/* * Copyright (C) 2000 Lars Knoll (knoll@kde.org) * Copyright (C) 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All right reserved. * Copyright (C) 2010 Google Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "BidiResolver.h" #include "Hyphenation.h" #include "InlineIterator.h" #include "InlineTextBox.h" #include "Logging.h" #include "RenderArena.h" #include "RenderCombineText.h" #include "RenderInline.h" #include "RenderLayer.h" #include "RenderListMarker.h" #include "RenderRubyRun.h" #include "RenderView.h" #include "Settings.h" #include "TextBreakIterator.h" #include "TextRun.h" #include "TrailingFloatsRootInlineBox.h" #include "VerticalPositionCache.h" #include "break_lines.h" #include <wtf/AlwaysInline.h> #include <wtf/RefCountedLeakCounter.h> #include <wtf/StdLibExtras.h> #include <wtf/Vector.h> #include <wtf/unicode/CharacterNames.h> #if ENABLE(SVG) #include "RenderSVGInlineText.h" #include "SVGRootInlineBox.h" #endif #ifdef ANDROID_LAYOUT #include "Frame.h" #include "FrameTree.h" #include "Settings.h" #include "Text.h" #include "HTMLNames.h" #endif // ANDROID_LAYOUT using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { // We don't let our line box tree for a single line get any deeper than this. const unsigned cMaxLineDepth = 200; static inline int borderPaddingMarginStart(RenderInline* child) { return child->marginStart() + child->paddingStart() + child->borderStart(); } static inline int borderPaddingMarginEnd(RenderInline* child) { return child->marginEnd() + child->paddingEnd() + child->borderEnd(); } static int inlineLogicalWidth(RenderObject* child, bool start = true, bool end = true) { unsigned lineDepth = 1; int extraWidth = 0; RenderObject* parent = child->parent(); while (parent->isRenderInline() && lineDepth++ < cMaxLineDepth) { RenderInline* parentAsRenderInline = toRenderInline(parent); if (start && !child->previousSibling()) extraWidth += borderPaddingMarginStart(parentAsRenderInline); if (end && !child->nextSibling()) extraWidth += borderPaddingMarginEnd(parentAsRenderInline); child = parent; parent = child->parent(); } return extraWidth; } static void checkMidpoints(LineMidpointState& lineMidpointState, InlineIterator& lBreak) { // Check to see if our last midpoint is a start point beyond the line break. If so, // shave it off the list, and shave off a trailing space if the previous end point doesn't // preserve whitespace. if (lBreak.m_obj && lineMidpointState.numMidpoints && !(lineMidpointState.numMidpoints % 2)) { InlineIterator* midpoints = lineMidpointState.midpoints.data(); InlineIterator& endpoint = midpoints[lineMidpointState.numMidpoints - 2]; const InlineIterator& startpoint = midpoints[lineMidpointState.numMidpoints - 1]; InlineIterator currpoint = endpoint; while (!currpoint.atEnd() && currpoint != startpoint && currpoint != lBreak) currpoint.increment(); if (currpoint == lBreak) { // We hit the line break before the start point. Shave off the start point. lineMidpointState.numMidpoints--; if (endpoint.m_obj->style()->collapseWhiteSpace()) endpoint.m_pos--; } } } static void addMidpoint(LineMidpointState& lineMidpointState, const InlineIterator& midpoint) { if (lineMidpointState.midpoints.size() <= lineMidpointState.numMidpoints) lineMidpointState.midpoints.grow(lineMidpointState.numMidpoints + 10); InlineIterator* midpoints = lineMidpointState.midpoints.data(); midpoints[lineMidpointState.numMidpoints++] = midpoint; } static inline BidiRun* createRun(int start, int end, RenderObject* obj, InlineBidiResolver& resolver) { return new (obj->renderArena()) BidiRun(start, end, obj, resolver.context(), resolver.dir()); } void RenderBlock::appendRunsForObject(BidiRunList<BidiRun>& runs, int start, int end, RenderObject* obj, InlineBidiResolver& resolver) { if (start > end || obj->isFloating() || (obj->isPositioned() && !obj->style()->isOriginalDisplayInlineType() && !obj->container()->isRenderInline())) return; LineMidpointState& lineMidpointState = resolver.midpointState(); bool haveNextMidpoint = (lineMidpointState.currentMidpoint < lineMidpointState.numMidpoints); InlineIterator nextMidpoint; if (haveNextMidpoint) nextMidpoint = lineMidpointState.midpoints[lineMidpointState.currentMidpoint]; if (lineMidpointState.betweenMidpoints) { if (!(haveNextMidpoint && nextMidpoint.m_obj == obj)) return; // This is a new start point. Stop ignoring objects and // adjust our start. lineMidpointState.betweenMidpoints = false; start = nextMidpoint.m_pos; lineMidpointState.currentMidpoint++; if (start < end) return appendRunsForObject(runs, start, end, obj, resolver); } else { if (!haveNextMidpoint || (obj != nextMidpoint.m_obj)) { runs.addRun(createRun(start, end, obj, resolver)); return; } // An end midpoint has been encountered within our object. We // need to go ahead and append a run with our endpoint. if (static_cast<int>(nextMidpoint.m_pos + 1) <= end) { lineMidpointState.betweenMidpoints = true; lineMidpointState.currentMidpoint++; if (nextMidpoint.m_pos != UINT_MAX) { // UINT_MAX means stop at the object and don't include any of it. if (static_cast<int>(nextMidpoint.m_pos + 1) > start) runs.addRun(createRun(start, nextMidpoint.m_pos + 1, obj, resolver)); return appendRunsForObject(runs, nextMidpoint.m_pos + 1, end, obj, resolver); } } else runs.addRun(createRun(start, end, obj, resolver)); } } static inline InlineBox* createInlineBoxForRenderer(RenderObject* obj, bool isRootLineBox, bool isOnlyRun = false) { if (isRootLineBox) return toRenderBlock(obj)->createAndAppendRootInlineBox(); if (obj->isText()) { InlineTextBox* textBox = toRenderText(obj)->createInlineTextBox(); // We only treat a box as text for a <br> if we are on a line by ourself or in strict mode // (Note the use of strict mode. In "almost strict" mode, we don't treat the box for <br> as text.) if (obj->isBR()) textBox->setIsText(isOnlyRun || obj->document()->inNoQuirksMode()); return textBox; } if (obj->isBox()) return toRenderBox(obj)->createInlineBox(); return toRenderInline(obj)->createAndAppendInlineFlowBox(); } static inline void dirtyLineBoxesForRenderer(RenderObject* o, bool fullLayout) { if (o->isText()) { if (o->preferredLogicalWidthsDirty() && (o->isCounter() || o->isQuote())) toRenderText(o)->computePreferredLogicalWidths(0); // FIXME: Counters depend on this hack. No clue why. Should be investigated and removed. toRenderText(o)->dirtyLineBoxes(fullLayout); } else toRenderInline(o)->dirtyLineBoxes(fullLayout); } static bool parentIsConstructedOrHaveNext(InlineFlowBox* parentBox) { do { if (parentBox->isConstructed() || parentBox->nextOnLine()) return true; parentBox = parentBox->parent(); } while (parentBox); return false; } InlineFlowBox* RenderBlock::createLineBoxes(RenderObject* obj, bool firstLine, InlineBox* childBox) { // See if we have an unconstructed line box for this object that is also // the last item on the line. unsigned lineDepth = 1; InlineFlowBox* parentBox = 0; InlineFlowBox* result = 0; bool hasDefaultLineBoxContain = style()->lineBoxContain() == RenderStyle::initialLineBoxContain(); do { ASSERT(obj->isRenderInline() || obj == this); RenderInline* inlineFlow = (obj != this) ? toRenderInline(obj) : 0; // Get the last box we made for this render object. parentBox = inlineFlow ? inlineFlow->lastLineBox() : toRenderBlock(obj)->lastLineBox(); // If this box or its ancestor is constructed then it is from a previous line, and we need // to make a new box for our line. If this box or its ancestor is unconstructed but it has // something following it on the line, then we know we have to make a new box // as well. In this situation our inline has actually been split in two on // the same line (this can happen with very fancy language mixtures). bool constructedNewBox = false; bool allowedToConstructNewBox = !hasDefaultLineBoxContain || !inlineFlow || inlineFlow->alwaysCreateLineBoxes(); bool canUseExistingParentBox = parentBox && !parentIsConstructedOrHaveNext(parentBox); if (allowedToConstructNewBox && !canUseExistingParentBox) { // We need to make a new box for this render object. Once // made, we need to place it at the end of the current line. InlineBox* newBox = createInlineBoxForRenderer(obj, obj == this); ASSERT(newBox->isInlineFlowBox()); parentBox = static_cast<InlineFlowBox*>(newBox); parentBox->setFirstLineStyleBit(firstLine); parentBox->setIsHorizontal(isHorizontalWritingMode()); if (!hasDefaultLineBoxContain) parentBox->clearDescendantsHaveSameLineHeightAndBaseline(); constructedNewBox = true; } if (constructedNewBox || canUseExistingParentBox) { if (!result) result = parentBox; // If we have hit the block itself, then |box| represents the root // inline box for the line, and it doesn't have to be appended to any parent // inline. if (childBox) parentBox->addToLine(childBox); if (!constructedNewBox || obj == this) break; childBox = parentBox; } // If we've exceeded our line depth, then jump straight to the root and skip all the remaining // intermediate inline flows. obj = (++lineDepth >= cMaxLineDepth) ? this : obj->parent(); } while (true); return result; } static bool reachedEndOfTextRenderer(const BidiRunList<BidiRun>& bidiRuns) { BidiRun* run = bidiRuns.logicallyLastRun(); if (!run) return true; unsigned int pos = run->stop(); RenderObject* r = run->m_object; if (!r->isText() || r->isBR()) return false; RenderText* renderText = toRenderText(r); if (pos >= renderText->textLength()) return true; while (isASCIISpace(renderText->characters()[pos])) { pos++; if (pos >= renderText->textLength()) return true; } return false; } RootInlineBox* RenderBlock::constructLine(BidiRunList<BidiRun>& bidiRuns, bool firstLine, bool lastLine) { ASSERT(bidiRuns.firstRun()); bool rootHasSelectedChildren = false; InlineFlowBox* parentBox = 0; for (BidiRun* r = bidiRuns.firstRun(); r; r = r->next()) { // Create a box for our object. bool isOnlyRun = (bidiRuns.runCount() == 1); if (bidiRuns.runCount() == 2 && !r->m_object->isListMarker()) isOnlyRun = (!style()->isLeftToRightDirection() ? bidiRuns.lastRun() : bidiRuns.firstRun())->m_object->isListMarker(); InlineBox* box = createInlineBoxForRenderer(r->m_object, false, isOnlyRun); r->m_box = box; ASSERT(box); if (!box) continue; if (!rootHasSelectedChildren && box->renderer()->selectionState() != RenderObject::SelectionNone) rootHasSelectedChildren = true; // If we have no parent box yet, or if the run is not simply a sibling, // then we need to construct inline boxes as necessary to properly enclose the // run's inline box. if (!parentBox || parentBox->renderer() != r->m_object->parent()) // Create new inline boxes all the way back to the appropriate insertion point. parentBox = createLineBoxes(r->m_object->parent(), firstLine, box); else { // Append the inline box to this line. parentBox->addToLine(box); } bool visuallyOrdered = r->m_object->style()->visuallyOrdered(); box->setBidiLevel(r->level()); if (box->isInlineTextBox()) { InlineTextBox* text = static_cast<InlineTextBox*>(box); text->setStart(r->m_start); text->setLen(r->m_stop - r->m_start); text->m_dirOverride = r->dirOverride(visuallyOrdered); if (r->m_hasHyphen) text->setHasHyphen(true); } } // We should have a root inline box. It should be unconstructed and // be the last continuation of our line list. ASSERT(lastLineBox() && !lastLineBox()->isConstructed()); // Set the m_selectedChildren flag on the root inline box if one of the leaf inline box // from the bidi runs walk above has a selection state. if (rootHasSelectedChildren) lastLineBox()->root()->setHasSelectedChildren(true); // Set bits on our inline flow boxes that indicate which sides should // paint borders/margins/padding. This knowledge will ultimately be used when // we determine the horizontal positions and widths of all the inline boxes on // the line. bool isLogicallyLastRunWrapped = bidiRuns.logicallyLastRun()->m_object && bidiRuns.logicallyLastRun()->m_object->isText() ? !reachedEndOfTextRenderer(bidiRuns) : true; lastLineBox()->determineSpacingForFlowBoxes(lastLine, isLogicallyLastRunWrapped, bidiRuns.logicallyLastRun()->m_object); // Now mark the line boxes as being constructed. lastLineBox()->setConstructed(); // Return the last line. return lastRootBox(); } ETextAlign RenderBlock::textAlignmentForLine(bool endsWithSoftBreak) const { ETextAlign alignment = style()->textAlign(); if (!endsWithSoftBreak && alignment == JUSTIFY) alignment = TAAUTO; return alignment; } static void updateLogicalWidthForLeftAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth) { // The direction of the block should determine what happens with wide lines. // In particular with RTL blocks, wide lines should still spill out to the left. if (isLeftToRightDirection) { if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun) trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth)); return; } if (trailingSpaceRun) trailingSpaceRun->m_box->setLogicalWidth(0); else if (totalLogicalWidth > availableLogicalWidth) logicalLeft -= (totalLogicalWidth - availableLogicalWidth); } static void updateLogicalWidthForRightAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth) { // Wide lines spill out of the block based off direction. // So even if text-align is right, if direction is LTR, wide lines should overflow out of the right // side of the block. if (isLeftToRightDirection) { if (trailingSpaceRun) { totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth(); trailingSpaceRun->m_box->setLogicalWidth(0); } if (totalLogicalWidth < availableLogicalWidth) logicalLeft += availableLogicalWidth - totalLogicalWidth; return; } if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun) { trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth)); totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth(); } else logicalLeft += availableLogicalWidth - totalLogicalWidth; } static void updateLogicalWidthForCenterAlignedBlock(bool isLeftToRightDirection, BidiRun* trailingSpaceRun, float& logicalLeft, float& totalLogicalWidth, float availableLogicalWidth) { float trailingSpaceWidth = 0; if (trailingSpaceRun) { totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth(); trailingSpaceWidth = min(trailingSpaceRun->m_box->logicalWidth(), (availableLogicalWidth - totalLogicalWidth + 1) / 2); trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceWidth)); } if (isLeftToRightDirection) logicalLeft += max<float>((availableLogicalWidth - totalLogicalWidth) / 2, 0); else logicalLeft += totalLogicalWidth > availableLogicalWidth ? (availableLogicalWidth - totalLogicalWidth) : (availableLogicalWidth - totalLogicalWidth) / 2 - trailingSpaceWidth; } void RenderBlock::computeInlineDirectionPositionsForLine(RootInlineBox* lineBox, bool firstLine, BidiRun* firstRun, BidiRun* trailingSpaceRun, bool reachedEnd, GlyphOverflowAndFallbackFontsMap& textBoxDataMap, VerticalPositionCache& verticalPositionCache) { ETextAlign textAlign = textAlignmentForLine(!reachedEnd && !lineBox->endsWithBreak()); float logicalLeft = logicalLeftOffsetForLine(logicalHeight(), firstLine); float availableLogicalWidth = logicalRightOffsetForLine(logicalHeight(), firstLine) - logicalLeft; bool needsWordSpacing = false; float totalLogicalWidth = lineBox->getFlowSpacingLogicalWidth(); unsigned expansionOpportunityCount = 0; bool isAfterExpansion = true; Vector<unsigned, 16> expansionOpportunities; RenderObject* previousObject = 0; for (BidiRun* r = firstRun; r; r = r->next()) { if (!r->m_box || r->m_object->isPositioned() || r->m_box->isLineBreak()) continue; // Positioned objects are only participating to figure out their // correct static x position. They have no effect on the width. // Similarly, line break boxes have no effect on the width. if (r->m_object->isText()) { RenderText* rt = toRenderText(r->m_object); if (textAlign == JUSTIFY && r != trailingSpaceRun) { if (!isAfterExpansion) static_cast<InlineTextBox*>(r->m_box)->setCanHaveLeadingExpansion(true); unsigned opportunitiesInRun = Font::expansionOpportunityCount(rt->characters() + r->m_start, r->m_stop - r->m_start, r->m_box->direction(), isAfterExpansion); expansionOpportunities.append(opportunitiesInRun); expansionOpportunityCount += opportunitiesInRun; } if (int length = rt->textLength()) { if (!r->m_start && needsWordSpacing && isSpaceOrNewline(rt->characters()[r->m_start])) totalLogicalWidth += rt->style(firstLine)->font().wordSpacing(); needsWordSpacing = !isSpaceOrNewline(rt->characters()[r->m_stop - 1]) && r->m_stop == length; } HashSet<const SimpleFontData*> fallbackFonts; GlyphOverflow glyphOverflow; // Always compute glyph overflow if the block's line-box-contain value is "glyphs". if (lineBox->fitsToGlyphs()) { // If we don't stick out of the root line's font box, then don't bother computing our glyph overflow. This optimization // will keep us from computing glyph bounds in nearly all cases. bool includeRootLine = lineBox->includesRootLineBoxFontOrLeading(); int baselineShift = lineBox->verticalPositionForBox(r->m_box, verticalPositionCache); int rootDescent = includeRootLine ? lineBox->renderer()->style(firstLine)->font().fontMetrics().descent() : 0; int rootAscent = includeRootLine ? lineBox->renderer()->style(firstLine)->font().fontMetrics().ascent() : 0; int boxAscent = rt->style(firstLine)->font().fontMetrics().ascent() - baselineShift; int boxDescent = rt->style(firstLine)->font().fontMetrics().descent() + baselineShift; if (boxAscent > rootDescent || boxDescent > rootAscent) glyphOverflow.computeBounds = true; } int hyphenWidth = 0; if (static_cast<InlineTextBox*>(r->m_box)->hasHyphen()) { const AtomicString& hyphenString = rt->style()->hyphenString(); hyphenWidth = rt->style(firstLine)->font().width(TextRun(hyphenString.characters(), hyphenString.length())); } r->m_box->setLogicalWidth(rt->width(r->m_start, r->m_stop - r->m_start, totalLogicalWidth, firstLine, &fallbackFonts, &glyphOverflow) + hyphenWidth); if (!fallbackFonts.isEmpty()) { ASSERT(r->m_box->isText()); GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.add(static_cast<InlineTextBox*>(r->m_box), make_pair(Vector<const SimpleFontData*>(), GlyphOverflow())).first; ASSERT(it->second.first.isEmpty()); copyToVector(fallbackFonts, it->second.first); r->m_box->parent()->clearDescendantsHaveSameLineHeightAndBaseline(); } if ((glyphOverflow.top || glyphOverflow.bottom || glyphOverflow.left || glyphOverflow.right)) { ASSERT(r->m_box->isText()); GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.add(static_cast<InlineTextBox*>(r->m_box), make_pair(Vector<const SimpleFontData*>(), GlyphOverflow())).first; it->second.second = glyphOverflow; r->m_box->clearKnownToHaveNoOverflow(); } } else { isAfterExpansion = false; if (!r->m_object->isRenderInline()) { RenderBox* renderBox = toRenderBox(r->m_object); if (renderBox->isRubyRun()) { int startOverhang; int endOverhang; RenderObject* nextObject = 0; for (BidiRun* runWithNextObject = r->next(); runWithNextObject; runWithNextObject = runWithNextObject->next()) { if (!runWithNextObject->m_object->isPositioned() && !runWithNextObject->m_box->isLineBreak()) { nextObject = runWithNextObject->m_object; break; } } toRenderRubyRun(renderBox)->getOverhang(firstLine, renderBox->style()->isLeftToRightDirection() ? previousObject : nextObject, renderBox->style()->isLeftToRightDirection() ? nextObject : previousObject, startOverhang, endOverhang); setMarginStartForChild(renderBox, -startOverhang); setMarginEndForChild(renderBox, -endOverhang); } r->m_box->setLogicalWidth(logicalWidthForChild(renderBox)); totalLogicalWidth += marginStartForChild(renderBox) + marginEndForChild(renderBox); } } totalLogicalWidth += r->m_box->logicalWidth(); previousObject = r->m_object; } if (isAfterExpansion && !expansionOpportunities.isEmpty()) { expansionOpportunities.last()--; expansionOpportunityCount--; } // Armed with the total width of the line (without justification), // we now examine our text-align property in order to determine where to position the // objects horizontally. The total width of the line can be increased if we end up // justifying text. switch (textAlign) { case LEFT: case WEBKIT_LEFT: updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); break; case JUSTIFY: adjustInlineDirectionLineBounds(expansionOpportunityCount, logicalLeft, availableLogicalWidth); if (expansionOpportunityCount) { if (trailingSpaceRun) { totalLogicalWidth -= trailingSpaceRun->m_box->logicalWidth(); trailingSpaceRun->m_box->setLogicalWidth(0); } break; } // fall through case TAAUTO: // for right to left fall through to right aligned if (style()->isLeftToRightDirection()) { if (totalLogicalWidth > availableLogicalWidth && trailingSpaceRun) trailingSpaceRun->m_box->setLogicalWidth(max<float>(0, trailingSpaceRun->m_box->logicalWidth() - totalLogicalWidth + availableLogicalWidth)); break; } case RIGHT: case WEBKIT_RIGHT: updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); break; case CENTER: case WEBKIT_CENTER: updateLogicalWidthForCenterAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); break; case TASTART: if (style()->isLeftToRightDirection()) updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); else updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); break; case TAEND: if (style()->isLeftToRightDirection()) updateLogicalWidthForRightAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); else updateLogicalWidthForLeftAlignedBlock(style()->isLeftToRightDirection(), trailingSpaceRun, logicalLeft, totalLogicalWidth, availableLogicalWidth); break; } if (expansionOpportunityCount && availableLogicalWidth > totalLogicalWidth) { size_t i = 0; for (BidiRun* r = firstRun; r; r = r->next()) { if (!r->m_box || r == trailingSpaceRun) continue; if (r->m_object->isText()) { unsigned opportunitiesInRun = expansionOpportunities[i++]; ASSERT(opportunitiesInRun <= expansionOpportunityCount); // Only justify text if whitespace is collapsed. if (r->m_object->style()->collapseWhiteSpace()) { InlineTextBox* textBox = static_cast<InlineTextBox*>(r->m_box); float expansion = (availableLogicalWidth - totalLogicalWidth) * opportunitiesInRun / expansionOpportunityCount; textBox->setExpansion(expansion); totalLogicalWidth += expansion; } expansionOpportunityCount -= opportunitiesInRun; if (!expansionOpportunityCount) break; } } } // The widths of all runs are now known. We can now place every inline box (and // compute accurate widths for the inline flow boxes). needsWordSpacing = false; lineBox->placeBoxesInInlineDirection(logicalLeft, needsWordSpacing, textBoxDataMap); } void RenderBlock::computeBlockDirectionPositionsForLine(RootInlineBox* lineBox, BidiRun* firstRun, GlyphOverflowAndFallbackFontsMap& textBoxDataMap, VerticalPositionCache& verticalPositionCache) { setLogicalHeight(lineBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache)); lineBox->setBlockLogicalHeight(logicalHeight()); // Now make sure we place replaced render objects correctly. for (BidiRun* r = firstRun; r; r = r->next()) { ASSERT(r->m_box); if (!r->m_box) continue; // Skip runs with no line boxes. // Align positioned boxes with the top of the line box. This is // a reasonable approximation of an appropriate y position. if (r->m_object->isPositioned()) r->m_box->setLogicalTop(logicalHeight()); // Position is used to properly position both replaced elements and // to update the static normal flow x/y of positioned elements. if (r->m_object->isText()) toRenderText(r->m_object)->positionLineBox(r->m_box); else if (r->m_object->isBox()) toRenderBox(r->m_object)->positionLineBox(r->m_box); } // Positioned objects and zero-length text nodes destroy their boxes in // position(), which unnecessarily dirties the line. lineBox->markDirty(false); } static inline bool isCollapsibleSpace(UChar character, RenderText* renderer) { if (character == ' ' || character == '\t' || character == softHyphen) return true; if (character == '\n') return !renderer->style()->preserveNewline(); if (character == noBreakSpace) return renderer->style()->nbspMode() == SPACE; return false; } static void setStaticPositions(RenderBlock* block, RenderBox* child) { // FIXME: The math here is actually not really right. It's a best-guess approximation that // will work for the common cases RenderObject* containerBlock = child->container(); int blockHeight = block->logicalHeight(); if (containerBlock->isRenderInline()) { // A relative positioned inline encloses us. In this case, we also have to determine our // position as though we were an inline. Set |staticInlinePosition| and |staticBlockPosition| on the relative positioned // inline so that we can obtain the value later. toRenderInline(containerBlock)->layer()->setStaticInlinePosition(block->startOffsetForLine(blockHeight, false)); toRenderInline(containerBlock)->layer()->setStaticBlockPosition(blockHeight); } if (child->style()->isOriginalDisplayInlineType()) child->layer()->setStaticInlinePosition(block->startOffsetForLine(blockHeight, false)); else child->layer()->setStaticInlinePosition(block->borderAndPaddingStart()); child->layer()->setStaticBlockPosition(blockHeight); } inline BidiRun* RenderBlock::handleTrailingSpaces(BidiRunList<BidiRun>& bidiRuns, BidiContext* currentContext) { if (!bidiRuns.runCount() || !bidiRuns.logicallyLastRun()->m_object->style()->breakOnlyAfterWhiteSpace() || !bidiRuns.logicallyLastRun()->m_object->style()->autoWrap()) return 0; BidiRun* trailingSpaceRun = bidiRuns.logicallyLastRun(); RenderObject* lastObject = trailingSpaceRun->m_object; if (!lastObject->isText()) return 0; RenderText* lastText = toRenderText(lastObject); const UChar* characters = lastText->characters(); int firstSpace = trailingSpaceRun->stop(); while (firstSpace > trailingSpaceRun->start()) { UChar current = characters[firstSpace - 1]; if (!isCollapsibleSpace(current, lastText)) break; firstSpace--; } if (firstSpace == trailingSpaceRun->stop()) return 0; TextDirection direction = style()->direction(); bool shouldReorder = trailingSpaceRun != (direction == LTR ? bidiRuns.lastRun() : bidiRuns.firstRun()); if (firstSpace != trailingSpaceRun->start()) { BidiContext* baseContext = currentContext; while (BidiContext* parent = baseContext->parent()) baseContext = parent; BidiRun* newTrailingRun = new (renderArena()) BidiRun(firstSpace, trailingSpaceRun->m_stop, trailingSpaceRun->m_object, baseContext, OtherNeutral); trailingSpaceRun->m_stop = firstSpace; if (direction == LTR) bidiRuns.addRun(newTrailingRun); else bidiRuns.prependRun(newTrailingRun); trailingSpaceRun = newTrailingRun; return trailingSpaceRun; } if (!shouldReorder) return trailingSpaceRun; if (direction == LTR) { bidiRuns.moveRunToEnd(trailingSpaceRun); trailingSpaceRun->m_level = 0; } else { bidiRuns.moveRunToBeginning(trailingSpaceRun); trailingSpaceRun->m_level = 1; } return trailingSpaceRun; } void RenderBlock::appendFloatingObjectToLastLine(FloatingObject* floatingObject) { ASSERT(!floatingObject->m_originatingLine); floatingObject->m_originatingLine = lastRootBox(); lastRootBox()->appendFloat(floatingObject->renderer()); } void RenderBlock::layoutInlineChildren(bool relayoutChildren, int& repaintLogicalTop, int& repaintLogicalBottom) { bool useRepaintBounds = false; m_overflow.clear(); setLogicalHeight(borderBefore() + paddingBefore()); // Figure out if we should clear out our line boxes. // FIXME: Handle resize eventually! bool fullLayout = !firstLineBox() || selfNeedsLayout() || relayoutChildren; if (fullLayout) lineBoxes()->deleteLineBoxes(renderArena()); // Text truncation only kicks in if your overflow isn't visible and your text-overflow-mode isn't // clip. // FIXME: CSS3 says that descendants that are clipped must also know how to truncate. This is insanely // difficult to figure out (especially in the middle of doing layout), and is really an esoteric pile of nonsense // anyway, so we won't worry about following the draft here. bool hasTextOverflow = style()->textOverflow() && hasOverflowClip(); // Walk all the lines and delete our ellipsis line boxes if they exist. if (hasTextOverflow) deleteEllipsisLineBoxes(); if (firstChild()) { #ifdef ANDROID_LAYOUT // if we are in fitColumnToScreen mode // and the current object is not float:right in LTR or not float:left in RTL, // and text align is auto, or justify or left in LTR, or right in RTL, we // will wrap text around screen width so that it doesn't need to scroll // horizontally when reading a paragraph. // In case the line height is less than the font size, we skip // the text wrapping since this will cause text overlapping. // If a text has background image, we ignore text wrapping, // otherwise the background will be potentially messed up. const Settings* settings = document()->settings(); bool doTextWrap = settings && settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen; if (doTextWrap) { int ta = style()->textAlign(); int dir = style()->direction(); bool autowrap = style()->autoWrap(); // if the RenderBlock is positioned, don't wrap text around screen // width as it may cause text to overlap. bool positioned = isPositioned(); EFloat cssfloat = style()->floating(); const int lineHeight = style()->computedLineHeight(); const int fontSize = style()->fontSize(); doTextWrap = autowrap && !positioned && (fontSize <= lineHeight) && !style()->hasBackground() && (((dir == LTR && cssfloat != FRIGHT) || (dir == RTL && cssfloat != FNONE)) && ((ta == TAAUTO) || (ta == JUSTIFY) || ((ta == LEFT || ta == WEBKIT_LEFT) && (dir == LTR)) || ((ta == RIGHT || ta == WEBKIT_RIGHT) && (dir == RTL)))); } bool hasTextToWrap = false; #endif // layout replaced elements bool endOfInline = false; RenderObject* o = bidiFirst(this, 0, false); Vector<FloatWithRect> floats; bool hasInlineChild = false; while (o) { if (!hasInlineChild && o->isInline()) hasInlineChild = true; if (o->isReplaced() || o->isFloating() || o->isPositioned()) { RenderBox* box = toRenderBox(o); if (relayoutChildren || o->style()->width().isPercent() || o->style()->height().isPercent()) o->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (o->style()->paddingStart().isPercent() || o->style()->paddingEnd().isPercent())) o->setPreferredLogicalWidthsDirty(true, false); if (o->isPositioned()) o->containingBlock()->insertPositionedObject(box); #if PLATFORM(ANDROID) else { #ifdef ANDROID_LAYOUT // ignore text wrap for textField or menuList if (doTextWrap && (o->isTextField() || o->isMenuList())) doTextWrap = false; #endif if (o->isFloating()) floats.append(FloatWithRect(box)); else if (fullLayout || o->needsLayout()) { // Replaced elements toRenderBox(o)->dirtyLineBoxes(fullLayout); o->layoutIfNeeded(); } } #else else if (o->isFloating()) floats.append(FloatWithRect(box)); else if (fullLayout || o->needsLayout()) { // Replaced elements toRenderBox(o)->dirtyLineBoxes(fullLayout); o->layoutIfNeeded(); } #endif // PLATFORM(ANDROID) } else if (o->isText() || (o->isRenderInline() && !endOfInline)) { if (!o->isText()) toRenderInline(o)->updateAlwaysCreateLineBoxes(); if (fullLayout || o->selfNeedsLayout()) dirtyLineBoxesForRenderer(o, fullLayout); o->setNeedsLayout(false); #ifdef ANDROID_LAYOUT if (doTextWrap && !hasTextToWrap && o->isText()) { Node* node = o->node(); // as it is very common for sites to use a serial of <a> or // <li> as tabs, we don't force text to wrap if all the text // are short and within an <a> or <li> tag, and only separated // by short word like "|" or ";". if (node && node->isTextNode() && !static_cast<Text*>(node)->containsOnlyWhitespace()) { int length = static_cast<Text*>(node)->length(); // FIXME, need a magic number to decide it is too long to // be a tab. Pick 25 for now as it covers around 160px // (half of 320px) with the default font. if (length > 25 || (length > 3 && (!node->parentOrHostNode()->hasTagName(HTMLNames::aTag) && !node->parentOrHostNode()->hasTagName(HTMLNames::liTag)))) hasTextToWrap = true; } } #endif } o = bidiNext(this, o, 0, false, &endOfInline); } #ifdef ANDROID_LAYOUT // try to make sure that inline text will not span wider than the // screen size unless the container has a fixed height, if (doTextWrap && hasTextToWrap) { // check all the nested containing blocks, unless it is table or // table-cell, to make sure there is no fixed height as it implies // fixed layout. If we constrain the text to fit screen, we may // cause text overlap with the block after. bool isConstrained = false; RenderObject* obj = this; while (obj) { if (obj->style()->height().isFixed() && (!obj->isTable() && !obj->isTableCell())) { isConstrained = true; break; } if (obj->isFloating() || obj->isPositioned()) { // floating and absolute or fixed positioning are done out // of normal flow. Don't need to worry about height any more. break; } obj = obj->container(); } if (!isConstrained) { int textWrapWidth = view()->frameView()->textWrapWidth(); int padding = paddingLeft() + paddingRight(); if (textWrapWidth > 0 && width() > (textWrapWidth + padding)) { // limit the content width (width excluding padding) to be // (textWrapWidth - 2 * ANDROID_FCTS_MARGIN_PADDING) int maxWidth = textWrapWidth - 2 * ANDROID_FCTS_MARGIN_PADDING + padding; setWidth(min(width(), maxWidth)); m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, maxWidth); m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, maxWidth); // if overflow isn't visible, block elements may get clipped // due to the limited content width. disable overflow clipping. setHasOverflowClip(false); IntRect overflow = layoutOverflowRect(); if (overflow.width() > maxWidth) { overflow.setWidth(maxWidth); clearLayoutOverflow(); addLayoutOverflow(overflow); } } } } #endif // We want to skip ahead to the first dirty line InlineBidiResolver resolver; unsigned floatIndex; bool firstLine = true; bool previousLineBrokeCleanly = true; RootInlineBox* startLine = determineStartPosition(firstLine, fullLayout, previousLineBrokeCleanly, resolver, floats, floatIndex, useRepaintBounds, repaintLogicalTop, repaintLogicalBottom); if (fullLayout && hasInlineChild && !selfNeedsLayout()) { setNeedsLayout(true, false); // Mark ourselves as needing a full layout. This way we'll repaint like // we're supposed to. RenderView* v = view(); if (v && !v->doingFullRepaint() && hasLayer()) { // Because we waited until we were already inside layout to discover // that the block really needed a full layout, we missed our chance to repaint the layer // before layout started. Luckily the layer has cached the repaint rect for its original // position and size, and so we can use that to make a repaint happen now. repaintUsingContainer(containerForRepaint(), layer()->repaintRect()); } } FloatingObject* lastFloat = (m_floatingObjects && !m_floatingObjects->set().isEmpty()) ? m_floatingObjects->set().last() : 0; LineMidpointState& lineMidpointState = resolver.midpointState(); // We also find the first clean line and extract these lines. We will add them back // if we determine that we're able to synchronize after handling all our dirty lines. InlineIterator cleanLineStart; BidiStatus cleanLineBidiStatus; int endLineLogicalTop = 0; RootInlineBox* endLine = (fullLayout || !startLine) ? 0 : determineEndPosition(startLine, floats, floatIndex, cleanLineStart, cleanLineBidiStatus, endLineLogicalTop); if (startLine) { if (!useRepaintBounds) { useRepaintBounds = true; repaintLogicalTop = logicalHeight(); repaintLogicalBottom = logicalHeight(); } RenderArena* arena = renderArena(); RootInlineBox* box = startLine; while (box) { repaintLogicalTop = min(repaintLogicalTop, box->logicalTopVisualOverflow()); repaintLogicalBottom = max(repaintLogicalBottom, box->logicalBottomVisualOverflow()); RootInlineBox* next = box->nextRootBox(); box->deleteLine(arena); box = next; } } InlineIterator end = resolver.position(); if (!fullLayout && lastRootBox() && lastRootBox()->endsWithBreak()) { // If the last line before the start line ends with a line break that clear floats, // adjust the height accordingly. // A line break can be either the first or the last object on a line, depending on its direction. if (InlineBox* lastLeafChild = lastRootBox()->lastLeafChild()) { RenderObject* lastObject = lastLeafChild->renderer(); if (!lastObject->isBR()) lastObject = lastRootBox()->firstLeafChild()->renderer(); if (lastObject->isBR()) { EClear clear = lastObject->style()->clear(); if (clear != CNONE) newLine(clear); } } } bool endLineMatched = false; bool checkForEndLineMatch = endLine; bool checkForFloatsFromLastLine = false; bool isLineEmpty = true; bool paginated = view()->layoutState() && view()->layoutState()->isPaginated(); LineBreakIteratorInfo lineBreakIteratorInfo; VerticalPositionCache verticalPositionCache; while (!end.atEnd()) { // FIXME: Is this check necessary before the first iteration or can it be moved to the end? if (checkForEndLineMatch && (endLineMatched = matchedEndLine(resolver, cleanLineStart, cleanLineBidiStatus, endLine, endLineLogicalTop, repaintLogicalBottom, repaintLogicalTop))) break; lineMidpointState.reset(); isLineEmpty = true; EClear clear = CNONE; bool hyphenated; Vector<RenderBox*> positionedObjects; InlineIterator oldEnd = end; FloatingObject* lastFloatFromPreviousLine = (m_floatingObjects && !m_floatingObjects->set().isEmpty()) ? m_floatingObjects->set().last() : 0; end = findNextLineBreak(resolver, firstLine, isLineEmpty, lineBreakIteratorInfo, previousLineBrokeCleanly, hyphenated, &clear, lastFloatFromPreviousLine, positionedObjects); if (resolver.position().atEnd()) { // FIXME: We shouldn't be creating any runs in findNextLineBreak to begin with! // Once BidiRunList is separated from BidiResolver this will not be needed. resolver.runs().deleteRuns(); resolver.markCurrentRunEmpty(); // FIXME: This can probably be replaced by an ASSERT (or just removed). checkForFloatsFromLastLine = true; break; } ASSERT(end != resolver.position()); if (isLineEmpty) { if (lastRootBox()) lastRootBox()->setLineBreakInfo(end.m_obj, end.m_pos, resolver.status()); } else { VisualDirectionOverride override = (style()->visuallyOrdered() ? (style()->direction() == LTR ? VisualLeftToRightOverride : VisualRightToLeftOverride) : NoVisualOverride); // FIXME: This ownership is reversed. We should own the BidiRunList and pass it to createBidiRunsForLine. BidiRunList<BidiRun>& bidiRuns = resolver.runs(); resolver.createBidiRunsForLine(end, override, previousLineBrokeCleanly); ASSERT(resolver.position() == end); BidiRun* trailingSpaceRun = !previousLineBrokeCleanly ? handleTrailingSpaces(bidiRuns, resolver.context()) : 0; // Now that the runs have been ordered, we create the line boxes. // At the same time we figure out where border/padding/margin should be applied for // inline flow boxes. RootInlineBox* lineBox = 0; int oldLogicalHeight = logicalHeight(); if (bidiRuns.runCount()) { if (hyphenated) bidiRuns.logicallyLastRun()->m_hasHyphen = true; lineBox = constructLine(bidiRuns, firstLine, !end.m_obj); if (lineBox) { lineBox->setEndsWithBreak(previousLineBrokeCleanly); #if ENABLE(SVG) bool isSVGRootInlineBox = lineBox->isSVGRootInlineBox(); #else bool isSVGRootInlineBox = false; #endif GlyphOverflowAndFallbackFontsMap textBoxDataMap; // Now we position all of our text runs horizontally. if (!isSVGRootInlineBox) computeInlineDirectionPositionsForLine(lineBox, firstLine, bidiRuns.firstRun(), trailingSpaceRun, end.atEnd(), textBoxDataMap, verticalPositionCache); // Now position our text runs vertically. computeBlockDirectionPositionsForLine(lineBox, bidiRuns.firstRun(), textBoxDataMap, verticalPositionCache); #if ENABLE(SVG) // SVG text layout code computes vertical & horizontal positions on its own. // Note that we still need to execute computeVerticalPositionsForLine() as // it calls InlineTextBox::positionLineBox(), which tracks whether the box // contains reversed text or not. If we wouldn't do that editing and thus // text selection in RTL boxes would not work as expected. if (isSVGRootInlineBox) { ASSERT(isSVGText()); static_cast<SVGRootInlineBox*>(lineBox)->computePerCharacterLayoutInformation(); } #endif // Compute our overflow now. lineBox->computeOverflow(lineBox->lineTop(), lineBox->lineBottom(), textBoxDataMap); #if PLATFORM(MAC) // Highlight acts as an overflow inflation. if (style()->highlight() != nullAtom) lineBox->addHighlightOverflow(); #endif } } bidiRuns.deleteRuns(); resolver.markCurrentRunEmpty(); // FIXME: This can probably be replaced by an ASSERT (or just removed). if (lineBox) { lineBox->setLineBreakInfo(end.m_obj, end.m_pos, resolver.status()); if (useRepaintBounds) { repaintLogicalTop = min(repaintLogicalTop, lineBox->logicalTopVisualOverflow()); repaintLogicalBottom = max(repaintLogicalBottom, lineBox->logicalBottomVisualOverflow()); } if (paginated) { int adjustment = 0; adjustLinePositionForPagination(lineBox, adjustment); if (adjustment) { int oldLineWidth = availableLogicalWidthForLine(oldLogicalHeight, firstLine); lineBox->adjustBlockDirectionPosition(adjustment); if (useRepaintBounds) // This can only be a positive adjustment, so no need to update repaintTop. repaintLogicalBottom = max(repaintLogicalBottom, lineBox->logicalBottomVisualOverflow()); if (availableLogicalWidthForLine(oldLogicalHeight + adjustment, firstLine) != oldLineWidth) { // We have to delete this line, remove all floats that got added, and let line layout re-run. lineBox->deleteLine(renderArena()); removeFloatingObjectsBelow(lastFloatFromPreviousLine, oldLogicalHeight); setLogicalHeight(oldLogicalHeight + adjustment); resolver.setPosition(oldEnd); end = oldEnd; continue; } setLogicalHeight(lineBox->blockLogicalHeight()); } } } for (size_t i = 0; i < positionedObjects.size(); ++i) setStaticPositions(this, positionedObjects[i]); firstLine = false; newLine(clear); } if (m_floatingObjects && lastRootBox()) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.begin(); FloatingObjectSetIterator end = floatingObjectSet.end(); if (lastFloat) { FloatingObjectSetIterator lastFloatIterator = floatingObjectSet.find(lastFloat); ASSERT(lastFloatIterator != end); ++lastFloatIterator; it = lastFloatIterator; } for (; it != end; ++it) { FloatingObject* f = *it; appendFloatingObjectToLastLine(f); ASSERT(f->m_renderer == floats[floatIndex].object); // If a float's geometry has changed, give up on syncing with clean lines. if (floats[floatIndex].rect != f->frameRect()) checkForEndLineMatch = false; floatIndex++; } lastFloat = !floatingObjectSet.isEmpty() ? floatingObjectSet.last() : 0; } lineMidpointState.reset(); resolver.setPosition(end); } if (endLine) { if (endLineMatched) { // Attach all the remaining lines, and then adjust their y-positions as needed. int delta = logicalHeight() - endLineLogicalTop; for (RootInlineBox* line = endLine; line; line = line->nextRootBox()) { line->attachLine(); if (paginated) { delta -= line->paginationStrut(); adjustLinePositionForPagination(line, delta); } if (delta) { repaintLogicalTop = min(repaintLogicalTop, line->logicalTopVisualOverflow() + min(delta, 0)); repaintLogicalBottom = max(repaintLogicalBottom, line->logicalBottomVisualOverflow() + max(delta, 0)); line->adjustBlockDirectionPosition(delta); } if (Vector<RenderBox*>* cleanLineFloats = line->floatsPtr()) { Vector<RenderBox*>::iterator end = cleanLineFloats->end(); for (Vector<RenderBox*>::iterator f = cleanLineFloats->begin(); f != end; ++f) { FloatingObject* floatingObject = insertFloatingObject(*f); ASSERT(!floatingObject->m_originatingLine); floatingObject->m_originatingLine = line; setLogicalHeight(logicalTopForChild(*f) - marginBeforeForChild(*f) + delta); positionNewFloats(); } } } setLogicalHeight(lastRootBox()->blockLogicalHeight()); } else { // Delete all the remaining lines. RootInlineBox* line = endLine; RenderArena* arena = renderArena(); while (line) { repaintLogicalTop = min(repaintLogicalTop, line->logicalTopVisualOverflow()); repaintLogicalBottom = max(repaintLogicalBottom, line->logicalBottomVisualOverflow()); RootInlineBox* next = line->nextRootBox(); line->deleteLine(arena); line = next; } } } if (m_floatingObjects && (checkForFloatsFromLastLine || positionNewFloats()) && lastRootBox()) { // In case we have a float on the last line, it might not be positioned up to now. // This has to be done before adding in the bottom border/padding, or the float will // include the padding incorrectly. -dwh if (checkForFloatsFromLastLine) { int bottomVisualOverflow = lastRootBox()->logicalBottomVisualOverflow(); int bottomLayoutOverflow = lastRootBox()->logicalBottomLayoutOverflow(); TrailingFloatsRootInlineBox* trailingFloatsLineBox = new (renderArena()) TrailingFloatsRootInlineBox(this); m_lineBoxes.appendLineBox(trailingFloatsLineBox); trailingFloatsLineBox->setConstructed(); GlyphOverflowAndFallbackFontsMap textBoxDataMap; VerticalPositionCache verticalPositionCache; trailingFloatsLineBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache); int blockLogicalHeight = logicalHeight(); IntRect logicalLayoutOverflow(0, blockLogicalHeight, 1, bottomLayoutOverflow - blockLogicalHeight); IntRect logicalVisualOverflow(0, blockLogicalHeight, 1, bottomVisualOverflow - blockLogicalHeight); trailingFloatsLineBox->setOverflowFromLogicalRects(logicalLayoutOverflow, logicalVisualOverflow, trailingFloatsLineBox->lineTop(), trailingFloatsLineBox->lineBottom()); trailingFloatsLineBox->setBlockLogicalHeight(logicalHeight()); } FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.begin(); FloatingObjectSetIterator end = floatingObjectSet.end(); if (lastFloat) { FloatingObjectSetIterator lastFloatIterator = floatingObjectSet.find(lastFloat); ASSERT(lastFloatIterator != end); ++lastFloatIterator; it = lastFloatIterator; } for (; it != end; ++it) appendFloatingObjectToLastLine(*it); lastFloat = !floatingObjectSet.isEmpty() ? floatingObjectSet.last() : 0; } size_t floatCount = floats.size(); // Floats that did not have layout did not repaint when we laid them out. They would have // painted by now if they had moved, but if they stayed at (0, 0), they still need to be // painted. for (size_t i = 0; i < floatCount; ++i) { if (!floats[i].everHadLayout) { RenderBox* f = floats[i].object; if (!f->x() && !f->y() && f->checkForRepaintDuringLayout()) f->repaint(); } } } // Expand the last line to accommodate Ruby and emphasis marks. int lastLineAnnotationsAdjustment = 0; if (lastRootBox()) { int lowestAllowedPosition = max(lastRootBox()->lineBottom(), logicalHeight() + paddingAfter()); if (!style()->isFlippedLinesWritingMode()) lastLineAnnotationsAdjustment = lastRootBox()->computeUnderAnnotationAdjustment(lowestAllowedPosition); else lastLineAnnotationsAdjustment = lastRootBox()->computeOverAnnotationAdjustment(lowestAllowedPosition); } // Now add in the bottom border/padding. setLogicalHeight(logicalHeight() + lastLineAnnotationsAdjustment + borderAfter() + paddingAfter() + scrollbarLogicalHeight()); if (!firstLineBox() && hasLineIfEmpty()) setLogicalHeight(logicalHeight() + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)); // See if we have any lines that spill out of our block. If we do, then we will possibly need to // truncate text. if (hasTextOverflow) checkLinesForTextOverflow(); } void RenderBlock::checkFloatsInCleanLine(RootInlineBox* line, Vector<FloatWithRect>& floats, size_t& floatIndex, bool& encounteredNewFloat, bool& dirtiedByFloat) { Vector<RenderBox*>* cleanLineFloats = line->floatsPtr(); if (!cleanLineFloats) return; Vector<RenderBox*>::iterator end = cleanLineFloats->end(); for (Vector<RenderBox*>::iterator it = cleanLineFloats->begin(); it != end; ++it) { RenderBox* floatingBox = *it; floatingBox->layoutIfNeeded(); IntSize newSize(floatingBox->width() + floatingBox->marginLeft() + floatingBox->marginRight(), floatingBox->height() + floatingBox->marginTop() + floatingBox->marginBottom()); ASSERT(floatIndex < floats.size()); if (floats[floatIndex].object != floatingBox) { encounteredNewFloat = true; return; } if (floats[floatIndex].rect.size() != newSize) { int floatTop = isHorizontalWritingMode() ? floats[floatIndex].rect.y() : floats[floatIndex].rect.x(); int floatHeight = isHorizontalWritingMode() ? max(floats[floatIndex].rect.height(), newSize.height()) : max(floats[floatIndex].rect.width(), newSize.width()); floatHeight = min(floatHeight, numeric_limits<int>::max() - floatTop); line->markDirty(); markLinesDirtyInBlockRange(line->blockLogicalHeight(), floatTop + floatHeight, line); floats[floatIndex].rect.setSize(newSize); dirtiedByFloat = true; } floatIndex++; } } RootInlineBox* RenderBlock::determineStartPosition(bool& firstLine, bool& fullLayout, bool& previousLineBrokeCleanly, InlineBidiResolver& resolver, Vector<FloatWithRect>& floats, unsigned& numCleanFloats, bool& useRepaintBounds, int& repaintLogicalTop, int& repaintLogicalBottom) { RootInlineBox* curr = 0; RootInlineBox* last = 0; bool dirtiedByFloat = false; if (!fullLayout) { // Paginate all of the clean lines. bool paginated = view()->layoutState() && view()->layoutState()->isPaginated(); int paginationDelta = 0; size_t floatIndex = 0; for (curr = firstRootBox(); curr && !curr->isDirty(); curr = curr->nextRootBox()) { if (paginated) { paginationDelta -= curr->paginationStrut(); adjustLinePositionForPagination(curr, paginationDelta); if (paginationDelta) { if (containsFloats() || !floats.isEmpty()) { // FIXME: Do better eventually. For now if we ever shift because of pagination and floats are present just go to a full layout. fullLayout = true; break; } if (!useRepaintBounds) useRepaintBounds = true; repaintLogicalTop = min(repaintLogicalTop, curr->logicalTopVisualOverflow() + min(paginationDelta, 0)); repaintLogicalBottom = max(repaintLogicalBottom, curr->logicalBottomVisualOverflow() + max(paginationDelta, 0)); curr->adjustBlockDirectionPosition(paginationDelta); } } // If a new float has been inserted before this line or before its last known float,just do a full layout. checkFloatsInCleanLine(curr, floats, floatIndex, fullLayout, dirtiedByFloat); if (dirtiedByFloat || fullLayout) break; } // Check if a new float has been inserted after the last known float. if (!curr && floatIndex < floats.size()) fullLayout = true; } if (fullLayout) { // Nuke all our lines. if (firstRootBox()) { RenderArena* arena = renderArena(); curr = firstRootBox(); while (curr) { RootInlineBox* next = curr->nextRootBox(); curr->deleteLine(arena); curr = next; } ASSERT(!firstLineBox() && !lastLineBox()); } } else { if (curr) { // We have a dirty line. if (RootInlineBox* prevRootBox = curr->prevRootBox()) { // We have a previous line. if (!dirtiedByFloat && (!prevRootBox->endsWithBreak() || (prevRootBox->lineBreakObj()->isText() && prevRootBox->lineBreakPos() >= toRenderText(prevRootBox->lineBreakObj())->textLength()))) // The previous line didn't break cleanly or broke at a newline // that has been deleted, so treat it as dirty too. curr = prevRootBox; } } else { // No dirty lines were found. // If the last line didn't break cleanly, treat it as dirty. if (lastRootBox() && !lastRootBox()->endsWithBreak()) curr = lastRootBox(); } // If we have no dirty lines, then last is just the last root box. last = curr ? curr->prevRootBox() : lastRootBox(); } numCleanFloats = 0; if (!floats.isEmpty()) { int savedLogicalHeight = logicalHeight(); // Restore floats from clean lines. RootInlineBox* line = firstRootBox(); while (line != curr) { if (Vector<RenderBox*>* cleanLineFloats = line->floatsPtr()) { Vector<RenderBox*>::iterator end = cleanLineFloats->end(); for (Vector<RenderBox*>::iterator f = cleanLineFloats->begin(); f != end; ++f) { FloatingObject* floatingObject = insertFloatingObject(*f); ASSERT(!floatingObject->m_originatingLine); floatingObject->m_originatingLine = line; setLogicalHeight(logicalTopForChild(*f) - marginBeforeForChild(*f)); positionNewFloats(); ASSERT(floats[numCleanFloats].object == *f); numCleanFloats++; } } line = line->nextRootBox(); } setLogicalHeight(savedLogicalHeight); } firstLine = !last; previousLineBrokeCleanly = !last || last->endsWithBreak(); RenderObject* startObj; int pos = 0; if (last) { setLogicalHeight(last->blockLogicalHeight()); startObj = last->lineBreakObj(); pos = last->lineBreakPos(); resolver.setStatus(last->lineBreakBidiStatus()); } else { bool ltr = style()->isLeftToRightDirection(); Direction direction = ltr ? LeftToRight : RightToLeft; resolver.setLastStrongDir(direction); resolver.setLastDir(direction); resolver.setEorDir(direction); resolver.setContext(BidiContext::create(ltr ? 0 : 1, direction, style()->unicodeBidi() == Override, FromStyleOrDOM)); startObj = bidiFirst(this, &resolver); } resolver.setPosition(InlineIterator(this, startObj, pos)); return curr; } RootInlineBox* RenderBlock::determineEndPosition(RootInlineBox* startLine, Vector<FloatWithRect>& floats, size_t floatIndex, InlineIterator& cleanLineStart, BidiStatus& cleanLineBidiStatus, int& logicalTop) { RootInlineBox* last = 0; for (RootInlineBox* curr = startLine->nextRootBox(); curr; curr = curr->nextRootBox()) { if (!curr->isDirty()) { bool encounteredNewFloat = false; bool dirtiedByFloat = false; checkFloatsInCleanLine(curr, floats, floatIndex, encounteredNewFloat, dirtiedByFloat); if (encounteredNewFloat) return 0; } if (curr->isDirty()) last = 0; else if (!last) last = curr; } if (!last) return 0; // At this point, |last| is the first line in a run of clean lines that ends with the last line // in the block. RootInlineBox* prev = last->prevRootBox(); cleanLineStart = InlineIterator(this, prev->lineBreakObj(), prev->lineBreakPos()); cleanLineBidiStatus = prev->lineBreakBidiStatus(); logicalTop = prev->blockLogicalHeight(); for (RootInlineBox* line = last; line; line = line->nextRootBox()) line->extractLine(); // Disconnect all line boxes from their render objects while preserving // their connections to one another. return last; } bool RenderBlock::matchedEndLine(const InlineBidiResolver& resolver, const InlineIterator& endLineStart, const BidiStatus& endLineStatus, RootInlineBox*& endLine, int& endLogicalTop, int& repaintLogicalBottom, int& repaintLogicalTop) { if (resolver.position() == endLineStart) { if (resolver.status() != endLineStatus) return false; int delta = logicalHeight() - endLogicalTop; if (!delta || !m_floatingObjects) return true; // See if any floats end in the range along which we want to shift the lines vertically. int logicalTop = min(logicalHeight(), endLogicalTop); RootInlineBox* lastLine = endLine; while (RootInlineBox* nextLine = lastLine->nextRootBox()) lastLine = nextLine; int logicalBottom = lastLine->blockLogicalHeight() + abs(delta); FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; if (logicalBottomForFloat(f) >= logicalTop && logicalBottomForFloat(f) < logicalBottom) return false; } return true; } // The first clean line doesn't match, but we can check a handful of following lines to try // to match back up. static int numLines = 8; // The # of lines we're willing to match against. RootInlineBox* line = endLine; for (int i = 0; i < numLines && line; i++, line = line->nextRootBox()) { if (line->lineBreakObj() == resolver.position().m_obj && line->lineBreakPos() == resolver.position().m_pos) { // We have a match. if (line->lineBreakBidiStatus() != resolver.status()) return false; // ...but the bidi state doesn't match. RootInlineBox* result = line->nextRootBox(); // Set our logical top to be the block height of endLine. if (result) endLogicalTop = line->blockLogicalHeight(); int delta = logicalHeight() - endLogicalTop; if (delta && m_floatingObjects) { // See if any floats end in the range along which we want to shift the lines vertically. int logicalTop = min(logicalHeight(), endLogicalTop); RootInlineBox* lastLine = endLine; while (RootInlineBox* nextLine = lastLine->nextRootBox()) lastLine = nextLine; int logicalBottom = lastLine->blockLogicalHeight() + abs(delta); FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; if (logicalBottomForFloat(f) >= logicalTop && logicalBottomForFloat(f) < logicalBottom) return false; } } // Now delete the lines that we failed to sync. RootInlineBox* boxToDelete = endLine; RenderArena* arena = renderArena(); while (boxToDelete && boxToDelete != result) { repaintLogicalTop = min(repaintLogicalTop, boxToDelete->logicalTopVisualOverflow()); repaintLogicalBottom = max(repaintLogicalBottom, boxToDelete->logicalBottomVisualOverflow()); RootInlineBox* next = boxToDelete->nextRootBox(); boxToDelete->deleteLine(arena); boxToDelete = next; } endLine = result; return result; } } return false; } static inline bool skipNonBreakingSpace(const InlineIterator& it, bool isLineEmpty, bool previousLineBrokeCleanly) { if (it.m_obj->style()->nbspMode() != SPACE || it.current() != noBreakSpace) return false; // FIXME: This is bad. It makes nbsp inconsistent with space and won't work correctly // with m_minWidth/m_maxWidth. // Do not skip a non-breaking space if it is the first character // on a line after a clean line break (or on the first line, since previousLineBrokeCleanly starts off // |true|). if (isLineEmpty && previousLineBrokeCleanly) return false; return true; } static inline bool shouldCollapseWhiteSpace(const RenderStyle* style, bool isLineEmpty, bool previousLineBrokeCleanly) { return style->collapseWhiteSpace() || (style->whiteSpace() == PRE_WRAP && (!isLineEmpty || !previousLineBrokeCleanly)); } static bool inlineFlowRequiresLineBox(RenderInline* flow) { // FIXME: Right now, we only allow line boxes for inlines that are truly empty. // We need to fix this, though, because at the very least, inlines containing only // ignorable whitespace should should also have line boxes. return !flow->firstChild() && flow->hasInlineDirectionBordersPaddingOrMargin(); } bool RenderBlock::requiresLineBox(const InlineIterator& it, bool isLineEmpty, bool previousLineBrokeCleanly) { if (it.m_obj->isFloatingOrPositioned()) return false; if (it.m_obj->isRenderInline() && !inlineFlowRequiresLineBox(toRenderInline(it.m_obj))) return false; if (!shouldCollapseWhiteSpace(it.m_obj->style(), isLineEmpty, previousLineBrokeCleanly) || it.m_obj->isBR()) return true; UChar current = it.current(); return current != ' ' && current != '\t' && current != softHyphen && (current != '\n' || it.m_obj->preservesNewline()) && !skipNonBreakingSpace(it, isLineEmpty, previousLineBrokeCleanly); } bool RenderBlock::generatesLineBoxesForInlineChild(RenderObject* inlineObj, bool isLineEmpty, bool previousLineBrokeCleanly) { ASSERT(inlineObj->parent() == this); InlineIterator it(this, inlineObj, 0); while (!it.atEnd() && !requiresLineBox(it, isLineEmpty, previousLineBrokeCleanly)) it.increment(); return !it.atEnd(); } // FIXME: The entire concept of the skipTrailingWhitespace function is flawed, since we really need to be building // line boxes even for containers that may ultimately collapse away. Otherwise we'll never get positioned // elements quite right. In other words, we need to build this function's work into the normal line // object iteration process. // NB. this function will insert any floating elements that would otherwise // be skipped but it will not position them. void RenderBlock::skipTrailingWhitespace(InlineIterator& iterator, bool isLineEmpty, bool previousLineBrokeCleanly) { while (!iterator.atEnd() && !requiresLineBox(iterator, isLineEmpty, previousLineBrokeCleanly)) { RenderObject* object = iterator.m_obj; if (object->isFloating()) { insertFloatingObject(toRenderBox(object)); } else if (object->isPositioned()) setStaticPositions(this, toRenderBox(object)); iterator.increment(); } } void RenderBlock::skipLeadingWhitespace(InlineBidiResolver& resolver, bool isLineEmpty, bool previousLineBrokeCleanly, FloatingObject* lastFloatFromPreviousLine, LineWidth& width) { while (!resolver.position().atEnd() && !requiresLineBox(resolver.position(), isLineEmpty, previousLineBrokeCleanly)) { RenderObject* object = resolver.position().m_obj; if (object->isFloating()) positionNewFloatOnLine(insertFloatingObject(toRenderBox(object)), lastFloatFromPreviousLine, width); else if (object->isPositioned()) setStaticPositions(this, toRenderBox(object)); resolver.increment(); } resolver.commitExplicitEmbedding(); } // This is currently just used for list markers and inline flows that have line boxes. Neither should // have an effect on whitespace at the start of the line. static bool shouldSkipWhitespaceAfterStartObject(RenderBlock* block, RenderObject* o, LineMidpointState& lineMidpointState) { RenderObject* next = bidiNext(block, o); if (next && !next->isBR() && next->isText() && toRenderText(next)->textLength() > 0) { RenderText* nextText = toRenderText(next); UChar nextChar = nextText->characters()[0]; if (nextText->style()->isCollapsibleWhiteSpace(nextChar)) { addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); return true; } } return false; } static inline float textWidth(RenderText* text, unsigned from, unsigned len, const Font& font, float xPos, bool isFixedPitch, bool collapseWhiteSpace) { if (isFixedPitch || (!from && len == text->textLength()) || text->style()->hasTextCombine()) return text->width(from, len, font, xPos); return font.width(TextRun(text->characters() + from, len, !collapseWhiteSpace, xPos)); } static void tryHyphenating(RenderText* text, const Font& font, const AtomicString& localeIdentifier, int minimumPrefixLength, int minimumSuffixLength, int lastSpace, int pos, float xPos, int availableWidth, bool isFixedPitch, bool collapseWhiteSpace, int lastSpaceWordSpacing, InlineIterator& lineBreak, int nextBreakable, bool& hyphenated) { // Map 'hyphenate-limit-{before,after}: auto;' to 2. if (minimumPrefixLength < 0) minimumPrefixLength = 2; if (minimumSuffixLength < 0) minimumSuffixLength = 2; if (pos - lastSpace <= minimumSuffixLength) return; const AtomicString& hyphenString = text->style()->hyphenString(); int hyphenWidth = font.width(TextRun(hyphenString.characters(), hyphenString.length())); float maxPrefixWidth = availableWidth - xPos - hyphenWidth - lastSpaceWordSpacing; // If the maximum width available for the prefix before the hyphen is small, then it is very unlikely // that an hyphenation opportunity exists, so do not bother to look for it. if (maxPrefixWidth <= font.pixelSize() * 5 / 4) return; unsigned prefixLength = font.offsetForPosition(TextRun(text->characters() + lastSpace, pos - lastSpace, !collapseWhiteSpace, xPos + lastSpaceWordSpacing), maxPrefixWidth, false); if (prefixLength < static_cast<unsigned>(minimumPrefixLength)) return; prefixLength = lastHyphenLocation(text->characters() + lastSpace, pos - lastSpace, min(prefixLength, static_cast<unsigned>(pos - lastSpace - minimumSuffixLength)) + 1, localeIdentifier); // FIXME: The following assumes that the character at lastSpace is a space (and therefore should not factor // into hyphenate-limit-before) unless lastSpace is 0. This is wrong in the rare case of hyphenating // the first word in a text node which has leading whitespace. if (!prefixLength || prefixLength - (lastSpace ? 1 : 0) < static_cast<unsigned>(minimumPrefixLength)) return; ASSERT(pos - lastSpace - prefixLength >= static_cast<unsigned>(minimumSuffixLength)); #if !ASSERT_DISABLED float prefixWidth = hyphenWidth + textWidth(text, lastSpace, prefixLength, font, xPos, isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing; ASSERT(xPos + prefixWidth <= availableWidth); #else UNUSED_PARAM(isFixedPitch); #endif lineBreak.moveTo(text, lastSpace + prefixLength, nextBreakable); hyphenated = true; } class LineWidth { public: LineWidth(RenderBlock* block, bool isFirstLine) : m_block(block) , m_uncommittedWidth(0) , m_committedWidth(0) , m_overhangWidth(0) , m_left(0) , m_right(0) , m_availableWidth(0) , m_isFirstLine(isFirstLine) { ASSERT(block); updateAvailableWidth(); } bool fitsOnLine() const { return currentWidth() <= m_availableWidth; } bool fitsOnLine(float extra) const { return currentWidth() + extra <= m_availableWidth; } float currentWidth() const { return m_committedWidth + m_uncommittedWidth; } // FIXME: We should eventually replace these three functions by ones that work on a higher abstraction. float uncommittedWidth() const { return m_uncommittedWidth; } float committedWidth() const { return m_committedWidth; } float availableWidth() const { return m_availableWidth; } void updateAvailableWidth(); void shrinkAvailableWidthForNewFloatIfNeeded(RenderBlock::FloatingObject*); void addUncommittedWidth(float delta) { m_uncommittedWidth += delta; } void commit() { m_committedWidth += m_uncommittedWidth; m_uncommittedWidth = 0; } void applyOverhang(RenderRubyRun*, RenderObject* startRenderer, RenderObject* endRenderer); void fitBelowFloats(); private: void computeAvailableWidthFromLeftAndRight() { m_availableWidth = max(0, m_right - m_left) + m_overhangWidth; } private: RenderBlock* m_block; float m_uncommittedWidth; float m_committedWidth; float m_overhangWidth; // The amount by which |m_availableWidth| has been inflated to account for possible contraction due to ruby overhang. int m_left; int m_right; float m_availableWidth; bool m_isFirstLine; }; inline void LineWidth::updateAvailableWidth() { int height = m_block->logicalHeight(); m_left = m_block->logicalLeftOffsetForLine(height, m_isFirstLine); m_right = m_block->logicalRightOffsetForLine(height, m_isFirstLine); computeAvailableWidthFromLeftAndRight(); } inline void LineWidth::shrinkAvailableWidthForNewFloatIfNeeded(RenderBlock::FloatingObject* newFloat) { int height = m_block->logicalHeight(); if (height < m_block->logicalTopForFloat(newFloat) || height >= m_block->logicalBottomForFloat(newFloat)) return; if (newFloat->type() == RenderBlock::FloatingObject::FloatLeft) m_left = m_block->logicalRightForFloat(newFloat); else m_right = m_block->logicalLeftForFloat(newFloat); computeAvailableWidthFromLeftAndRight(); } void LineWidth::applyOverhang(RenderRubyRun* rubyRun, RenderObject* startRenderer, RenderObject* endRenderer) { int startOverhang; int endOverhang; rubyRun->getOverhang(m_isFirstLine, startRenderer, endRenderer, startOverhang, endOverhang); startOverhang = min<int>(startOverhang, m_committedWidth); m_availableWidth += startOverhang; endOverhang = max(min<int>(endOverhang, m_availableWidth - currentWidth()), 0); m_availableWidth += endOverhang; m_overhangWidth += startOverhang + endOverhang; } void LineWidth::fitBelowFloats() { ASSERT(!m_committedWidth); ASSERT(!fitsOnLine()); int floatLogicalBottom; int lastFloatLogicalBottom = m_block->logicalHeight(); float newLineWidth = m_availableWidth; while (true) { floatLogicalBottom = m_block->nextFloatLogicalBottomBelow(lastFloatLogicalBottom); if (!floatLogicalBottom) break; newLineWidth = m_block->availableLogicalWidthForLine(floatLogicalBottom, m_isFirstLine); lastFloatLogicalBottom = floatLogicalBottom; if (newLineWidth >= m_uncommittedWidth) break; } if (newLineWidth > m_availableWidth) { m_block->setLogicalHeight(lastFloatLogicalBottom); m_availableWidth = newLineWidth + m_overhangWidth; } } InlineIterator RenderBlock::findNextLineBreak(InlineBidiResolver& resolver, bool firstLine, bool& isLineEmpty, LineBreakIteratorInfo& lineBreakIteratorInfo, bool& previousLineBrokeCleanly, bool& hyphenated, EClear* clear, FloatingObject* lastFloatFromPreviousLine, Vector<RenderBox*>& positionedBoxes) { ASSERT(resolver.position().root() == this); bool appliedStartWidth = resolver.position().m_pos > 0; LineMidpointState& lineMidpointState = resolver.midpointState(); LineWidth width(this, firstLine); skipLeadingWhitespace(resolver, isLineEmpty, previousLineBrokeCleanly, lastFloatFromPreviousLine, width); if (resolver.position().atEnd()) return resolver.position(); // This variable is used only if whitespace isn't set to PRE, and it tells us whether // or not we are currently ignoring whitespace. bool ignoringSpaces = false; InlineIterator ignoreStart; // This variable tracks whether the very last character we saw was a space. We use // this to detect when we encounter a second space so we know we have to terminate // a run. bool currentCharacterIsSpace = false; bool currentCharacterIsWS = false; RenderObject* trailingSpaceObject = 0; Vector<RenderBox*, 4> trailingPositionedBoxes; InlineIterator lBreak = resolver.position(); // FIXME: It is error-prone to split the position object out like this. // Teach this code to work with objects instead of this split tuple. RenderObject* o = resolver.position().m_obj; RenderObject* last = o; unsigned pos = resolver.position().m_pos; int nextBreakable = resolver.position().m_nextBreakablePosition; bool atStart = true; bool prevLineBrokeCleanly = previousLineBrokeCleanly; previousLineBrokeCleanly = false; hyphenated = false; bool autoWrapWasEverTrueOnLine = false; bool floatsFitOnLine = true; // Firefox and Opera will allow a table cell to grow to fit an image inside it under // very specific circumstances (in order to match common WinIE renderings). // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !style()->logicalWidth().isIntrinsicOrAuto(); EWhiteSpace currWS = style()->whiteSpace(); EWhiteSpace lastWS = currWS; while (o) { RenderObject* next = bidiNext(this, o); currWS = o->isReplaced() ? o->parent()->style()->whiteSpace() : o->style()->whiteSpace(); lastWS = last->isReplaced() ? last->parent()->style()->whiteSpace() : last->style()->whiteSpace(); bool autoWrap = RenderStyle::autoWrap(currWS); autoWrapWasEverTrueOnLine = autoWrapWasEverTrueOnLine || autoWrap; #if ENABLE(SVG) bool preserveNewline = o->isSVGInlineText() ? false : RenderStyle::preserveNewline(currWS); #else bool preserveNewline = RenderStyle::preserveNewline(currWS); #endif bool collapseWhiteSpace = RenderStyle::collapseWhiteSpace(currWS); if (o->isBR()) { if (width.fitsOnLine()) { lBreak.moveToStartOf(o); lBreak.increment(); // A <br> always breaks a line, so don't let the line be collapsed // away. Also, the space at the end of a line with a <br> does not // get collapsed away. It only does this if the previous line broke // cleanly. Otherwise the <br> has no effect on whether the line is // empty or not. if (prevLineBrokeCleanly) isLineEmpty = false; trailingSpaceObject = 0; previousLineBrokeCleanly = true; if (!isLineEmpty && clear) *clear = o->style()->clear(); } goto end; } if (o->isFloatingOrPositioned()) { // add to special objects... if (o->isFloating()) { RenderBox* floatBox = toRenderBox(o); FloatingObject* f = insertFloatingObject(floatBox); // check if it fits in the current line. // If it does, position it now, otherwise, position // it after moving to next line (in newLine() func) if (floatsFitOnLine && width.fitsOnLine(logicalWidthForFloat(f))) { positionNewFloatOnLine(f, lastFloatFromPreviousLine, width); if (lBreak.m_obj == o) { ASSERT(!lBreak.m_pos); lBreak.increment(); } } else floatsFitOnLine = false; } else if (o->isPositioned()) { // If our original display wasn't an inline type, then we can // go ahead and determine our static inline position now. RenderBox* box = toRenderBox(o); bool isInlineType = box->style()->isOriginalDisplayInlineType(); if (!isInlineType) box->layer()->setStaticInlinePosition(borderAndPaddingStart()); else { // If our original display was an INLINE type, then we can go ahead // and determine our static y position now. box->layer()->setStaticBlockPosition(logicalHeight()); } // If we're ignoring spaces, we have to stop and include this object and // then start ignoring spaces again. if (isInlineType || o->container()->isRenderInline()) { if (ignoringSpaces) { ignoreStart.m_obj = o; ignoreStart.m_pos = 0; addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring spaces. addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again. } if (trailingSpaceObject) trailingPositionedBoxes.append(box); } else positionedBoxes.append(box); } } else if (o->isRenderInline()) { // Right now, we should only encounter empty inlines here. ASSERT(!o->firstChild()); RenderInline* flowBox = toRenderInline(o); // Now that some inline flows have line boxes, if we are already ignoring spaces, we need // to make sure that we stop to include this object and then start ignoring spaces again. // If this object is at the start of the line, we need to behave like list markers and // start ignoring spaces. if (inlineFlowRequiresLineBox(flowBox)) { isLineEmpty = false; if (ignoringSpaces) { trailingSpaceObject = 0; trailingPositionedBoxes.clear(); addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); // Stop ignoring spaces. addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); // Start ignoring again. } else if (style()->collapseWhiteSpace() && resolver.position().m_obj == o && shouldSkipWhitespaceAfterStartObject(this, o, lineMidpointState)) { // Like with list markers, we start ignoring spaces to make sure that any // additional spaces we see will be discarded. currentCharacterIsSpace = true; currentCharacterIsWS = true; ignoringSpaces = true; } } width.addUncommittedWidth(borderPaddingMarginStart(flowBox) + borderPaddingMarginEnd(flowBox)); } else if (o->isReplaced()) { RenderBox* replacedBox = toRenderBox(o); // Break on replaced elements if either has normal white-space. if ((autoWrap || RenderStyle::autoWrap(lastWS)) && (!o->isImage() || allowImagesToBreak)) { width.commit(); lBreak.moveToStartOf(o); } if (ignoringSpaces) addMidpoint(lineMidpointState, InlineIterator(0, o, 0)); isLineEmpty = false; ignoringSpaces = false; currentCharacterIsSpace = false; currentCharacterIsWS = false; trailingSpaceObject = 0; trailingPositionedBoxes.clear(); // Optimize for a common case. If we can't find whitespace after the list // item, then this is all moot. int replacedLogicalWidth = logicalWidthForChild(replacedBox) + marginStartForChild(replacedBox) + marginEndForChild(replacedBox) + inlineLogicalWidth(o); if (o->isListMarker()) { if (style()->collapseWhiteSpace() && shouldSkipWhitespaceAfterStartObject(this, o, lineMidpointState)) { // Like with inline flows, we start ignoring spaces to make sure that any // additional spaces we see will be discarded. currentCharacterIsSpace = true; currentCharacterIsWS = true; ignoringSpaces = true; } if (toRenderListMarker(o)->isInside()) width.addUncommittedWidth(replacedLogicalWidth); } else width.addUncommittedWidth(replacedLogicalWidth); if (o->isRubyRun()) width.applyOverhang(toRenderRubyRun(o), last, next); } else if (o->isText()) { if (!pos) appliedStartWidth = false; RenderText* t = toRenderText(o); #if ENABLE(SVG) bool isSVGText = t->isSVGInlineText(); #endif RenderStyle* style = t->style(firstLine); if (style->hasTextCombine() && o->isCombineText()) toRenderCombineText(o)->combineText(); int strlen = t->textLength(); int len = strlen - pos; const UChar* str = t->characters(); const Font& f = style->font(); bool isFixedPitch = f.isFixedPitch(); bool canHyphenate = style->hyphens() == HyphensAuto && WebCore::canHyphenate(style->locale()); int lastSpace = pos; float wordSpacing = o->style()->wordSpacing(); float lastSpaceWordSpacing = 0; // Non-zero only when kerning is enabled, in which case we measure words with their trailing // space, then subtract its width. float wordTrailingSpaceWidth = f.typesettingFeatures() & Kerning ? f.width(TextRun(&space, 1)) + wordSpacing : 0; float wrapW = width.uncommittedWidth() + inlineLogicalWidth(o, !appliedStartWidth, true); float charWidth = 0; bool breakNBSP = autoWrap && o->style()->nbspMode() == SPACE; // Auto-wrapping text should wrap in the middle of a word only if it could not wrap before the word, // which is only possible if the word is the first thing on the line, that is, if |w| is zero. bool breakWords = o->style()->breakWords() && ((autoWrap && !width.committedWidth()) || currWS == PRE); bool midWordBreak = false; bool breakAll = o->style()->wordBreak() == BreakAllWordBreak && autoWrap; float hyphenWidth = 0; if (t->isWordBreak()) { width.commit(); lBreak.moveToStartOf(o); ASSERT(!len); } while (len) { bool previousCharacterIsSpace = currentCharacterIsSpace; bool previousCharacterIsWS = currentCharacterIsWS; UChar c = str[pos]; currentCharacterIsSpace = c == ' ' || c == '\t' || (!preserveNewline && (c == '\n')); if (!collapseWhiteSpace || !currentCharacterIsSpace) isLineEmpty = false; if (c == softHyphen && autoWrap && !hyphenWidth && style->hyphens() != HyphensNone) { const AtomicString& hyphenString = style->hyphenString(); hyphenWidth = f.width(TextRun(hyphenString.characters(), hyphenString.length())); width.addUncommittedWidth(hyphenWidth); } bool applyWordSpacing = false; currentCharacterIsWS = currentCharacterIsSpace || (breakNBSP && c == noBreakSpace); if ((breakAll || breakWords) && !midWordBreak) { wrapW += charWidth; charWidth = textWidth(t, pos, 1, f, width.committedWidth() + wrapW, isFixedPitch, collapseWhiteSpace); midWordBreak = width.committedWidth() + wrapW + charWidth > width.availableWidth(); } if (lineBreakIteratorInfo.first != t) { lineBreakIteratorInfo.first = t; lineBreakIteratorInfo.second.reset(str, strlen); } bool betweenWords = c == '\n' || (currWS != PRE && !atStart && isBreakable(lineBreakIteratorInfo.second, pos, nextBreakable, breakNBSP) && (style->hyphens() != HyphensNone || (pos && str[pos - 1] != softHyphen))); if (betweenWords || midWordBreak) { bool stoppedIgnoringSpaces = false; if (ignoringSpaces) { if (!currentCharacterIsSpace) { // Stop ignoring spaces and begin at this // new point. ignoringSpaces = false; lastSpaceWordSpacing = 0; lastSpace = pos; // e.g., "Foo goo", don't add in any of the ignored spaces. addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); stoppedIgnoringSpaces = true; } else { // Just keep ignoring these spaces. pos++; len--; continue; } } float additionalTmpW; if (wordTrailingSpaceWidth && currentCharacterIsSpace) additionalTmpW = textWidth(t, lastSpace, pos + 1 - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) - wordTrailingSpaceWidth + lastSpaceWordSpacing; else additionalTmpW = textWidth(t, lastSpace, pos - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing; width.addUncommittedWidth(additionalTmpW); if (!appliedStartWidth) { width.addUncommittedWidth(inlineLogicalWidth(o, true, false)); appliedStartWidth = true; } applyWordSpacing = wordSpacing && currentCharacterIsSpace && !previousCharacterIsSpace; if (!width.committedWidth() && autoWrap && !width.fitsOnLine()) width.fitBelowFloats(); if (autoWrap || breakWords) { // If we break only after white-space, consider the current character // as candidate width for this line. bool lineWasTooWide = false; if (width.fitsOnLine() && currentCharacterIsWS && o->style()->breakOnlyAfterWhiteSpace() && !midWordBreak) { int charWidth = textWidth(t, pos, 1, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + (applyWordSpacing ? wordSpacing : 0); // Check if line is too big even without the extra space // at the end of the line. If it is not, do nothing. // If the line needs the extra whitespace to be too long, // then move the line break to the space and skip all // additional whitespace. if (!width.fitsOnLine(charWidth)) { lineWasTooWide = true; lBreak.moveTo(o, pos, nextBreakable); skipTrailingWhitespace(lBreak, isLineEmpty, previousLineBrokeCleanly); } } if (lineWasTooWide || !width.fitsOnLine()) { if (canHyphenate && !width.fitsOnLine()) { tryHyphenating(t, f, style->locale(), style->hyphenationLimitBefore(), style->hyphenationLimitAfter(), lastSpace, pos, width.currentWidth() - additionalTmpW, width.availableWidth(), isFixedPitch, collapseWhiteSpace, lastSpaceWordSpacing, lBreak, nextBreakable, hyphenated); if (hyphenated) goto end; } if (lBreak.atTextParagraphSeparator()) { if (!stoppedIgnoringSpaces && pos > 0) { // We need to stop right before the newline and then start up again. addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1)); // Stop addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); // Start } lBreak.increment(); previousLineBrokeCleanly = true; } if (lBreak.m_obj && lBreak.m_pos && lBreak.m_obj->isText() && toRenderText(lBreak.m_obj)->textLength() && toRenderText(lBreak.m_obj)->characters()[lBreak.m_pos - 1] == softHyphen && style->hyphens() != HyphensNone) hyphenated = true; goto end; // Didn't fit. Jump to the end. } else { if (!betweenWords || (midWordBreak && !autoWrap)) width.addUncommittedWidth(-additionalTmpW); if (hyphenWidth) { // Subtract the width of the soft hyphen out since we fit on a line. width.addUncommittedWidth(-hyphenWidth); hyphenWidth = 0; } } } if (c == '\n' && preserveNewline) { if (!stoppedIgnoringSpaces && pos > 0) { // We need to stop right before the newline and then start up again. addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1)); // Stop addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); // Start } lBreak.moveTo(o, pos, nextBreakable); lBreak.increment(); previousLineBrokeCleanly = true; return lBreak; } if (autoWrap && betweenWords) { width.commit(); wrapW = 0; lBreak.moveTo(o, pos, nextBreakable); // Auto-wrapping text should not wrap in the middle of a word once it has had an // opportunity to break after a word. breakWords = false; } if (midWordBreak) { // Remember this as a breakable position in case // adding the end width forces a break. lBreak.moveTo(o, pos, nextBreakable); midWordBreak &= (breakWords || breakAll); } if (betweenWords) { lastSpaceWordSpacing = applyWordSpacing ? wordSpacing : 0; lastSpace = pos; } if (!ignoringSpaces && o->style()->collapseWhiteSpace()) { // If we encounter a newline, or if we encounter a // second space, we need to go ahead and break up this // run and enter a mode where we start collapsing spaces. if (currentCharacterIsSpace && previousCharacterIsSpace) { ignoringSpaces = true; // We just entered a mode where we are ignoring // spaces. Create a midpoint to terminate the run // before the second space. addMidpoint(lineMidpointState, ignoreStart); } } } else if (ignoringSpaces) { // Stop ignoring spaces and begin at this // new point. ignoringSpaces = false; lastSpaceWordSpacing = applyWordSpacing ? wordSpacing : 0; lastSpace = pos; // e.g., "Foo goo", don't add in any of the ignored spaces. addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); } #if ENABLE(SVG) if (isSVGText && pos > 0) { // Force creation of new InlineBoxes for each absolute positioned character (those that start new text chunks). if (static_cast<RenderSVGInlineText*>(t)->characterStartsNewTextChunk(pos)) { addMidpoint(lineMidpointState, InlineIterator(0, o, pos - 1)); addMidpoint(lineMidpointState, InlineIterator(0, o, pos)); } } #endif if (currentCharacterIsSpace && !previousCharacterIsSpace) { ignoreStart.m_obj = o; ignoreStart.m_pos = pos; } if (!currentCharacterIsWS && previousCharacterIsWS) { if (autoWrap && o->style()->breakOnlyAfterWhiteSpace()) lBreak.moveTo(o, pos, nextBreakable); } if (collapseWhiteSpace && currentCharacterIsSpace && !ignoringSpaces) trailingSpaceObject = o; else if (!o->style()->collapseWhiteSpace() || !currentCharacterIsSpace) { trailingSpaceObject = 0; trailingPositionedBoxes.clear(); } pos++; len--; atStart = false; } // IMPORTANT: pos is > length here! float additionalTmpW = ignoringSpaces ? 0 : textWidth(t, lastSpace, pos - lastSpace, f, width.currentWidth(), isFixedPitch, collapseWhiteSpace) + lastSpaceWordSpacing; width.addUncommittedWidth(additionalTmpW + inlineLogicalWidth(o, !appliedStartWidth, true)); if (!width.fitsOnLine()) { if (canHyphenate) tryHyphenating(t, f, style->locale(), style->hyphenationLimitBefore(), style->hyphenationLimitAfter(), lastSpace, pos, width.currentWidth() - additionalTmpW, width.availableWidth(), isFixedPitch, collapseWhiteSpace, lastSpaceWordSpacing, lBreak, nextBreakable, hyphenated); if (!hyphenated && lBreak.m_obj && lBreak.m_pos && lBreak.m_obj->isText() && toRenderText(lBreak.m_obj)->textLength() && toRenderText(lBreak.m_obj)->characters()[lBreak.m_pos - 1] == softHyphen && style->hyphens() != HyphensNone) hyphenated = true; if (hyphenated) goto end; } } else ASSERT_NOT_REACHED(); bool checkForBreak = autoWrap; if (width.committedWidth() && !width.fitsOnLine() && lBreak.m_obj && currWS == NOWRAP) checkForBreak = true; else if (next && o->isText() && next->isText() && !next->isBR()) { if (autoWrap || (next->style()->autoWrap())) { if (currentCharacterIsSpace) checkForBreak = true; else { checkForBreak = false; RenderText* nextText = toRenderText(next); if (nextText->textLength()) { UChar c = nextText->characters()[0]; if (c == ' ' || c == '\t' || (c == '\n' && !next->preservesNewline())) // If the next item on the line is text, and if we did not end with // a space, then the next text run continues our word (and so it needs to // keep adding to |tmpW|. Just update and continue. checkForBreak = true; } else if (nextText->isWordBreak()) checkForBreak = true; if (!width.fitsOnLine() && !width.committedWidth()) width.fitBelowFloats(); bool canPlaceOnLine = width.fitsOnLine() || !autoWrapWasEverTrueOnLine; if (canPlaceOnLine && checkForBreak) { width.commit(); lBreak.moveToStartOf(next); } } } } if (checkForBreak && !width.fitsOnLine()) { // if we have floats, try to get below them. if (currentCharacterIsSpace && !ignoringSpaces && o->style()->collapseWhiteSpace()) { trailingSpaceObject = 0; trailingPositionedBoxes.clear(); } if (width.committedWidth()) goto end; width.fitBelowFloats(); // |width| may have been adjusted because we got shoved down past a float (thus // giving us more room), so we need to retest, and only jump to // the end label if we still don't fit on the line. -dwh if (!width.fitsOnLine()) goto end; } if (!o->isFloatingOrPositioned()) { last = o; if (last->isReplaced() && autoWrap && (!last->isImage() || allowImagesToBreak) && (!last->isListMarker() || toRenderListMarker(last)->isInside())) { width.commit(); lBreak.moveToStartOf(next); } } o = next; nextBreakable = -1; // Clear out our character space bool, since inline <pre>s don't collapse whitespace // with adjacent inline normal/nowrap spans. if (!collapseWhiteSpace) currentCharacterIsSpace = false; pos = 0; atStart = false; } if (width.fitsOnLine() || lastWS == NOWRAP) lBreak.clear(); end: if (lBreak == resolver.position() && (!lBreak.m_obj || !lBreak.m_obj->isBR())) { // we just add as much as possible if (style()->whiteSpace() == PRE) { // FIXME: Don't really understand this case. if (pos != 0) { // FIXME: This should call moveTo which would clear m_nextBreakablePosition // this code as-is is likely wrong. lBreak.m_obj = o; lBreak.m_pos = pos - 1; } else lBreak.moveTo(last, last->isText() ? last->length() : 0); } else if (lBreak.m_obj) { // Don't ever break in the middle of a word if we can help it. // There's no room at all. We just have to be on this line, // even though we'll spill out. lBreak.moveTo(o, pos); } } // make sure we consume at least one char/object. if (lBreak == resolver.position()) lBreak.increment(); // Sanity check our midpoints. checkMidpoints(lineMidpointState, lBreak); if (trailingSpaceObject) { // This object is either going to be part of the last midpoint, or it is going // to be the actual endpoint. In both cases we just decrease our pos by 1 level to // exclude the space, allowing it to - in effect - collapse into the newline. if (lineMidpointState.numMidpoints % 2) { // Find the trailing space object's midpoint. int trailingSpaceMidpoint = lineMidpointState.numMidpoints - 1; for ( ; trailingSpaceMidpoint >= 0 && lineMidpointState.midpoints[trailingSpaceMidpoint].m_obj != trailingSpaceObject; --trailingSpaceMidpoint) { } ASSERT(trailingSpaceMidpoint >= 0); lineMidpointState.midpoints[trailingSpaceMidpoint].m_pos--; // Now make sure every single trailingPositionedBox following the trailingSpaceMidpoint properly stops and starts // ignoring spaces. size_t currentMidpoint = trailingSpaceMidpoint + 1; for (size_t i = 0; i < trailingPositionedBoxes.size(); ++i) { if (currentMidpoint >= lineMidpointState.numMidpoints) { // We don't have a midpoint for this box yet. InlineIterator ignoreStart(this, trailingPositionedBoxes[i], 0); addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring. addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again. } else { ASSERT(lineMidpointState.midpoints[currentMidpoint].m_obj == trailingPositionedBoxes[i]); ASSERT(lineMidpointState.midpoints[currentMidpoint + 1].m_obj == trailingPositionedBoxes[i]); } currentMidpoint += 2; } } else if (!lBreak.m_obj && trailingSpaceObject->isText()) { // Add a new end midpoint that stops right at the very end. RenderText* text = toRenderText(trailingSpaceObject); unsigned length = text->textLength(); unsigned pos = length >= 2 ? length - 2 : UINT_MAX; InlineIterator endMid(0, trailingSpaceObject, pos); addMidpoint(lineMidpointState, endMid); for (size_t i = 0; i < trailingPositionedBoxes.size(); ++i) { ignoreStart.m_obj = trailingPositionedBoxes[i]; ignoreStart.m_pos = 0; addMidpoint(lineMidpointState, ignoreStart); // Stop ignoring spaces. addMidpoint(lineMidpointState, ignoreStart); // Start ignoring again. } } } // We might have made lBreak an iterator that points past the end // of the object. Do this adjustment to make it point to the start // of the next object instead to avoid confusing the rest of the // code. if (lBreak.m_pos > 0) { lBreak.m_pos--; lBreak.increment(); } return lBreak; } void RenderBlock::addOverflowFromInlineChildren() { int endPadding = hasOverflowClip() ? paddingEnd() : 0; // FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to. if (hasOverflowClip() && !endPadding && node() && node()->rendererIsEditable() && node() == node()->rootEditableElement() && style()->isLeftToRightDirection()) endPadding = 1; for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { addLayoutOverflow(curr->paddedLayoutOverflowRect(endPadding)); if (!hasOverflowClip()) addVisualOverflow(curr->visualOverflowRect(curr->lineTop(), curr->lineBottom())); } } void RenderBlock::deleteEllipsisLineBoxes() { for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) curr->clearTruncation(); } void RenderBlock::checkLinesForTextOverflow() { // Determine the width of the ellipsis using the current font. // FIXME: CSS3 says this is configurable, also need to use 0x002E (FULL STOP) if horizontal ellipsis is "not renderable" TextRun ellipsisRun(&horizontalEllipsis, 1); DEFINE_STATIC_LOCAL(AtomicString, ellipsisStr, (&horizontalEllipsis, 1)); const Font& firstLineFont = firstLineStyle()->font(); const Font& font = style()->font(); int firstLineEllipsisWidth = firstLineFont.width(ellipsisRun); int ellipsisWidth = (font == firstLineFont) ? firstLineEllipsisWidth : font.width(ellipsisRun); // For LTR text truncation, we want to get the right edge of our padding box, and then we want to see // if the right edge of a line box exceeds that. For RTL, we use the left edge of the padding box and // check the left edge of the line box to see if it is less // Include the scrollbar for overflow blocks, which means we want to use "contentWidth()" bool ltr = style()->isLeftToRightDirection(); for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { int blockRightEdge = logicalRightOffsetForLine(curr->y(), curr == firstRootBox()); int blockLeftEdge = logicalLeftOffsetForLine(curr->y(), curr == firstRootBox()); int lineBoxEdge = ltr ? curr->x() + curr->logicalWidth() : curr->x(); if ((ltr && lineBoxEdge > blockRightEdge) || (!ltr && lineBoxEdge < blockLeftEdge)) { // This line spills out of our box in the appropriate direction. Now we need to see if the line // can be truncated. In order for truncation to be possible, the line must have sufficient space to // accommodate our truncation string, and no replaced elements (images, tables) can overlap the ellipsis // space. int width = curr == firstRootBox() ? firstLineEllipsisWidth : ellipsisWidth; int blockEdge = ltr ? blockRightEdge : blockLeftEdge; if (curr->lineCanAccommodateEllipsis(ltr, blockEdge, lineBoxEdge, width)) curr->placeEllipsis(ellipsisStr, ltr, blockLeftEdge, blockRightEdge, width); } } } bool RenderBlock::positionNewFloatOnLine(FloatingObject* newFloat, FloatingObject* lastFloatFromPreviousLine, LineWidth& width) { if (!positionNewFloats()) return false; width.shrinkAvailableWidthForNewFloatIfNeeded(newFloat); if (!newFloat->m_paginationStrut) return true; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); ASSERT(floatingObjectSet.last() == newFloat); int floatLogicalTop = logicalTopForFloat(newFloat); int paginationStrut = newFloat->m_paginationStrut; if (floatLogicalTop - paginationStrut != logicalHeight()) return true; FloatingObjectSetIterator it = floatingObjectSet.end(); --it; // Last float is newFloat, skip that one. FloatingObjectSetIterator begin = floatingObjectSet.begin(); while (it != begin) { --it; FloatingObject* f = *it; if (f == lastFloatFromPreviousLine) break; if (logicalTopForFloat(f) == logicalHeight()) { ASSERT(!f->m_paginationStrut); f->m_paginationStrut = paginationStrut; RenderBox* o = f->m_renderer; setLogicalTopForChild(o, logicalTopForChild(o) + marginBeforeForChild(o) + paginationStrut); if (o->isRenderBlock()) toRenderBlock(o)->setChildNeedsLayout(true, false); o->layoutIfNeeded(); setLogicalTopForFloat(f, logicalTopForFloat(f) + f->m_paginationStrut); } } setLogicalHeight(logicalHeight() + paginationStrut); width.updateAvailableWidth(); return true; } }