/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "PathRenderer" #define LOG_NDEBUG 1 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #define VERTEX_DEBUG 0 #include <SkPath.h> #include <SkPaint.h> #include <stdlib.h> #include <stdint.h> #include <sys/types.h> #include <utils/Log.h> #include <utils/Trace.h> #include "PathRenderer.h" #include "Matrix.h" #include "Vector.h" #include "Vertex.h" namespace android { namespace uirenderer { #define THRESHOLD 0.5f SkRect PathRenderer::computePathBounds(const SkPath& path, const SkPaint* paint) { SkRect bounds = path.getBounds(); if (paint->getStyle() != SkPaint::kFill_Style) { float outset = paint->getStrokeWidth() * 0.5f; bounds.outset(outset, outset); } return bounds; } void computeInverseScales(const mat4 *transform, float &inverseScaleX, float& inverseScaleY) { if (CC_UNLIKELY(!transform->isPureTranslate())) { float m00 = transform->data[Matrix4::kScaleX]; float m01 = transform->data[Matrix4::kSkewY]; float m10 = transform->data[Matrix4::kSkewX]; float m11 = transform->data[Matrix4::kScaleY]; float scaleX = sqrt(m00 * m00 + m01 * m01); float scaleY = sqrt(m10 * m10 + m11 * m11); inverseScaleX = (scaleX != 0) ? (1.0f / scaleX) : 1.0f; inverseScaleY = (scaleY != 0) ? (1.0f / scaleY) : 1.0f; } else { inverseScaleX = 1.0f; inverseScaleY = 1.0f; } } inline void copyVertex(Vertex* destPtr, const Vertex* srcPtr) { Vertex::set(destPtr, srcPtr->position[0], srcPtr->position[1]); } inline void copyAlphaVertex(AlphaVertex* destPtr, const AlphaVertex* srcPtr) { AlphaVertex::set(destPtr, srcPtr->position[0], srcPtr->position[1], srcPtr->alpha); } /** * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices * will be offset by 1.0 * * Note that we can't add and normalize the two vectors, that would result in a rectangle having an * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1) * * NOTE: assumes angles between normals 90 degrees or less */ inline vec2 totalOffsetFromNormals(const vec2& normalA, const vec2& normalB) { return (normalA + normalB) / (1 + fabs(normalA.dot(normalB))); } inline void scaleOffsetForStrokeWidth(vec2& offset, float halfStrokeWidth, float inverseScaleX, float inverseScaleY) { if (halfStrokeWidth == 0.0f) { // hairline - compensate for scale offset.x *= 0.5f * inverseScaleX; offset.y *= 0.5f * inverseScaleY; } else { offset *= halfStrokeWidth; } } void getFillVerticesFromPerimeter(const Vector<Vertex>& perimeter, VertexBuffer& vertexBuffer) { Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size()); int currentIndex = 0; // zig zag between all previous points on the inside of the hull to create a // triangle strip that fills the hull int srcAindex = 0; int srcBindex = perimeter.size() - 1; while (srcAindex <= srcBindex) { copyVertex(&buffer[currentIndex++], &perimeter[srcAindex]); if (srcAindex == srcBindex) break; copyVertex(&buffer[currentIndex++], &perimeter[srcBindex]); srcAindex++; srcBindex--; } } void getStrokeVerticesFromPerimeter(const Vector<Vertex>& perimeter, float halfStrokeWidth, VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) { Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2); int currentIndex = 0; const Vertex* last = &(perimeter[perimeter.size() - 1]); const Vertex* current = &(perimeter[0]); vec2 lastNormal(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (unsigned int i = 0; i < perimeter.size(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); vec2 nextNormal(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.x, current->position[1] + totalOffset.y); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.x, current->position[1] - totalOffset.y); last = current; current = next; lastNormal = nextNormal; } // wrap around to beginning copyVertex(&buffer[currentIndex++], &buffer[0]); copyVertex(&buffer[currentIndex++], &buffer[1]); } void getStrokeVerticesFromUnclosedVertices(const Vector<Vertex>& vertices, float halfStrokeWidth, VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) { Vertex* buffer = vertexBuffer.alloc<Vertex>(vertices.size() * 2); int currentIndex = 0; const Vertex* current = &(vertices[0]); vec2 lastNormal; for (unsigned int i = 0; i < vertices.size() - 1; i++) { const Vertex* next = &(vertices[i + 1]); vec2 nextNormal(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); vec2 totalOffset; if (i == 0) { totalOffset = nextNormal; } else { totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); } scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.x, current->position[1] + totalOffset.y); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.x, current->position[1] - totalOffset.y); current = next; lastNormal = nextNormal; } vec2 totalOffset = lastNormal; scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.x, current->position[1] + totalOffset.y); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.x, current->position[1] - totalOffset.y); #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { ALOGD("point at %f %f", buffer[i].position[0], buffer[i].position[1]); } #endif } void getFillVerticesFromPerimeterAA(const Vector<Vertex>& perimeter, VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2); // generate alpha points - fill Alpha vertex gaps in between each point with // alpha 0 vertex, offset by a scaled normal. int currentIndex = 0; const Vertex* last = &(perimeter[perimeter.size() - 1]); const Vertex* current = &(perimeter[0]); vec2 lastNormal(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (unsigned int i = 0; i < perimeter.size(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); vec2 nextNormal(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); // AA point offset from original point is that point's normal, such that each side is offset // by .5 pixels vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); totalOffset.x *= 0.5f * inverseScaleX; totalOffset.y *= 0.5f * inverseScaleY; AlphaVertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.x, current->position[1] + totalOffset.y, 0.0f); AlphaVertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.x, current->position[1] - totalOffset.y, 1.0f); last = current; current = next; lastNormal = nextNormal; } // wrap around to beginning copyAlphaVertex(&buffer[currentIndex++], &buffer[0]); copyAlphaVertex(&buffer[currentIndex++], &buffer[1]); // zig zag between all previous points on the inside of the hull to create a // triangle strip that fills the hull, repeating the first inner point to // create degenerate tris to start inside path int srcAindex = 0; int srcBindex = perimeter.size() - 1; while (srcAindex <= srcBindex) { copyAlphaVertex(&buffer[currentIndex++], &buffer[srcAindex * 2 + 1]); if (srcAindex == srcBindex) break; copyAlphaVertex(&buffer[currentIndex++], &buffer[srcBindex * 2 + 1]); srcAindex++; srcBindex--; } #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } void getStrokeVerticesFromUnclosedVerticesAA(const Vector<Vertex>& vertices, float halfStrokeWidth, VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * vertices.size() + 2); // avoid lines smaller than hairline since they break triangle based sampling. instead reducing // alpha value (TODO: support different X/Y scale) float maxAlpha = 1.0f; if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && halfStrokeWidth * inverseScaleX < 0.5f) { maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; halfStrokeWidth = 0.0f; } // there is no outer/inner here, using them for consistency with below approach int offset = 2 * (vertices.size() - 2); int currentAAOuterIndex = 2; int currentAAInnerIndex = 2 * offset + 5; // reversed int currentStrokeIndex = currentAAInnerIndex + 7; const Vertex* last = &(vertices[0]); const Vertex* current = &(vertices[1]); vec2 lastNormal(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); { // start cap vec2 totalOffset = lastNormal; vec2 AAOffset = totalOffset; AAOffset.x *= 0.5f * inverseScaleX; AAOffset.y *= 0.5f * inverseScaleY; vec2 innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); vec2 outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; // TODO: support square cap by changing this offset to incorporate halfStrokeWidth vec2 capAAOffset(AAOffset.y, -AAOffset.x); AlphaVertex::set(&buffer[0], last->position[0] + outerOffset.x + capAAOffset.x, last->position[1] + outerOffset.y + capAAOffset.y, 0.0f); AlphaVertex::set(&buffer[1], last->position[0] + innerOffset.x - capAAOffset.x, last->position[1] + innerOffset.y - capAAOffset.y, maxAlpha); AlphaVertex::set(&buffer[2 * offset + 6], last->position[0] - outerOffset.x + capAAOffset.x, last->position[1] - outerOffset.y + capAAOffset.y, 0.0f); AlphaVertex::set(&buffer[2 * offset + 7], last->position[0] - innerOffset.x - capAAOffset.x, last->position[1] - innerOffset.y - capAAOffset.y, maxAlpha); copyAlphaVertex(&buffer[2 * offset + 8], &buffer[0]); copyAlphaVertex(&buffer[2 * offset + 9], &buffer[1]); copyAlphaVertex(&buffer[2 * offset + 10], &buffer[1]); // degenerate tris (the only two!) copyAlphaVertex(&buffer[2 * offset + 11], &buffer[2 * offset + 7]); } for (unsigned int i = 1; i < vertices.size() - 1; i++) { const Vertex* next = &(vertices[i + 1]); vec2 nextNormal(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); vec2 AAOffset = totalOffset; AAOffset.x *= 0.5f * inverseScaleX; AAOffset.y *= 0.5f * inverseScaleY; vec2 innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); vec2 outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + outerOffset.x, current->position[1] + outerOffset.y, 0.0f); AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + innerOffset.x, current->position[1] + innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] + innerOffset.x, current->position[1] + innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] - innerOffset.x, current->position[1] - innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex--], current->position[0] - innerOffset.x, current->position[1] - innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex--], current->position[0] - outerOffset.x, current->position[1] - outerOffset.y, 0.0f); last = current; current = next; lastNormal = nextNormal; } { // end cap vec2 totalOffset = lastNormal; vec2 AAOffset = totalOffset; AAOffset.x *= 0.5f * inverseScaleX; AAOffset.y *= 0.5f * inverseScaleY; vec2 innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); vec2 outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; // TODO: support square cap by changing this offset to incorporate halfStrokeWidth vec2 capAAOffset(-AAOffset.y, AAOffset.x); AlphaVertex::set(&buffer[offset + 2], current->position[0] + outerOffset.x + capAAOffset.x, current->position[1] + outerOffset.y + capAAOffset.y, 0.0f); AlphaVertex::set(&buffer[offset + 3], current->position[0] + innerOffset.x - capAAOffset.x, current->position[1] + innerOffset.y - capAAOffset.y, maxAlpha); AlphaVertex::set(&buffer[offset + 4], current->position[0] - outerOffset.x + capAAOffset.x, current->position[1] - outerOffset.y + capAAOffset.y, 0.0f); AlphaVertex::set(&buffer[offset + 5], current->position[0] - innerOffset.x - capAAOffset.x, current->position[1] - innerOffset.y - capAAOffset.y, maxAlpha); copyAlphaVertex(&buffer[vertexBuffer.getSize() - 2], &buffer[offset + 3]); copyAlphaVertex(&buffer[vertexBuffer.getSize() - 1], &buffer[offset + 5]); } #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } void getStrokeVerticesFromPerimeterAA(const Vector<Vertex>& perimeter, float halfStrokeWidth, VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8); // avoid lines smaller than hairline since they break triangle based sampling. instead reducing // alpha value (TODO: support different X/Y scale) float maxAlpha = 1.0f; if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && halfStrokeWidth * inverseScaleX < 0.5f) { maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; halfStrokeWidth = 0.0f; } int offset = 2 * perimeter.size() + 3; int currentAAOuterIndex = 0; int currentStrokeIndex = offset; int currentAAInnerIndex = offset * 2; const Vertex* last = &(perimeter[perimeter.size() - 1]); const Vertex* current = &(perimeter[0]); vec2 lastNormal(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (unsigned int i = 0; i < perimeter.size(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); vec2 nextNormal(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); vec2 AAOffset = totalOffset; AAOffset.x *= 0.5f * inverseScaleX; AAOffset.y *= 0.5f * inverseScaleY; vec2 innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); vec2 outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + outerOffset.x, current->position[1] + outerOffset.y, 0.0f); AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + innerOffset.x, current->position[1] + innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] + innerOffset.x, current->position[1] + innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] - innerOffset.x, current->position[1] - innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex++], current->position[0] - innerOffset.x, current->position[1] - innerOffset.y, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex++], current->position[0] - outerOffset.x, current->position[1] - outerOffset.y, 0.0f); last = current; current = next; lastNormal = nextNormal; } // wrap each strip around to beginning, creating degenerate tris to bridge strips copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[0]); copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset]); copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset + 1]); // don't need to create last degenerate tri #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } void PathRenderer::convexPathVertices(const SkPath &path, const SkPaint* paint, const mat4 *transform, VertexBuffer& vertexBuffer) { ATRACE_CALL(); SkPaint::Style style = paint->getStyle(); bool isAA = paint->isAntiAlias(); float inverseScaleX, inverseScaleY; computeInverseScales(transform, inverseScaleX, inverseScaleY); Vector<Vertex> tempVertices; float threshInvScaleX = inverseScaleX; float threshInvScaleY = inverseScaleY; if (style == SkPaint::kStroke_Style) { // alter the bezier recursion threshold values we calculate in order to compensate for // expansion done after the path vertices are found SkRect bounds = path.getBounds(); if (!bounds.isEmpty()) { threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth()); threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth()); } } // force close if we're filling the path, since fill path expects closed perimeter. bool forceClose = style != SkPaint::kStroke_Style; bool wasClosed = convexPathPerimeterVertices(path, forceClose, threshInvScaleX * threshInvScaleX, threshInvScaleY * threshInvScaleY, tempVertices); if (!tempVertices.size()) { // path was empty, return without allocating vertex buffer return; } #if VERTEX_DEBUG for (unsigned int i = 0; i < tempVertices.size(); i++) { ALOGD("orig path: point at %f %f", tempVertices[i].position[0], tempVertices[i].position[1]); } #endif if (style == SkPaint::kStroke_Style) { float halfStrokeWidth = paint->getStrokeWidth() * 0.5f; if (!isAA) { if (wasClosed) { getStrokeVerticesFromPerimeter(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } else { getStrokeVerticesFromUnclosedVertices(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } } else { if (wasClosed) { getStrokeVerticesFromPerimeterAA(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } else { getStrokeVerticesFromUnclosedVerticesAA(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } } } else { // For kStrokeAndFill style, the path should be adjusted externally, as it will be treated as a fill here. if (!isAA) { getFillVerticesFromPerimeter(tempVertices, vertexBuffer); } else { getFillVerticesFromPerimeterAA(tempVertices, vertexBuffer, inverseScaleX, inverseScaleY); } } } void pushToVector(Vector<Vertex>& vertices, float x, float y) { // TODO: make this not yuck vertices.push(); Vertex* newVertex = &(vertices.editArray()[vertices.size() - 1]); Vertex::set(newVertex, x, y); } bool PathRenderer::convexPathPerimeterVertices(const SkPath& path, bool forceClose, float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) { ATRACE_CALL(); // TODO: to support joins other than sharp miter, join vertices should be labelled in the // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case. SkPath::Iter iter(path, forceClose); SkPoint pts[4]; SkPath::Verb v; Vertex* newVertex = 0; while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: pushToVector(outputVertices, pts[0].x(), pts[0].y()); ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y()); break; case SkPath::kClose_Verb: ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y()); break; case SkPath::kLine_Verb: ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y()); pushToVector(outputVertices, pts[1].x(), pts[1].y()); break; case SkPath::kQuad_Verb: ALOGV("kQuad_Verb"); recursiveQuadraticBezierVertices( pts[0].x(), pts[0].y(), pts[2].x(), pts[2].y(), pts[1].x(), pts[1].y(), sqrInvScaleX, sqrInvScaleY, outputVertices); break; case SkPath::kCubic_Verb: ALOGV("kCubic_Verb"); recursiveCubicBezierVertices( pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y(), pts[3].x(), pts[3].y(), pts[2].x(), pts[2].y(), sqrInvScaleX, sqrInvScaleY, outputVertices); break; default: break; } } int size = outputVertices.size(); if (size >= 2 && outputVertices[0].position[0] == outputVertices[size - 1].position[0] && outputVertices[0].position[1] == outputVertices[size - 1].position[1]) { outputVertices.pop(); return true; } return false; } void PathRenderer::recursiveCubicBezierVertices( float p1x, float p1y, float c1x, float c1y, float p2x, float p2y, float c2x, float c2y, float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) { float dx = p2x - p1x; float dy = p2y - p1y; float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx); float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx); float d = d1 + d2; // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { // below thresh, draw line by adding endpoint pushToVector(outputVertices, p2x, p2y); } else { float p1c1x = (p1x + c1x) * 0.5f; float p1c1y = (p1y + c1y) * 0.5f; float p2c2x = (p2x + c2x) * 0.5f; float p2c2y = (p2y + c2y) * 0.5f; float c1c2x = (c1x + c2x) * 0.5f; float c1c2y = (c1y + c2y) * 0.5f; float p1c1c2x = (p1c1x + c1c2x) * 0.5f; float p1c1c2y = (p1c1y + c1c2y) * 0.5f; float p2c1c2x = (p2c2x + c1c2x) * 0.5f; float p2c1c2y = (p2c2y + c1c2y) * 0.5f; float mx = (p1c1c2x + p2c1c2x) * 0.5f; float my = (p1c1c2y + p2c1c2y) * 0.5f; recursiveCubicBezierVertices( p1x, p1y, p1c1x, p1c1y, mx, my, p1c1c2x, p1c1c2y, sqrInvScaleX, sqrInvScaleY, outputVertices); recursiveCubicBezierVertices( mx, my, p2c1c2x, p2c1c2y, p2x, p2y, p2c2x, p2c2y, sqrInvScaleX, sqrInvScaleY, outputVertices); } } void PathRenderer::recursiveQuadraticBezierVertices( float ax, float ay, float bx, float by, float cx, float cy, float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) { float dx = bx - ax; float dy = by - ay; float d = (cx - bx) * dy - (cy - by) * dx; if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { // below thresh, draw line by adding endpoint pushToVector(outputVertices, bx, by); } else { float acx = (ax + cx) * 0.5f; float bcx = (bx + cx) * 0.5f; float acy = (ay + cy) * 0.5f; float bcy = (by + cy) * 0.5f; // midpoint float mx = (acx + bcx) * 0.5f; float my = (acy + bcy) * 0.5f; recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, sqrInvScaleX, sqrInvScaleY, outputVertices); recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, sqrInvScaleX, sqrInvScaleY, outputVertices); } } }; // namespace uirenderer }; // namespace android