/* * Copyright (C) 2008, 2009 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef BytecodeGenerator_h #define BytecodeGenerator_h #include "CodeBlock.h" #include "HashTraits.h" #include "Instruction.h" #include "Label.h" #include "LabelScope.h" #include "Interpreter.h" #include "RegisterID.h" #include "SymbolTable.h" #include "Debugger.h" #include "Nodes.h" #include <wtf/PassRefPtr.h> #include <wtf/SegmentedVector.h> #include <wtf/Vector.h> namespace JSC { class Identifier; class ScopeChainNode; class CallArguments { public: CallArguments(BytecodeGenerator& generator, ArgumentsNode* argumentsNode); RegisterID* thisRegister() { return m_argv[0].get(); } RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); } unsigned callFrame() { return thisRegister()->index() + count() + RegisterFile::CallFrameHeaderSize; } unsigned count() { return m_argv.size(); } RegisterID* profileHookRegister() { return m_profileHookRegister.get(); } ArgumentsNode* argumentsNode() { return m_argumentsNode; } private: RefPtr<RegisterID> m_profileHookRegister; ArgumentsNode* m_argumentsNode; Vector<RefPtr<RegisterID>, 16> m_argv; }; struct FinallyContext { Label* finallyAddr; RegisterID* retAddrDst; }; struct ControlFlowContext { bool isFinallyBlock; FinallyContext finallyContext; }; struct ForInContext { RefPtr<RegisterID> expectedSubscriptRegister; RefPtr<RegisterID> iterRegister; RefPtr<RegisterID> indexRegister; RefPtr<RegisterID> propertyRegister; }; class BytecodeGenerator { WTF_MAKE_FAST_ALLOCATED; public: typedef DeclarationStacks::VarStack VarStack; typedef DeclarationStacks::FunctionStack FunctionStack; static void setDumpsGeneratedCode(bool dumpsGeneratedCode); static bool dumpsGeneratedCode(); BytecodeGenerator(ProgramNode*, ScopeChainNode*, SymbolTable*, ProgramCodeBlock*); BytecodeGenerator(FunctionBodyNode*, ScopeChainNode*, SymbolTable*, CodeBlock*); BytecodeGenerator(EvalNode*, ScopeChainNode*, SymbolTable*, EvalCodeBlock*); JSGlobalData* globalData() const { return m_globalData; } const CommonIdentifiers& propertyNames() const { return *m_globalData->propertyNames; } bool isConstructor() { return m_codeBlock->m_isConstructor; } JSObject* generate(); // Returns the register corresponding to a local variable, or 0 if no // such register exists. Registers returned by registerFor do not // require explicit reference counting. RegisterID* registerFor(const Identifier&); // Returns the agument number if this is an argument, or 0 if not. int argumentNumberFor(const Identifier&); void setIsNumericCompareFunction(bool isNumericCompareFunction); bool willResolveToArguments(const Identifier&); RegisterID* uncheckedRegisterForArguments(); // Behaves as registerFor does, but ignores dynamic scope as // dynamic scope should not interfere with const initialisation RegisterID* constRegisterFor(const Identifier&); // Searches the scope chain in an attempt to statically locate the requested // property. Returns false if for any reason the property cannot be safely // optimised at all. Otherwise it will return the index and depth of the // VariableObject that defines the property. If the property cannot be found // statically, depth will contain the depth of the scope chain where dynamic // lookup must begin. bool findScopedProperty(const Identifier&, int& index, size_t& depth, bool forWriting, bool& includesDynamicScopes, JSObject*& globalObject); // Returns the register storing "this" RegisterID* thisRegister() { return &m_thisRegister; } bool isLocal(const Identifier&); bool isLocalConstant(const Identifier&); // Returns the next available temporary register. Registers returned by // newTemporary require a modified form of reference counting: any // register with a refcount of 0 is considered "available", meaning that // the next instruction may overwrite it. RegisterID* newTemporary(); RegisterID* highestUsedRegister(); // The same as newTemporary(), but this function returns "suggestion" if // "suggestion" is a temporary. This function is helpful in situations // where you've put "suggestion" in a RefPtr, but you'd like to allow // the next instruction to overwrite it anyway. RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); } // Functions for handling of dst register RegisterID* ignoredResult() { return &m_ignoredResultRegister; } // Returns a place to write intermediate values of an operation // which reuses dst if it is safe to do so. RegisterID* tempDestination(RegisterID* dst) { return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary(); } // Returns the place to write the final output of an operation. RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0) { if (originalDst && originalDst != ignoredResult()) return originalDst; ASSERT(tempDst != ignoredResult()); if (tempDst && tempDst->isTemporary()) return tempDst; return newTemporary(); } // Returns the place to write the final output of an operation. RegisterID* finalDestinationOrIgnored(RegisterID* originalDst, RegisterID* tempDst = 0) { if (originalDst) return originalDst; ASSERT(tempDst != ignoredResult()); if (tempDst && tempDst->isTemporary()) return tempDst; return newTemporary(); } RegisterID* destinationForAssignResult(RegisterID* dst) { if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain()) return dst->isTemporary() ? dst : newTemporary(); return 0; } // Moves src to dst if dst is not null and is different from src, otherwise just returns src. RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src) { return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src; } PassRefPtr<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0); PassRefPtr<Label> newLabel(); // The emitNode functions are just syntactic sugar for calling // Node::emitCode. These functions accept a 0 for the register, // meaning that the node should allocate a register, or ignoredResult(), // meaning that the node need not put the result in a register. // Other emit functions do not accept 0 or ignoredResult(). RegisterID* emitNode(RegisterID* dst, Node* n) { // Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary. ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount()); addLineInfo(n->lineNo()); return m_stack.recursionCheck() ? n->emitBytecode(*this, dst) : emitThrowExpressionTooDeepException(); } RegisterID* emitNode(Node* n) { return emitNode(0, n); } void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, bool fallThroughMeansTrue) { addLineInfo(n->lineNo()); if (m_stack.recursionCheck()) n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMeansTrue); else emitThrowExpressionTooDeepException(); } void emitExpressionInfo(unsigned divot, unsigned startOffset, unsigned endOffset) { if (!m_shouldEmitRichSourceInfo) return; divot -= m_codeBlock->sourceOffset(); if (divot > ExpressionRangeInfo::MaxDivot) { // Overflow has occurred, we can only give line number info for errors for this region divot = 0; startOffset = 0; endOffset = 0; } else if (startOffset > ExpressionRangeInfo::MaxOffset) { // If the start offset is out of bounds we clear both offsets // so we only get the divot marker. Error message will have to be reduced // to line and column number. startOffset = 0; endOffset = 0; } else if (endOffset > ExpressionRangeInfo::MaxOffset) { // The end offset is only used for additional context, and is much more likely // to overflow (eg. function call arguments) so we are willing to drop it without // dropping the rest of the range. endOffset = 0; } ExpressionRangeInfo info; info.instructionOffset = instructions().size(); info.divotPoint = divot; info.startOffset = startOffset; info.endOffset = endOffset; m_codeBlock->addExpressionInfo(info); } ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure) { return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure; } ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure) { if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) { PassRefPtr<RegisterID> dst = newTemporary(); emitNode(dst.get(), n); return dst; } return PassRefPtr<RegisterID>(emitNode(n)); } RegisterID* emitLoad(RegisterID* dst, bool); RegisterID* emitLoad(RegisterID* dst, double); RegisterID* emitLoad(RegisterID* dst, const Identifier&); RegisterID* emitLoad(RegisterID* dst, JSValue); RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src); RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes); RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2); RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src); RegisterID* emitNewObject(RegisterID* dst); RegisterID* emitNewArray(RegisterID* dst, ElementNode*); // stops at first elision RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body); RegisterID* emitLazyNewFunction(RegisterID* dst, FunctionBodyNode* body); RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index, bool shouldNullCheck); RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func); RegisterID* emitNewRegExp(RegisterID* dst, PassRefPtr<RegExp> regExp); RegisterID* emitMove(RegisterID* dst, RegisterID* src); RegisterID* emitToJSNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_jsnumber, dst, src); } RegisterID* emitPreInc(RegisterID* srcDst); RegisterID* emitPreDec(RegisterID* srcDst); RegisterID* emitPostInc(RegisterID* dst, RegisterID* srcDst); RegisterID* emitPostDec(RegisterID* dst, RegisterID* srcDst); void emitCheckHasInstance(RegisterID* base); RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* base, RegisterID* basePrototype); RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); } RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); } RegisterID* emitResolve(RegisterID* dst, const Identifier& property); RegisterID* emitGetScopedVar(RegisterID* dst, size_t skip, int index, JSValue globalObject); RegisterID* emitPutScopedVar(size_t skip, int index, RegisterID* value, JSValue globalObject); RegisterID* emitResolveBase(RegisterID* dst, const Identifier& property); RegisterID* emitResolveBaseForPut(RegisterID* dst, const Identifier& property); RegisterID* emitResolveWithBase(RegisterID* baseDst, RegisterID* propDst, const Identifier& property); void emitMethodCheck(); RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property); RegisterID* emitGetArgumentsLength(RegisterID* dst, RegisterID* base); RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value); RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value); RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&); RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property); RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property); RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value); RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property); RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value); RegisterID* emitPutGetter(RegisterID* base, const Identifier& property, RegisterID* value); RegisterID* emitPutSetter(RegisterID* base, const Identifier& property, RegisterID* value); RegisterID* emitCall(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset); RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset); RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* argCount, unsigned divot, unsigned startOffset, unsigned endOffset); RegisterID* emitLoadVarargs(RegisterID* argCountDst, RegisterID* thisRegister, RegisterID* args); RegisterID* emitReturn(RegisterID* src); RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); } RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset); RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count); void emitToPrimitive(RegisterID* dst, RegisterID* src); PassRefPtr<Label> emitLabel(Label*); PassRefPtr<Label> emitJump(Label* target); PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target); PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target); PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target); PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target); PassRefPtr<Label> emitJumpScopes(Label* target, int targetScopeDepth); PassRefPtr<Label> emitJumpSubroutine(RegisterID* retAddrDst, Label*); void emitSubroutineReturn(RegisterID* retAddrSrc); RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget); RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target); RegisterID* emitCatch(RegisterID*, Label* start, Label* end); void emitThrow(RegisterID* exc) { m_usesExceptions = true; emitUnaryNoDstOp(op_throw, exc); } void emitThrowReferenceError(const UString& message); void emitPushNewScope(RegisterID* dst, const Identifier& property, RegisterID* value); RegisterID* emitPushScope(RegisterID* scope); void emitPopScope(); void emitDebugHook(DebugHookID, int firstLine, int lastLine); int scopeDepth() { return m_dynamicScopeDepth + m_finallyDepth; } bool hasFinaliser() { return m_finallyDepth != 0; } void pushFinallyContext(Label* target, RegisterID* returnAddrDst); void popFinallyContext(); void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister) { ForInContext context = { expectedBase, iter, index, propertyRegister }; m_forInContextStack.append(context); } void popOptimisedForIn() { m_forInContextStack.removeLast(); } LabelScope* breakTarget(const Identifier&); LabelScope* continueTarget(const Identifier&); void beginSwitch(RegisterID*, SwitchInfo::SwitchType); void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range); CodeType codeType() const { return m_codeType; } bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; } bool isStrictMode() const { return m_codeBlock->isStrictMode(); } private: void emitOpcode(OpcodeID); void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index); void retrieveLastUnaryOp(int& dstIndex, int& srcIndex); ALWAYS_INLINE void rewindBinaryOp(); ALWAYS_INLINE void rewindUnaryOp(); PassRefPtr<Label> emitComplexJumpScopes(Label* target, ControlFlowContext* topScope, ControlFlowContext* bottomScope); typedef HashMap<EncodedJSValue, unsigned, EncodedJSValueHash, EncodedJSValueHashTraits> JSValueMap; struct IdentifierMapIndexHashTraits { typedef int TraitType; typedef IdentifierMapIndexHashTraits StorageTraits; static int emptyValue() { return std::numeric_limits<int>::max(); } static const bool emptyValueIsZero = false; static const bool needsDestruction = false; static const bool needsRef = false; }; typedef HashMap<RefPtr<StringImpl>, int, IdentifierRepHash, HashTraits<RefPtr<StringImpl> >, IdentifierMapIndexHashTraits> IdentifierMap; typedef HashMap<double, JSValue> NumberMap; typedef HashMap<StringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap; RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset); RegisterID* newRegister(); // Adds a var slot and maps it to the name ident in symbolTable(). RegisterID* addVar(const Identifier& ident, bool isConstant) { RegisterID* local; addVar(ident, isConstant, local); return local; } // Ditto. Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used. bool addVar(const Identifier&, bool isConstant, RegisterID*&); // Adds an anonymous var slot. To give this slot a name, add it to symbolTable(). RegisterID* addVar() { ++m_codeBlock->m_numVars; return newRegister(); } // Returns the RegisterID corresponding to ident. RegisterID* addGlobalVar(const Identifier& ident, bool isConstant) { RegisterID* local; addGlobalVar(ident, isConstant, local); return local; } // Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used. bool addGlobalVar(const Identifier&, bool isConstant, RegisterID*&); void addParameter(const Identifier&, int parameterIndex); void preserveLastVar(); RegisterID& registerFor(int index) { if (index >= 0) return m_calleeRegisters[index]; if (m_parameters.size()) { ASSERT(!m_globals.size()); return m_parameters[index + m_parameters.size() + RegisterFile::CallFrameHeaderSize]; } return m_globals[-index - 1]; } unsigned addConstant(const Identifier&); RegisterID* addConstantValue(JSValue); unsigned addRegExp(PassRefPtr<RegExp>); FunctionExecutable* makeFunction(ExecState* exec, FunctionBodyNode* body) { return FunctionExecutable::create(exec, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine()); } FunctionExecutable* makeFunction(JSGlobalData* globalData, FunctionBodyNode* body) { return FunctionExecutable::create(globalData, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine()); } void addLineInfo(unsigned lineNo) { #if !ENABLE(OPCODE_SAMPLING) if (m_shouldEmitRichSourceInfo) #endif m_codeBlock->addLineInfo(instructions().size(), lineNo); } RegisterID* emitInitLazyRegister(RegisterID*); Vector<Instruction>& instructions() { return m_codeBlock->instructions(); } SymbolTable& symbolTable() { return *m_symbolTable; } bool shouldOptimizeLocals() { return (m_codeType != EvalCode) && !m_dynamicScopeDepth; } bool canOptimizeNonLocals() { return (m_codeType == FunctionCode) && !m_dynamicScopeDepth && !m_codeBlock->usesEval(); } RegisterID* emitThrowExpressionTooDeepException(); void createArgumentsIfNecessary(); void createActivationIfNecessary(); RegisterID* createLazyRegisterIfNecessary(RegisterID*); bool m_shouldEmitDebugHooks; bool m_shouldEmitProfileHooks; bool m_shouldEmitRichSourceInfo; Strong<ScopeChainNode> m_scopeChain; SymbolTable* m_symbolTable; ScopeNode* m_scopeNode; CodeBlock* m_codeBlock; // Some of these objects keep pointers to one another. They are arranged // to ensure a sane destruction order that avoids references to freed memory. HashSet<RefPtr<StringImpl>, IdentifierRepHash> m_functions; RegisterID m_ignoredResultRegister; RegisterID m_thisRegister; RegisterID* m_activationRegister; SegmentedVector<RegisterID, 32> m_constantPoolRegisters; SegmentedVector<RegisterID, 32> m_calleeRegisters; SegmentedVector<RegisterID, 32> m_parameters; SegmentedVector<RegisterID, 32> m_globals; SegmentedVector<Label, 32> m_labels; SegmentedVector<LabelScope, 8> m_labelScopes; RefPtr<RegisterID> m_lastVar; int m_finallyDepth; int m_dynamicScopeDepth; int m_baseScopeDepth; CodeType m_codeType; Vector<ControlFlowContext> m_scopeContextStack; Vector<SwitchInfo> m_switchContextStack; Vector<ForInContext> m_forInContextStack; int m_nextGlobalIndex; int m_firstConstantIndex; int m_nextConstantOffset; unsigned m_globalConstantIndex; int m_globalVarStorageOffset; bool m_hasCreatedActivation; int m_firstLazyFunction; int m_lastLazyFunction; HashMap<unsigned int, FunctionBodyNode*, WTF::IntHash<unsigned int>, WTF::UnsignedWithZeroKeyHashTraits<unsigned int> > m_lazyFunctions; typedef HashMap<FunctionBodyNode*, unsigned> FunctionOffsetMap; FunctionOffsetMap m_functionOffsets; // Constant pool IdentifierMap m_identifierMap; JSValueMap m_jsValueMap; NumberMap m_numberMap; IdentifierStringMap m_stringMap; JSGlobalData* m_globalData; OpcodeID m_lastOpcodeID; #ifndef NDEBUG size_t m_lastOpcodePosition; #endif StackBounds m_stack; bool m_usesExceptions; bool m_expressionTooDeep; }; } #endif // BytecodeGenerator_h