/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #if USE(JSVALUE32_64) #include "JIT.h" #include "CodeBlock.h" #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JITStubs.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" #include "ResultType.h" #include "SamplingTool.h" #ifndef NDEBUG #include <stdio.h> #endif using namespace std; namespace JSC { void JIT::emit_op_negate(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump srcNotInt = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); neg32(regT0); emitStoreInt32(dst, regT0, (dst == src)); Jump end = jump(); srcNotInt.link(this); addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); xor32(TrustedImm32(1 << 31), regT1); store32(regT1, tagFor(dst)); if (dst != src) store32(regT0, payloadFor(dst)); end.link(this); } void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; linkSlowCase(iter); // 0x7fffffff check linkSlowCase(iter); // double check JITStubCall stubCall(this, cti_op_negate); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_jnless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; JumpList notInt32Op1; JumpList notInt32Op2; // Character less. if (isOperandConstantImmediateChar(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op1)) { // Int32 less. emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, regT2), target); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); } else { if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } } JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target); } void JIT::emit_op_jless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; JumpList notInt32Op1; JumpList notInt32Op2; // Character less. if (isOperandConstantImmediateChar(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(LessThan, regT0, regT2), target); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); } else { if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } } JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; JumpList notInt32Op1; JumpList notInt32Op2; // Character less. if (isOperandConstantImmediateChar(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT2), target); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(invert ? op_jnlesseq : op_jlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); } else { if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } } JITStubCall stubCall(this, cti_op_jlesseq); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); } void JIT::emit_op_jnlesseq(Instruction* currentInstruction) { emit_op_jlesseq(currentInstruction, true); } void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { emitSlow_op_jlesseq(currentInstruction, iter, true); } // LeftShift (<<) void JIT::emit_op_lshift(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); emitStoreInt32(dst, regT0, dst == op1); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); lshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_lshift); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // RightShift (>>) and UnsignedRightShift (>>>) helper void JIT::emitRightShift(Instruction* currentInstruction, bool isUnsigned) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; // Slow case of rshift makes assumptions about what registers hold the // shift arguments, so any changes must be updated there as well. if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); int shift = getConstantOperand(op2).asInt32(); if (isUnsigned) { if (shift) urshift32(Imm32(shift & 0x1f), regT0); // unsigned shift < 0 or shift = k*2^32 may result in (essentially) // a toUint conversion, which can result in a value we can represent // as an immediate int. if (shift < 0 || !(shift & 31)) addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); } else if (shift) { // signed right shift by zero is simply toInt conversion rshift32(Imm32(shift & 0x1f), regT0); } emitStoreInt32(dst, regT0, dst == op1); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); if (isUnsigned) { urshift32(regT2, regT0); addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); } else rshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool isUnsigned) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { int shift = getConstantOperand(op2).asInt32(); // op1 = regT1:regT0 linkSlowCase(iter); // int32 check if (supportsFloatingPointTruncate()) { JumpList failures; failures.append(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag))); emitLoadDouble(op1, fpRegT0); failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); if (isUnsigned) { if (shift) urshift32(Imm32(shift & 0x1f), regT0); if (shift < 0 || !(shift & 31)) failures.append(branch32(LessThan, regT0, TrustedImm32(0))); } else if (shift) rshift32(Imm32(shift & 0x1f), regT0); emitStoreInt32(dst, regT0, false); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); failures.link(this); } if (isUnsigned && (shift < 0 || !(shift & 31))) linkSlowCase(iter); // failed to box in hot path } else { // op1 = regT1:regT0 // op2 = regT3:regT2 if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // int32 check -- op1 is not an int if (supportsFloatingPointTruncate()) { Jump notDouble = branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)); // op1 is not a double emitLoadDouble(op1, fpRegT0); Jump notInt = branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)); // op2 is not an int Jump cantTruncate = branchTruncateDoubleToInt32(fpRegT0, regT0); if (isUnsigned) urshift32(regT2, regT0); else rshift32(regT2, regT0); emitStoreInt32(dst, regT0, false); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); notDouble.link(this); notInt.link(this); cantTruncate.link(this); } } linkSlowCase(iter); // int32 check - op2 is not an int if (isUnsigned) linkSlowCase(iter); // Can't represent unsigned result as an immediate } JITStubCall stubCall(this, isUnsigned ? cti_op_urshift : cti_op_rshift); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // RightShift (>>) void JIT::emit_op_rshift(Instruction* currentInstruction) { emitRightShift(currentInstruction, false); } void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { emitRightShiftSlowCase(currentInstruction, iter, false); } // UnsignedRightShift (>>>) void JIT::emit_op_urshift(Instruction* currentInstruction) { emitRightShift(currentInstruction, true); } void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { emitRightShiftSlowCase(currentInstruction, iter, true); } // BitAnd (&) void JIT::emit_op_bitand(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); and32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); and32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitOr (|) void JIT::emit_op_bitor(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); or32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); or32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitor); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitXor (^) void JIT::emit_op_bitxor(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); xor32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); xor32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitxor); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitNot (~) void JIT::emit_op_bitnot(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); not32(regT0); emitStoreInt32(dst, regT0, (dst == src)); } void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitnot); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } // PostInc (i++) void JIT::emit_op_post_inc(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); if (dst == srcDst) // x = x++ is a noop for ints. return; emitStoreInt32(dst, regT0); addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); // int32 check if (dst != srcDst) linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_post_inc); stubCall.addArgument(srcDst); stubCall.addArgument(Imm32(srcDst)); stubCall.call(dst); } // PostDec (i--) void JIT::emit_op_post_dec(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); if (dst == srcDst) // x = x-- is a noop for ints. return; emitStoreInt32(dst, regT0); addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); // int32 check if (dst != srcDst) linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_post_dec); stubCall.addArgument(srcDst); stubCall.addArgument(TrustedImm32(srcDst)); stubCall.call(dst); } // PreInc (++i) void JIT::emit_op_pre_inc(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_pre_inc); stubCall.addArgument(srcDst); stubCall.call(srcDst); } // PreDec (--i) void JIT::emit_op_pre_dec(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_pre_dec); stubCall.addArgument(srcDst); stubCall.call(srcDst); } // Addition (+) void JIT::emit_op_add(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); return; } JumpList notInt32Op1; JumpList notInt32Op2; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchAdd32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); addDouble(fpRegT1, fpRegT0); emitStoreDouble(dst, fpRegT0); end.link(this); } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) return; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) linkSlowCase(iter); // non-sse case else { ResultType opType = op == op1 ? types.first() : types.second(); if (!opType.definitelyIsNumber()) linkSlowCase(iter); // double check } } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Subtraction (-) void JIT::emit_op_sub(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; if (isOperandConstantImmediateInt(op2)) { emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchSub32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branchSub32(Overflow, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); end.link(this); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint() || !types.first().definitelyIsNumber()) linkSlowCase(iter); // int32 or double check } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITStubCall stubCall(this, cti_op_sub); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters) { JumpList end; if (!notInt32Op1.empty()) { // Double case 1: Op1 is not int32; Op2 is unknown. notInt32Op1.link(this); ASSERT(op1IsInRegisters); // Verify Op1 is double. if (!types.first().definitelyIsNumber()) addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); if (!op2IsInRegisters) emitLoad(op2, regT3, regT2); Jump doubleOp2 = branch32(Below, regT3, TrustedImm32(JSValue::LowestTag)); if (!types.second().definitelyIsNumber()) addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); convertInt32ToDouble(regT2, fpRegT0); Jump doTheMath = jump(); // Load Op2 as double into double register. doubleOp2.link(this); emitLoadDouble(op2, fpRegT0); // Do the math. doTheMath.link(this); switch (opcodeID) { case op_mul: emitLoadDouble(op1, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op1, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op1, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; case op_div: emitLoadDouble(op1, fpRegT1); divDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; case op_jnless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); break; case op_jless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst); break; case op_jlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst); break; case op_jnlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst); break; default: ASSERT_NOT_REACHED(); } if (!notInt32Op2.empty()) end.append(jump()); } if (!notInt32Op2.empty()) { // Double case 2: Op1 is int32; Op2 is not int32. notInt32Op2.link(this); ASSERT(op2IsInRegisters); if (!op1IsInRegisters) emitLoadPayload(op1, regT0); convertInt32ToDouble(regT0, fpRegT0); // Verify op2 is double. if (!types.second().definitelyIsNumber()) addSlowCase(branch32(Above, regT3, TrustedImm32(JSValue::LowestTag))); // Do the math. switch (opcodeID) { case op_mul: emitLoadDouble(op2, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op2, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op2, fpRegT2); subDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_div: emitLoadDouble(op2, fpRegT2); divDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_jnless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); break; case op_jless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst); break; case op_jnlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst); break; case op_jlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst); break; default: ASSERT_NOT_REACHED(); } } end.link(this); } // Multiplication (*) void JIT::emit_op_mul(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // Int32 case. move(regT0, regT3); addSlowCase(branchMul32(Overflow, regT2, regT0)); addSlowCase(branchTest32(Zero, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); Jump overflow = getSlowCase(iter); // overflow check linkSlowCase(iter); // zero result check Jump negZero = branchOr32(Signed, regT2, regT3); emitStoreInt32(dst, TrustedImm32(0), (op1 == dst || op2 == dst)); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul)); negZero.link(this); overflow.link(this); if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } if (supportsFloatingPoint()) { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } Label jitStubCall(this); JITStubCall stubCall(this, cti_op_mul); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Division (/) void JIT::emit_op_div(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!supportsFloatingPoint()) { addSlowCase(jump()); return; } // Int32 divide. JumpList notInt32Op1; JumpList notInt32Op2; JumpList end; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); convertInt32ToDouble(regT0, fpRegT0); convertInt32ToDouble(regT2, fpRegT1); divDouble(fpRegT1, fpRegT0); JumpList doubleResult; branchConvertDoubleToInt32(fpRegT0, regT0, doubleResult, fpRegT1); // Int32 result. emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); end.append(jump()); // Double result. doubleResult.link(this); emitStoreDouble(dst, fpRegT0); end.append(jump()); // Double divide. emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!supportsFloatingPoint()) linkSlowCase(iter); else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } JITStubCall stubCall(this, cti_op_div); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Mod (%) /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ #if CPU(X86) || CPU(X86_64) || CPU(MIPS) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; #if CPU(X86) || CPU(X86_64) // Make sure registers are correct for x86 IDIV instructions. ASSERT(regT0 == X86Registers::eax); ASSERT(regT1 == X86Registers::edx); ASSERT(regT2 == X86Registers::ecx); ASSERT(regT3 == X86Registers::ebx); #endif if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { emitLoad(op1, regT1, regT0); move(Imm32(getConstantOperand(op2).asInt32()), regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); if (getConstantOperand(op2).asInt32() == -1) addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC addSlowCase(branch32(Equal, regT2, TrustedImm32(0))); // divide by 0 } move(regT0, regT3); // Save dividend payload, in case of 0. #if CPU(X86) || CPU(X86_64) m_assembler.cdq(); m_assembler.idivl_r(regT2); #elif CPU(MIPS) m_assembler.div(regT0, regT2); m_assembler.mfhi(regT1); #endif // If the remainder is zero and the dividend is negative, the result is -0. Jump storeResult1 = branchTest32(NonZero, regT1); Jump storeResult2 = branchTest32(Zero, regT3, TrustedImm32(0x80000000)); // not negative emitStore(dst, jsNumber(-0.0)); Jump end = jump(); storeResult1.link(this); storeResult2.link(this); emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst)); end.link(this); } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { linkSlowCase(iter); // int32 check if (getConstantOperand(op2).asInt32() == -1) linkSlowCase(iter); // 0x80000000 check } else { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check linkSlowCase(iter); // 0 check linkSlowCase(iter); // 0x80000000 check } JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } #else // CPU(X86) || CPU(X86_64) || CPU(MIPS) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; #if ENABLE(JIT_USE_SOFT_MODULO) emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(Equal, regT2, TrustedImm32(0))); emitNakedCall(m_globalData->jitStubs->ctiSoftModulo()); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); #else JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); #endif } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) { UNUSED_PARAM(currentInstruction); UNUSED_PARAM(iter); #if ENABLE(JIT_USE_SOFT_MODULO) unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(result); #else ASSERT_NOT_REACHED(); #endif } #endif // CPU(X86) || CPU(X86_64) /* ------------------------------ END: OP_MOD ------------------------------ */ } // namespace JSC #endif // USE(JSVALUE32_64) #endif // ENABLE(JIT)