA | DF_UB | DF_IS_GETTER,
// F3 OP_IGET_WIDE_QUICK
DF_DA_WIDE | DF_UB | DF_IS_GETTER,
// F4 OP_IGET_OBJECT_QUICK
DF_DA | DF_UB | DF_IS_GETTER,
// F5 OP_IPUT_QUICK
DF_UA | DF_UB | DF_IS_SETTER,
// F6 OP_IPUT_WIDE_QUICK
DF_UA_WIDE | DF_UB | DF_IS_SETTER,
// F7 OP_IPUT_OBJECT_QUICK
DF_UA | DF_UB | DF_IS_SETTER,
// F8 OP_INVOKE_VIRTUAL_QUICK
DF_FORMAT_35C,
// F9 OP_INVOKE_VIRTUAL_QUICK_RANGE
DF_FORMAT_3RC,
// FA OP_INVOKE_SUPER_QUICK
DF_FORMAT_35C,
// FB OP_INVOKE_SUPER_QUICK_RANGE
DF_FORMAT_3RC,
// FC OP_IPUT_OBJECT_VOLATILE
DF_UA | DF_UB,
// FD OP_SGET_OBJECT_VOLATILE
DF_DA,
// FE OP_SPUT_OBJECT_VOLATILE
DF_UA,
// FF OP_UNUSED_FF
DF_NOP,
// Beginning of extended MIR opcodes
// 100 OP_MIR_PHI
DF_PHI | DF_DA,
/*
* For extended MIR inserted at the MIR2LIR stage, it is okay to have
* undefined values here.
*/
};
/* Return the Dalvik register/subscript pair of a given SSA register */
int dvmConvertSSARegToDalvik(const CompilationUnit *cUnit, int ssaReg)
{
return GET_ELEM_N(cUnit->ssaToDalvikMap, int, ssaReg);
}
/*
* Utility function to convert encoded SSA register value into Dalvik register
* and subscript pair. Each SSA register can be used to index the
* ssaToDalvikMap list to get the subscript[31..16]/dalvik_reg[15..0] mapping.
*/
char *dvmCompilerGetDalvikDisassembly(const DecodedInstruction *insn,
const char *note)
{
char buffer[256];
Opcode opcode = insn->opcode;
int dfAttributes = dvmCompilerDataFlowAttributes[opcode];
int flags;
char *ret;
buffer[0] = 0;
if ((int)opcode >= (int)kMirOpFirst) {
if ((int)opcode == (int)kMirOpPhi) {
strcpy(buffer, "PHI");
}
else {
sprintf(buffer, "Opcode %#x", opcode);
}
flags = 0;
} else {
strcpy(buffer, dexGetOpcodeName(opcode));
flags = dexGetFlagsFromOpcode(insn->opcode);
}
if (note)
strcat(buffer, note);
/* For branches, decode the instructions to print out the branch targets */
if (flags & kInstrCanBranch) {
InstructionFormat dalvikFormat = dexGetFormatFromOpcode(insn->opcode);
int offset = 0;
switch (dalvikFormat) {
case kFmt21t:
snprintf(buffer + strlen(buffer), 256, " v%d,", insn->vA);
offset = (int) insn->vB;
break;
case kFmt22t:
snprintf(buffer + strlen(buffer), 256, " v%d, v%d,",
insn->vA, insn->vB);
offset = (int) insn->vC;
break;
case kFmt10t:
case kFmt20t:
case kFmt30t:
offset = (int) insn->vA;
break;
default:
ALOGE("Unexpected branch format %d / opcode %#x", dalvikFormat,
opcode);
dvmAbort();
break;
}
snprintf(buffer + strlen(buffer), 256, " (%c%x)",
offset > 0 ? '+' : '-',
offset > 0 ? offset : -offset);
} else if (dfAttributes & DF_FORMAT_35C) {
unsigned int i;
for (i = 0; i < insn->vA; i++) {
if (i != 0) strcat(buffer, ",");
snprintf(buffer + strlen(buffer), 256, " v%d", insn->arg[i]);
}
}
else if (dfAttributes & DF_FORMAT_3RC) {
snprintf(buffer + strlen(buffer), 256,
" v%d..v%d", insn->vC, insn->vC + insn->vA - 1);
}
else {
if (dfAttributes & DF_A_IS_REG) {
snprintf(buffer + strlen(buffer), 256, " v%d", insn->vA);
}
if (dfAttributes & DF_B_IS_REG) {
snprintf(buffer + strlen(buffer), 256, ", v%d", insn->vB);
}
else if ((int)opcode < (int)kMirOpFirst) {
snprintf(buffer + strlen(buffer), 256, ", (#%d)", insn->vB);
}
if (dfAttributes & DF_C_IS_REG) {
snprintf(buffer + strlen(buffer), 256, ", v%d", insn->vC);
}
else if ((int)opcode < (int)kMirOpFirst) {
snprintf(buffer + strlen(buffer), 256, ", (#%d)", insn->vC);
}
}
int length = strlen(buffer) + 1;
ret = (char *)dvmCompilerNew(length, false);
memcpy(ret, buffer, length);
return ret;
}
char *getSSAName(const CompilationUnit *cUnit, int ssaReg, char *name)
{
int ssa2DalvikValue = dvmConvertSSARegToDalvik(cUnit, ssaReg);
sprintf(name, "v%d_%d",
DECODE_REG(ssa2DalvikValue), DECODE_SUB(ssa2DalvikValue));
return name;
}
/*
* Dalvik instruction disassembler with optional SSA printing.
*/
char *dvmCompilerFullDisassembler(const CompilationUnit *cUnit,
const MIR *mir)
{
char buffer[256];
char operand0[256], operand1[256];
const DecodedInstruction *insn = &mir->dalvikInsn;
int opcode = insn->opcode;
int dfAttributes = dvmCompilerDataFlowAttributes[opcode];
char *ret;
int length;
OpcodeFlags flags;
buffer[0] = 0;
if (opcode >= kMirOpFirst) {
if (opcode == kMirOpPhi) {
snprintf(buffer, 256, "PHI %s = (%s",
getSSAName(cUnit, mir->ssaRep->defs[0], operand0),
getSSAName(cUnit, mir->ssaRep->uses[0], operand1));
int i;
for (i = 1; i < mir->ssaRep->numUses; i++) {
snprintf(buffer + strlen(buffer), 256, ", %s",
getSSAName(cUnit, mir->ssaRep->uses[i], operand0));
}
snprintf(buffer + strlen(buffer), 256, ")");
}
else {
sprintf(buffer, "Opcode %#x", opcode);
}
goto done;
} else {
strcpy(buffer, dexGetOpcodeName((Opcode)opcode));
}
flags = dexGetFlagsFromOpcode((Opcode)opcode);
/* For branches, decode the instructions to print out the branch targets */
if (flags & kInstrCanBranch) {
InstructionFormat dalvikFormat = dexGetFormatFromOpcode(insn->opcode);
int delta = 0;
switch (dalvikFormat) {
case kFmt21t:
snprintf(buffer + strlen(buffer), 256, " %s, ",
getSSAName(cUnit, mir->ssaRep->uses[0], operand0));
delta = (int) insn->vB;
break;
case kFmt22t:
snprintf(buffer + strlen(buffer), 256, " %s, %s, ",
getSSAName(cUnit, mir->ssaRep->uses[0], operand0),
getSSAName(cUnit, mir->ssaRep->uses[1], operand1));
delta = (int) insn->vC;
break;
case kFmt10t:
case kFmt20t:
case kFmt30t:
delta = (int) insn->vA;
break;
default:
ALOGE("Unexpected branch format: %d", dalvikFormat);
dvmAbort();
break;
}
snprintf(buffer + strlen(buffer), 256, " %04x",
mir->offset + delta);
} else if (dfAttributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) {
unsigned int i;
for (i = 0; i < insn->vA; i++) {
if (i != 0) strcat(buffer, ",");
snprintf(buffer + strlen(buffer), 256, " %s",
getSSAName(cUnit, mir->ssaRep->uses[i], operand0));
}
} else {
int udIdx;
if (mir->ssaRep->numDefs) {
for (udIdx = 0; udIdx < mir->ssaRep->numDefs; udIdx++) {
snprintf(buffer + strlen(buffer), 256, " %s",
getSSAName(cUnit, mir->ssaRep->defs[udIdx], operand0));
}
strcat(buffer, ",");
}
if (mir->ssaRep->numUses) {
/* No leading ',' for the first use */
snprintf(buffer + strlen(buffer), 256, " %s",
getSSAName(cUnit, mir->ssaRep->uses[0], operand0));
for (udIdx = 1; udIdx < mir->ssaRep->numUses; udIdx++) {
snprintf(buffer + strlen(buffer), 256, ", %s",
getSSAName(cUnit, mir->ssaRep->uses[udIdx], operand0));
}
}
if (opcode < kMirOpFirst) {
InstructionFormat dalvikFormat =
dexGetFormatFromOpcode((Opcode)opcode);
switch (dalvikFormat) {
case kFmt11n: // op vA, #+B
case kFmt21s: // op vAA, #+BBBB
case kFmt21h: // op vAA, #+BBBB00000[00000000]
case kFmt31i: // op vAA, #+BBBBBBBB
case kFmt51l: // op vAA, #+BBBBBBBBBBBBBBBB
snprintf(buffer + strlen(buffer), 256, " #%#x", insn->vB);
break;
case kFmt21c: // op vAA, thing@BBBB
case kFmt31c: // op vAA, thing@BBBBBBBB
snprintf(buffer + strlen(buffer), 256, " @%#x", insn->vB);
break;
case kFmt22b: // op vAA, vBB, #+CC
case kFmt22s: // op vA, vB, #+CCCC
snprintf(buffer + strlen(buffer), 256, " #%#x", insn->vC);
break;
case kFmt22c: // op vA, vB, thing@CCCC
case kFmt22cs: // [opt] op vA, vB, field offset CCCC
snprintf(buffer + strlen(buffer), 256, " @%#x", insn->vC);
break;
/* No need for special printing */
default:
break;
}
}
}
done:
length = strlen(buffer) + 1;
ret = (char *) dvmCompilerNew(length, false);
memcpy(ret, buffer, length);
return ret;
}
/*
* Utility function to convert encoded SSA register value into Dalvik register
* and subscript pair. Each SSA register can be used to index the
* ssaToDalvikMap list to get the subscript[31..16]/dalvik_reg[15..0] mapping.
*/
char *dvmCompilerGetSSAString(CompilationUnit *cUnit, SSARepresentation *ssaRep)
{
char buffer[256];
char *ret;
int i;
buffer[0] = 0;
for (i = 0; i < ssaRep->numDefs; i++) {
int ssa2DalvikValue = dvmConvertSSARegToDalvik(cUnit, ssaRep->defs[i]);
sprintf(buffer + strlen(buffer), "s%d(v%d_%d) ",
ssaRep->defs[i], DECODE_REG(ssa2DalvikValue),
DECODE_SUB(ssa2DalvikValue));
}
if (ssaRep->numDefs) {
strcat(buffer, "<- ");
}
for (i = 0; i < ssaRep->numUses; i++) {
int ssa2DalvikValue = dvmConvertSSARegToDalvik(cUnit, ssaRep->uses[i]);
int len = strlen(buffer);
if (snprintf(buffer + len, 250 - len, "s%d(v%d_%d) ",
ssaRep->uses[i], DECODE_REG(ssa2DalvikValue),
DECODE_SUB(ssa2DalvikValue)) >= (250 - len)) {
strcat(buffer, "...");
break;
}
}
int length = strlen(buffer) + 1;
ret = (char *)dvmCompilerNew(length, false);
memcpy(ret, buffer, length);
return ret;
}
/* Any register that is used before being defined is considered live-in */
static inline void handleLiveInUse(BitVector *useV, BitVector *defV,
BitVector *liveInV, int dalvikRegId)
{
dvmCompilerSetBit(useV, dalvikRegId);
if (!dvmIsBitSet(defV, dalvikRegId)) {
dvmCompilerSetBit(liveInV, dalvikRegId);
}
}
/* Mark a reg as being defined */
static inline void handleDef(BitVector *defV, int dalvikRegId)
{
dvmCompilerSetBit(defV, dalvikRegId);
}
/*
* Find out live-in variables for natural loops. Variables that are live-in in
* the main loop body are considered to be defined in the entry block.
*/
bool dvmCompilerFindLocalLiveIn(CompilationUnit *cUnit, BasicBlock *bb)
{
MIR *mir;
BitVector *useV, *defV, *liveInV;
if (bb->dataFlowInfo == NULL) return false;
useV = bb->dataFlowInfo->useV =
dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
defV = bb->dataFlowInfo->defV =
dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
liveInV = bb->dataFlowInfo->liveInV =
dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opcode];
DecodedInstruction *dInsn = &mir->dalvikInsn;
if (dfAttributes & DF_HAS_USES) {
if (dfAttributes & DF_UA) {
handleLiveInUse(useV, defV, liveInV, dInsn->vA);
} else if (dfAttributes & DF_UA_WIDE) {
handleLiveInUse(useV, defV, liveInV, dInsn->vA);
handleLiveInUse(useV, defV, liveInV, dInsn->vA+1);
}
if (dfAttributes & DF_UB) {
handleLiveInUse(useV, defV, liveInV, dInsn->vB);
} else if (dfAttributes & DF_UB_WIDE) {
handleLiveInUse(useV, defV, liveInV, dInsn->vB);
handleLiveInUse(useV, defV, liveInV, dInsn->vB+1);
}
if (dfAttributes & DF_UC) {
handleLiveInUse(useV, defV, liveInV, dInsn->vC);
} else if (dfAttributes & DF_UC_WIDE) {
handleLiveInUse(useV, defV, liveInV, dInsn->vC);
handleLiveInUse(useV, defV, liveInV, dInsn->vC+1);
}
}
if (dfAttributes & DF_HAS_DEFS) {
handleDef(defV, dInsn->vA);
if (dfAttributes & DF_DA_WIDE) {
handleDef(defV, dInsn->vA+1);
}
}
}
return true;
}
/* Find out the latest SSA register for a given Dalvik register */
static void handleSSAUse(CompilationUnit *cUnit, int *uses, int dalvikReg,
int regIndex)
{
int encodedValue = cUnit->dalvikToSSAMap[dalvikReg];
int ssaReg = DECODE_REG(encodedValue);
uses[regIndex] = ssaReg;
}
/* Setup a new SSA register for a given Dalvik register */
static void handleSSADef(CompilationUnit *cUnit, int *defs, int dalvikReg,
int regIndex)
{
int encodedValue = cUnit->dalvikToSSAMap[dalvikReg];
int ssaReg = cUnit->numSSARegs++;
/* Bump up the subscript */
int dalvikSub = DECODE_SUB(encodedValue) + 1;
int newD2SMapping = ENCODE_REG_SUB(ssaReg, dalvikSub);
cUnit->dalvikToSSAMap[dalvikReg] = newD2SMapping;
int newS2DMapping = ENCODE_REG_SUB(dalvikReg, dalvikSub);
dvmInsertGrowableList(cUnit->ssaToDalvikMap, newS2DMapping);
defs[regIndex] = ssaReg;
}
/* Loop up new SSA names for format_35c instructions */
static void dataFlowSSAFormat35C(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int numUses = dInsn->vA;
int i;
mir->ssaRep->numUses = numUses;
mir->ssaRep->uses = (int *)dvmCompilerNew(sizeof(int) * numUses, false);
for (i = 0; i < numUses; i++) {
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->arg[i], i);
}
}
/* Loop up new SSA names for format_3rc instructions */
static void dataFlowSSAFormat3RC(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int numUses = dInsn->vA;
int i;
mir->ssaRep->numUses = numUses;
mir->ssaRep->uses = (int *)dvmCompilerNew(sizeof(int) * numUses, false);
for (i = 0; i < numUses; i++) {
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC+i, i);
}
}
/* Entry function to convert a block into SSA representation */
bool dvmCompilerDoSSAConversion(CompilationUnit *cUnit, BasicBlock *bb)
{
MIR *mir;
if (bb->dataFlowInfo == NULL) return false;
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
mir->ssaRep = (struct SSARepresentation *)
dvmCompilerNew(sizeof(SSARepresentation), true);
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opcode];
int numUses = 0;
if (dfAttributes & DF_FORMAT_35C) {
dataFlowSSAFormat35C(cUnit, mir);
continue;
}
if (dfAttributes & DF_FORMAT_3RC) {
dataFlowSSAFormat3RC(cUnit, mir);
continue;
}
if (dfAttributes & DF_HAS_USES) {
if (dfAttributes & DF_UA) {
numUses++;
} else if (dfAttributes & DF_UA_WIDE) {
numUses += 2;
}
if (dfAttributes & DF_UB) {
numUses++;
} else if (dfAttributes & DF_UB_WIDE) {
numUses += 2;
}
if (dfAttributes & DF_UC) {
numUses++;
} else if (dfAttributes & DF_UC_WIDE) {
numUses += 2;
}
}
if (numUses) {
mir->ssaRep->numUses = numUses;
mir->ssaRep->uses = (int *)dvmCompilerNew(sizeof(int) * numUses,
false);
mir->ssaRep->fpUse = (bool *)dvmCompilerNew(sizeof(bool) * numUses,
false);
}
int numDefs = 0;
if (dfAttributes & DF_HAS_DEFS) {
numDefs++;
if (dfAttributes & DF_DA_WIDE) {
numDefs++;
}
}
if (numDefs) {
mir->ssaRep->numDefs = numDefs;
mir->ssaRep->defs = (int *)dvmCompilerNew(sizeof(int) * numDefs,
false);
mir->ssaRep->fpDef = (bool *)dvmCompilerNew(sizeof(bool) * numDefs,
false);
}
DecodedInstruction *dInsn = &mir->dalvikInsn;
if (dfAttributes & DF_HAS_USES) {
numUses = 0;
if (dfAttributes & DF_UA) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA, numUses++);
} else if (dfAttributes & DF_UA_WIDE) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA, numUses++);
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA+1, numUses++);
}
if (dfAttributes & DF_UB) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB, numUses++);
} else if (dfAttributes & DF_UB_WIDE) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB, numUses++);
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB+1, numUses++);
}
if (dfAttributes & DF_UC) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC, numUses++);
} else if (dfAttributes & DF_UC_WIDE) {
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC, numUses++);
mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC+1, numUses++);
}
}
if (dfAttributes & DF_HAS_DEFS) {
mir->ssaRep->fpDef[0] = dfAttributes & DF_FP_A;
handleSSADef(cUnit, mir->ssaRep->defs, dInsn->vA, 0);
if (dfAttributes & DF_DA_WIDE) {
mir->ssaRep->fpDef[1] = dfAttributes & DF_FP_A;
handleSSADef(cUnit, mir->ssaRep->defs, dInsn->vA+1, 1);
}
}
}
/*
* Take a snapshot of Dalvik->SSA mapping at the end of each block. The
* input to PHI nodes can be derived from the snapshot of all predecessor
* blocks.
*/
bb->dataFlowInfo->dalvikToSSAMap =
(int *)dvmCompilerNew(sizeof(int) * cUnit->method->registersSize,
false);
memcpy(bb->dataFlowInfo->dalvikToSSAMap, cUnit->dalvikToSSAMap,
sizeof(int) * cUnit->method->registersSize);
return true;
}
/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
static void setConstant(CompilationUnit *cUnit, int ssaReg, int value)
{
dvmSetBit(cUnit->isConstantV, ssaReg);
cUnit->constantValues[ssaReg] = value;
}
bool dvmCompilerDoConstantPropagation(CompilationUnit *cUnit, BasicBlock *bb)
{
MIR *mir;
BitVector *isConstantV = cUnit->isConstantV;
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opcode];
DecodedInstruction *dInsn = &mir->dalvikInsn;
if (!(dfAttributes & DF_HAS_DEFS)) continue;
/* Handle instructions that set up constants directly */
if (dfAttributes & DF_SETS_CONST) {
if (dfAttributes & DF_DA) {
switch (dInsn->opcode) {
case OP_CONST_4:
case OP_CONST_16:
case OP_CONST:
setConstant(cUnit, mir->ssaRep->defs[0], dInsn->vB);
break;
case OP_CONST_HIGH16:
setConstant(cUnit, mir->ssaRep->defs[0],
dInsn->vB << 16);
break;
default:
break;
}
} else if (dfAttributes & DF_DA_WIDE) {
switch (dInsn->opcode) {
case OP_CONST_WIDE_16:
case OP_CONST_WIDE_32:
setConstant(cUnit, mir->ssaRep->defs[0], dInsn->vB);
setConstant(cUnit, mir->ssaRep->defs[1], 0);
break;
case OP_CONST_WIDE:
setConstant(cUnit, mir->ssaRep->defs[0],
(int) dInsn->vB_wide);
setConstant(cUnit, mir->ssaRep->defs[1],
(int) (dInsn->vB_wide >> 32));
break;
case OP_CONST_WIDE_HIGH16:
setConstant(cUnit, mir->ssaRep->defs[0], 0);
setConstant(cUnit, mir->ssaRep->defs[1],
dInsn->vB << 16);
break;
default:
break;
}
}
/* Handle instructions that set up constants directly */
} else if (dfAttributes & DF_IS_MOVE) {
int i;
for (i = 0; i < mir->ssaRep->numUses; i++) {
if (!dvmIsBitSet(isConstantV, mir->ssaRep->uses[i])) break;
}
/* Move a register holding a constant to another register */
if (i == mir->ssaRep->numUses) {
setConstant(cUnit, mir->ssaRep->defs[0],
cUnit->constantValues[mir->ssaRep->uses[0]]);
if (dfAttributes & DF_DA_WIDE) {
setConstant(cUnit, mir->ssaRep->defs[1],
cUnit->constantValues[mir->ssaRep->uses[1]]);
}
}
}
}
/* TODO: implement code to handle arithmetic operations */
return true;
}
bool dvmCompilerFindInductionVariables(struct CompilationUnit *cUnit,
struct BasicBlock *bb)
{
BitVector *isIndVarV = cUnit->loopAnalysis->isIndVarV;
BitVector *isConstantV = cUnit->isConstantV;
GrowableList *ivList = cUnit->loopAnalysis->ivList;
MIR *mir;
if (bb->blockType != kDalvikByteCode && bb->blockType != kEntryBlock) {
return false;
}
/* If the bb doesn't have a phi it cannot contain an induction variable */
if (bb->firstMIRInsn == NULL ||
(int)bb->firstMIRInsn->dalvikInsn.opcode != (int)kMirOpPhi) {
return false;
}
/* Find basic induction variable first */
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opcode];
if (!(dfAttributes & DF_IS_LINEAR)) continue;
/*
* For a basic induction variable:
* 1) use[0] should belong to the output of a phi node
* 2) def[0] should belong to the input of the same phi node
* 3) the value added/subtracted is a constant
*/
MIR *phi;
for (phi = bb->firstMIRInsn; phi; phi = phi->next) {
if ((int)phi->dalvikInsn.opcode != (int)kMirOpPhi) break;
if (phi->ssaRep->defs[0] == mir->ssaRep->uses[0] &&
phi->ssaRep->uses[1] == mir->ssaRep->defs[0]) {
bool deltaIsConstant = false;
int deltaValue;
switch (mir->dalvikInsn.opcode) {
case OP_ADD_INT:
if (dvmIsBitSet(isConstantV,
mir->ssaRep->uses[1])) {
deltaValue =
cUnit->constantValues[mir->ssaRep->uses[1]];
deltaIsConstant = true;
}
break;
case OP_SUB_INT:
if (dvmIsBitSet(isConstantV,
mir->ssaRep->uses[1])) {
deltaValue =
-cUnit->constantValues[mir->ssaRep->uses[1]];
deltaIsConstant = true;
}
break;
case OP_ADD_INT_LIT8:
deltaValue = mir->dalvikInsn.vC;
deltaIsConstant = true;
break;
default:
break;
}
if (deltaIsConstant) {
dvmSetBit(isIndVarV, mir->ssaRep->uses[0]);
InductionVariableInfo *ivInfo = (InductionVariableInfo *)
dvmCompilerNew(sizeof(InductionVariableInfo),
false);
ivInfo->ssaReg = mir->ssaRep->uses[0];
ivInfo->basicSSAReg = mir->ssaRep->uses[0];
ivInfo->m = 1; // always 1 to basic iv
ivInfo->c = 0; // N/A to basic iv
ivInfo->inc = deltaValue;
dvmInsertGrowableList(ivList, (intptr_t) ivInfo);
cUnit->loopAnalysis->numBasicIV++;
break;
}
}
}
}
/* Find dependent induction variable now */
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opcode];
if (!(dfAttributes & DF_IS_LINEAR)) continue;
/* Skip already identified induction variables */
if (dvmIsBitSet(isIndVarV, mir->ssaRep->defs[0])) continue;
/*
* For a dependent induction variable:
* 1) use[0] should be an induction variable (basic/dependent)
* 2) operand2 should be a constant
*/
if (dvmIsBitSet(isIndVarV, mir->ssaRep->uses[0])) {
int srcDalvikReg = dvmConvertSSARegToDalvik(cUnit,
mir->ssaRep->uses[0]);
int dstDalvikReg = dvmConvertSSARegToDalvik(cUnit,
mir->ssaRep->defs[0]);
bool cIsConstant = false;
int c = 0;
switch (mir->dalvikInsn.opcode) {
case OP_ADD_INT:
if (dvmIsBitSet(isConstantV,
mir->ssaRep->uses[1])) {
c = cUnit->constantValues[mir->ssaRep->uses[1]];
cIsConstant = true;
}
break;
case OP_SUB_INT:
if (dvmIsBitSet(isConstantV,
mir->ssaRep->uses[1])) {
c = -cUnit->constantValues[mir->ssaRep->uses[1]];
cIsConstant = true;
}
break;
case OP_ADD_INT_LIT8:
c = mir->dalvikInsn.vC;
cIsConstant = true;
break;
default:
break;
}
/* Ignore the update to the basic induction variable itself */
if (DECODE_REG(srcDalvikReg) == DECODE_REG(dstDalvikReg)) {
cUnit->loopAnalysis->ssaBIV = mir->ssaRep->defs[0];
cIsConstant = false;
}
if (cIsConstant) {
unsigned int i;
dvmSetBit(isIndVarV, mir->ssaRep->defs[0]);
InductionVariableInfo *ivInfo = (InductionVariableInfo *)
dvmCompilerNew(sizeof(InductionVariableInfo),
false);
InductionVariableInfo *ivInfoOld = NULL ;
for (i = 0; i < ivList->numUsed; i++) {
ivInfoOld = (InductionVariableInfo *) ivList->elemList[i];
if (ivInfoOld->ssaReg == mir->ssaRep->uses[0]) break;
}
/* Guaranteed to find an element */
assert(i < ivList->numUsed);
ivInfo->ssaReg = mir->ssaRep->defs[0];
ivInfo->basicSSAReg = ivInfoOld->basicSSAReg;
ivInfo->m = ivInfoOld->m;
ivInfo->c = c + ivInfoOld->c;
ivInfo->inc = ivInfoOld->inc;
dvmInsertGrowableList(ivList, (intptr_t) ivInfo);
}
}
}
return true;
}
/* Setup the basic data structures for SSA conversion */
void dvmInitializeSSAConversion(CompilationUnit *cUnit)
{
int i;
int numDalvikReg = cUnit->method->registersSize;
cUnit->ssaToDalvikMap = (GrowableList *)dvmCompilerNew(sizeof(GrowableList),
false);
dvmInitGrowableList(cUnit->ssaToDalvikMap, numDalvikReg);
/*
* Initial number of SSA registers is equal to the number of Dalvik
* registers.
*/
cUnit->numSSARegs = numDalvikReg;
/*
* Initialize the SSA2Dalvik map list. For the first numDalvikReg elements,
* the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
* into "(0 << 16) | i"
*/
for (i = 0; i < numDalvikReg; i++) {
dvmInsertGrowableList(cUnit->ssaToDalvikMap, ENCODE_REG_SUB(i, 0));
}
/*
* Initialize the DalvikToSSAMap map. The low 16 bit is the SSA register id,
* while the high 16 bit is the current subscript. The original Dalvik
* register N is mapped to SSA register N with subscript 0.
*/
cUnit->dalvikToSSAMap = (int *)dvmCompilerNew(sizeof(int) * numDalvikReg,
false);
for (i = 0; i < numDalvikReg; i++) {
cUnit->dalvikToSSAMap[i] = i;
}
/*
* Allocate the BasicBlockDataFlow structure for the entry and code blocks
*/
GrowableListIterator iterator;
dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
while (true) {
BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
if (bb == NULL) break;
if (bb->hidden == true) continue;
if (bb->blockType == kDalvikByteCode ||
bb->blockType == kEntryBlock ||
bb->blockType == kExitBlock) {
bb->dataFlowInfo = (BasicBlockDataFlow *)
dvmCompilerNew(sizeof(BasicBlockDataFlow),
true);
}
}
}
/* Clear the visited flag for each BB */
bool dvmCompilerClearVisitedFlag(struct CompilationUnit *cUnit,
struct BasicBlock *bb)
{
bb->visited = false;
return true;
}
void dvmCompilerDataFlowAnalysisDispatcher(CompilationUnit *cUnit,
bool (*func)(CompilationUnit *, BasicBlock *),
DataFlowAnalysisMode dfaMode,
bool isIterative)
{
bool change = true;
while (change) {
change = false;
/* Scan all blocks and perform the operations specified in func */
if (dfaMode == kAllNodes) {
GrowableListIterator iterator;
dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
while (true) {
BasicBlock *bb =
(BasicBlock *) dvmGrowableListIteratorNext(&iterator);
if (bb == NULL) break;
if (bb->hidden == true) continue;
change |= (*func)(cUnit, bb);
}
}
/*
* Scan all reachable blocks and perform the operations specified in
* func.
*/
else if (dfaMode == kReachableNodes) {
int numReachableBlocks = cUnit->numReachableBlocks;
int idx;
const GrowableList *blockList = &cUnit->blockList;
for (idx = 0; idx < numReachableBlocks; idx++) {
int blockIdx = cUnit->dfsOrder.elemList[idx];
BasicBlock *bb =
(BasicBlock *) dvmGrowableListGetElement(blockList,
blockIdx);
change |= (*func)(cUnit, bb);
}
}
/*
* Scan all reachable blocks by the pre-order in the depth-first-search
* CFG and perform the operations specified in func.
*/
else if (dfaMode == kPreOrderDFSTraversal) {
int numReachableBlocks = cUnit->numReachableBlocks;
int idx;
const GrowableList *blockList = &cUnit->blockList;
for (idx = 0; idx < numReachableBlocks; idx++) {
int dfsIdx = cUnit->dfsOrder.elemList[idx];
BasicBlock *bb =
(BasicBlock *) dvmGrowableListGetElement(blockList, dfsIdx);
change |= (*func)(cUnit, bb);
}
}
/*
* Scan all reachable blocks by the post-order in the depth-first-search
* CFG and perform the operations specified in func.
*/
else if (dfaMode == kPostOrderDFSTraversal) {
int numReachableBlocks = cUnit->numReachableBlocks;
int idx;
const GrowableList *blockList = &cUnit->blockList;
for (idx = numReachableBlocks - 1; idx >= 0; idx--) {
int dfsIdx = cUnit->dfsOrder.elemList[idx];
BasicBlock *bb =
(BasicBlock *) dvmGrowableListGetElement(blockList, dfsIdx);
change |= (*func)(cUnit, bb);
}
}
/*
* Scan all reachable blocks by the post-order in the dominator tree
* and perform the operations specified in func.
*/
else if (dfaMode == kPostOrderDOMTraversal) {
int numReachableBlocks = cUnit->numReachableBlocks;
int idx;
const GrowableList *blockList = &cUnit->blockList;
for (idx = 0; idx < numReachableBlocks; idx++) {
int domIdx = cUnit->domPostOrderTraversal.elemList[idx];
BasicBlock *bb =
(BasicBlock *) dvmGrowableListGetElement(blockList, domIdx);
change |= (*func)(cUnit, bb);
}
}
/* If isIterative is false, exit the loop after the first iteration */
change &= isIterative;
}
}
/* Main entry point to do SSA conversion for non-loop traces */
void dvmCompilerNonLoopAnalysis(CompilationUnit *cUnit)
{
dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion,
kAllNodes,
false /* isIterative */);
}