// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include <stdio.h> #include <string.h> #include "v8.h" #include "cctest.h" #include "compiler.h" #include "execution.h" #include "isolate.h" #include "parser.h" #include "preparser.h" #include "scanner-character-streams.h" #include "token.h" #include "utils.h" TEST(ScanKeywords) { struct KeywordToken { const char* keyword; i::Token::Value token; }; static const KeywordToken keywords[] = { #define KEYWORD(t, s, d) { s, i::Token::t }, TOKEN_LIST(IGNORE_TOKEN, KEYWORD) #undef KEYWORD { NULL, i::Token::IDENTIFIER } }; KeywordToken key_token; i::UnicodeCache unicode_cache; i::byte buffer[32]; for (int i = 0; (key_token = keywords[i]).keyword != NULL; i++) { const i::byte* keyword = reinterpret_cast<const i::byte*>(key_token.keyword); int length = i::StrLength(key_token.keyword); CHECK(static_cast<int>(sizeof(buffer)) >= length); { i::Utf8ToUtf16CharacterStream stream(keyword, length); i::Scanner scanner(&unicode_cache); // The scanner should parse Harmony keywords for this test. scanner.SetHarmonyScoping(true); scanner.SetHarmonyModules(true); scanner.Initialize(&stream); CHECK_EQ(key_token.token, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Removing characters will make keyword matching fail. { i::Utf8ToUtf16CharacterStream stream(keyword, length - 1); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Adding characters will make keyword matching fail. static const char chars_to_append[] = { 'z', '0', '_' }; for (int j = 0; j < static_cast<int>(ARRAY_SIZE(chars_to_append)); ++j) { memmove(buffer, keyword, length); buffer[length] = chars_to_append[j]; i::Utf8ToUtf16CharacterStream stream(buffer, length + 1); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Replacing characters will make keyword matching fail. { memmove(buffer, keyword, length); buffer[length - 1] = '_'; i::Utf8ToUtf16CharacterStream stream(buffer, length); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } } } TEST(ScanHTMLEndComments) { v8::V8::Initialize(); // Regression test. See: // http://code.google.com/p/chromium/issues/detail?id=53548 // Tests that --> is correctly interpreted as comment-to-end-of-line if there // is only whitespace before it on the line (with comments considered as // whitespace, even a multiline-comment containing a newline). // This was not the case if it occurred before the first real token // in the input. const char* tests[] = { // Before first real token. "--> is eol-comment\nvar y = 37;\n", "\n --> is eol-comment\nvar y = 37;\n", "/* precomment */ --> is eol-comment\nvar y = 37;\n", "\n/* precomment */ --> is eol-comment\nvar y = 37;\n", // After first real token. "var x = 42;\n--> is eol-comment\nvar y = 37;\n", "var x = 42;\n/* precomment */ --> is eol-comment\nvar y = 37;\n", NULL }; const char* fail_tests[] = { "x --> is eol-comment\nvar y = 37;\n", "\"\\n\" --> is eol-comment\nvar y = 37;\n", "x/* precomment */ --> is eol-comment\nvar y = 37;\n", "x/* precomment\n */ --> is eol-comment\nvar y = 37;\n", "var x = 42; --> is eol-comment\nvar y = 37;\n", "var x = 42; /* precomment\n */ --> is eol-comment\nvar y = 37;\n", NULL }; // Parser/Scanner needs a stack limit. int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); for (int i = 0; tests[i]; i++) { v8::ScriptData* data = v8::ScriptData::PreCompile(tests[i], i::StrLength(tests[i])); CHECK(data != NULL && !data->HasError()); delete data; } for (int i = 0; fail_tests[i]; i++) { v8::ScriptData* data = v8::ScriptData::PreCompile(fail_tests[i], i::StrLength(fail_tests[i])); CHECK(data == NULL || data->HasError()); delete data; } } class ScriptResource : public v8::String::ExternalAsciiStringResource { public: ScriptResource(const char* data, size_t length) : data_(data), length_(length) { } const char* data() const { return data_; } size_t length() const { return length_; } private: const char* data_; size_t length_; }; TEST(Preparsing) { v8::HandleScope handles; v8::Persistent<v8::Context> context = v8::Context::New(); v8::Context::Scope context_scope(context); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); // Source containing functions that might be lazily compiled and all types // of symbols (string, propertyName, regexp). const char* source = "var x = 42;" "function foo(a) { return function nolazy(b) { return a + b; } }" "function bar(a) { if (a) return function lazy(b) { return b; } }" "var z = {'string': 'string literal', bareword: 'propertyName', " " 42: 'number literal', for: 'keyword as propertyName', " " f\\u006fr: 'keyword propertyname with escape'};" "var v = /RegExp Literal/;" "var w = /RegExp Literal\\u0020With Escape/gin;" "var y = { get getter() { return 42; }, " " set setter(v) { this.value = v; }};"; int source_length = i::StrLength(source); const char* error_source = "var x = y z;"; int error_source_length = i::StrLength(error_source); v8::ScriptData* preparse = v8::ScriptData::PreCompile(source, source_length); CHECK(!preparse->HasError()); bool lazy_flag = i::FLAG_lazy; { i::FLAG_lazy = true; ScriptResource* resource = new ScriptResource(source, source_length); v8::Local<v8::String> script_source = v8::String::NewExternal(resource); v8::Script::Compile(script_source, NULL, preparse); } { i::FLAG_lazy = false; ScriptResource* resource = new ScriptResource(source, source_length); v8::Local<v8::String> script_source = v8::String::NewExternal(resource); v8::Script::New(script_source, NULL, preparse, v8::Local<v8::String>()); } delete preparse; i::FLAG_lazy = lazy_flag; // Syntax error. v8::ScriptData* error_preparse = v8::ScriptData::PreCompile(error_source, error_source_length); CHECK(error_preparse->HasError()); i::ScriptDataImpl *pre_impl = reinterpret_cast<i::ScriptDataImpl*>(error_preparse); i::Scanner::Location error_location = pre_impl->MessageLocation(); // Error is at "z" in source, location 10..11. CHECK_EQ(10, error_location.beg_pos); CHECK_EQ(11, error_location.end_pos); // Should not crash. const char* message = pre_impl->BuildMessage(); pre_impl->BuildArgs(); CHECK_GT(strlen(message), 0); } TEST(StandAlonePreParser) { v8::V8::Initialize(); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); const char* programs[] = { "{label: 42}", "var x = 42;", "function foo(x, y) { return x + y; }", "%ArgleBargle(glop);", "var x = new new Function('this.x = 42');", NULL }; uintptr_t stack_limit = i::Isolate::Current()->stack_guard()->real_climit(); for (int i = 0; programs[i]; i++) { const char* program = programs[i]; i::Utf8ToUtf16CharacterStream stream( reinterpret_cast<const i::byte*>(program), static_cast<unsigned>(strlen(program))); i::CompleteParserRecorder log; i::Scanner scanner(i::Isolate::Current()->unicode_cache()); scanner.Initialize(&stream); int flags = i::kAllowLazy | i::kAllowNativesSyntax; v8::preparser::PreParser::PreParseResult result = v8::preparser::PreParser::PreParseProgram(&scanner, &log, flags, stack_limit); CHECK_EQ(v8::preparser::PreParser::kPreParseSuccess, result); i::ScriptDataImpl data(log.ExtractData()); CHECK(!data.has_error()); } } TEST(StandAlonePreParserNoNatives) { v8::V8::Initialize(); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); const char* programs[] = { "%ArgleBargle(glop);", "var x = %_IsSmi(42);", NULL }; uintptr_t stack_limit = i::Isolate::Current()->stack_guard()->real_climit(); for (int i = 0; programs[i]; i++) { const char* program = programs[i]; i::Utf8ToUtf16CharacterStream stream( reinterpret_cast<const i::byte*>(program), static_cast<unsigned>(strlen(program))); i::CompleteParserRecorder log; i::Scanner scanner(i::Isolate::Current()->unicode_cache()); scanner.Initialize(&stream); // Flags don't allow natives syntax. v8::preparser::PreParser::PreParseResult result = v8::preparser::PreParser::PreParseProgram(&scanner, &log, i::kAllowLazy, stack_limit); CHECK_EQ(v8::preparser::PreParser::kPreParseSuccess, result); i::ScriptDataImpl data(log.ExtractData()); // Data contains syntax error. CHECK(data.has_error()); } } TEST(RegressChromium62639) { v8::V8::Initialize(); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); const char* program = "var x = 'something';\n" "escape: function() {}"; // Fails parsing expecting an identifier after "function". // Before fix, didn't check *ok after Expect(Token::Identifier, ok), // and then used the invalid currently scanned literal. This always // failed in debug mode, and sometimes crashed in release mode. i::Utf8ToUtf16CharacterStream stream( reinterpret_cast<const i::byte*>(program), static_cast<unsigned>(strlen(program))); i::ScriptDataImpl* data = i::ParserApi::PreParse(&stream, NULL, false); CHECK(data->HasError()); delete data; } TEST(Regress928) { v8::V8::Initialize(); // Preparsing didn't consider the catch clause of a try statement // as with-content, which made it assume that a function inside // the block could be lazily compiled, and an extra, unexpected, // entry was added to the data. int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); const char* program = "try { } catch (e) { var foo = function () { /* first */ } }" "var bar = function () { /* second */ }"; v8::HandleScope handles; i::Handle<i::String> source( FACTORY->NewStringFromAscii(i::CStrVector(program))); i::ScriptDataImpl* data = i::ParserApi::PartialPreParse(source, NULL, false); CHECK(!data->HasError()); data->Initialize(); int first_function = static_cast<int>(strstr(program, "function") - program); int first_lbrace = first_function + i::StrLength("function () "); CHECK_EQ('{', program[first_lbrace]); i::FunctionEntry entry1 = data->GetFunctionEntry(first_lbrace); CHECK(!entry1.is_valid()); int second_function = static_cast<int>(strstr(program + first_lbrace, "function") - program); int second_lbrace = second_function + i::StrLength("function () "); CHECK_EQ('{', program[second_lbrace]); i::FunctionEntry entry2 = data->GetFunctionEntry(second_lbrace); CHECK(entry2.is_valid()); CHECK_EQ('}', program[entry2.end_pos() - 1]); delete data; } TEST(PreParseOverflow) { v8::V8::Initialize(); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); size_t kProgramSize = 1024 * 1024; i::SmartArrayPointer<char> program( reinterpret_cast<char*>(malloc(kProgramSize + 1))); memset(*program, '(', kProgramSize); program[kProgramSize] = '\0'; uintptr_t stack_limit = i::Isolate::Current()->stack_guard()->real_climit(); i::Utf8ToUtf16CharacterStream stream( reinterpret_cast<const i::byte*>(*program), static_cast<unsigned>(kProgramSize)); i::CompleteParserRecorder log; i::Scanner scanner(i::Isolate::Current()->unicode_cache()); scanner.Initialize(&stream); v8::preparser::PreParser::PreParseResult result = v8::preparser::PreParser::PreParseProgram(&scanner, &log, true, stack_limit); CHECK_EQ(v8::preparser::PreParser::kPreParseStackOverflow, result); } class TestExternalResource: public v8::String::ExternalStringResource { public: explicit TestExternalResource(uint16_t* data, int length) : data_(data), length_(static_cast<size_t>(length)) { } ~TestExternalResource() { } const uint16_t* data() const { return data_; } size_t length() const { return length_; } private: uint16_t* data_; size_t length_; }; #define CHECK_EQU(v1, v2) CHECK_EQ(static_cast<int>(v1), static_cast<int>(v2)) void TestCharacterStream(const char* ascii_source, unsigned length, unsigned start = 0, unsigned end = 0) { if (end == 0) end = length; unsigned sub_length = end - start; i::HandleScope test_scope; i::SmartArrayPointer<i::uc16> uc16_buffer(new i::uc16[length]); for (unsigned i = 0; i < length; i++) { uc16_buffer[i] = static_cast<i::uc16>(ascii_source[i]); } i::Vector<const char> ascii_vector(ascii_source, static_cast<int>(length)); i::Handle<i::String> ascii_string( FACTORY->NewStringFromAscii(ascii_vector)); TestExternalResource resource(*uc16_buffer, length); i::Handle<i::String> uc16_string( FACTORY->NewExternalStringFromTwoByte(&resource)); i::ExternalTwoByteStringUtf16CharacterStream uc16_stream( i::Handle<i::ExternalTwoByteString>::cast(uc16_string), start, end); i::GenericStringUtf16CharacterStream string_stream(ascii_string, start, end); i::Utf8ToUtf16CharacterStream utf8_stream( reinterpret_cast<const i::byte*>(ascii_source), end); utf8_stream.SeekForward(start); unsigned i = start; while (i < end) { // Read streams one char at a time CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c0 = ascii_source[i]; int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } while (i > start + sub_length / 4) { // Pushback, re-read, pushback again. int32_t c0 = ascii_source[i - 1]; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); uc16_stream.PushBack(c0); string_stream.PushBack(c0); utf8_stream.PushBack(c0); i--; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); uc16_stream.PushBack(c0); string_stream.PushBack(c0); utf8_stream.PushBack(c0); i--; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } unsigned halfway = start + sub_length / 2; uc16_stream.SeekForward(halfway - i); string_stream.SeekForward(halfway - i); utf8_stream.SeekForward(halfway - i); i = halfway; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); while (i < end) { // Read streams one char at a time CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c0 = ascii_source[i]; int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); CHECK_LT(c1, 0); CHECK_LT(c2, 0); CHECK_LT(c3, 0); } TEST(CharacterStreams) { v8::HandleScope handles; v8::Persistent<v8::Context> context = v8::Context::New(); v8::Context::Scope context_scope(context); TestCharacterStream("abc\0\n\r\x7f", 7); static const unsigned kBigStringSize = 4096; char buffer[kBigStringSize + 1]; for (unsigned i = 0; i < kBigStringSize; i++) { buffer[i] = static_cast<char>(i & 0x7f); } TestCharacterStream(buffer, kBigStringSize); TestCharacterStream(buffer, kBigStringSize, 576, 3298); TestCharacterStream("\0", 1); TestCharacterStream("", 0); } TEST(Utf8CharacterStream) { static const unsigned kMaxUC16CharU = unibrow::Utf8::kMaxThreeByteChar; static const int kMaxUC16Char = static_cast<int>(kMaxUC16CharU); static const int kAllUtf8CharsSize = (unibrow::Utf8::kMaxOneByteChar + 1) + (unibrow::Utf8::kMaxTwoByteChar - unibrow::Utf8::kMaxOneByteChar) * 2 + (unibrow::Utf8::kMaxThreeByteChar - unibrow::Utf8::kMaxTwoByteChar) * 3; static const unsigned kAllUtf8CharsSizeU = static_cast<unsigned>(kAllUtf8CharsSize); char buffer[kAllUtf8CharsSizeU]; unsigned cursor = 0; for (int i = 0; i <= kMaxUC16Char; i++) { cursor += unibrow::Utf8::Encode(buffer + cursor, i, unibrow::Utf16::kNoPreviousCharacter); } ASSERT(cursor == kAllUtf8CharsSizeU); i::Utf8ToUtf16CharacterStream stream(reinterpret_cast<const i::byte*>(buffer), kAllUtf8CharsSizeU); for (int i = 0; i <= kMaxUC16Char; i++) { CHECK_EQU(i, stream.pos()); int32_t c = stream.Advance(); CHECK_EQ(i, c); CHECK_EQU(i + 1, stream.pos()); } for (int i = kMaxUC16Char; i >= 0; i--) { CHECK_EQU(i + 1, stream.pos()); stream.PushBack(i); CHECK_EQU(i, stream.pos()); } int i = 0; while (stream.pos() < kMaxUC16CharU) { CHECK_EQU(i, stream.pos()); unsigned progress = stream.SeekForward(12); i += progress; int32_t c = stream.Advance(); if (i <= kMaxUC16Char) { CHECK_EQ(i, c); } else { CHECK_EQ(-1, c); } i += 1; CHECK_EQU(i, stream.pos()); } } #undef CHECK_EQU void TestStreamScanner(i::Utf16CharacterStream* stream, i::Token::Value* expected_tokens, int skip_pos = 0, // Zero means not skipping. int skip_to = 0) { i::Scanner scanner(i::Isolate::Current()->unicode_cache()); scanner.Initialize(stream); int i = 0; do { i::Token::Value expected = expected_tokens[i]; i::Token::Value actual = scanner.Next(); CHECK_EQ(i::Token::String(expected), i::Token::String(actual)); if (scanner.location().end_pos == skip_pos) { scanner.SeekForward(skip_to); } i++; } while (expected_tokens[i] != i::Token::ILLEGAL); } TEST(StreamScanner) { v8::V8::Initialize(); const char* str1 = "{ foo get for : */ <- \n\n /*foo*/ bib"; i::Utf8ToUtf16CharacterStream stream1(reinterpret_cast<const i::byte*>(str1), static_cast<unsigned>(strlen(str1))); i::Token::Value expectations1[] = { i::Token::LBRACE, i::Token::IDENTIFIER, i::Token::IDENTIFIER, i::Token::FOR, i::Token::COLON, i::Token::MUL, i::Token::DIV, i::Token::LT, i::Token::SUB, i::Token::IDENTIFIER, i::Token::EOS, i::Token::ILLEGAL }; TestStreamScanner(&stream1, expectations1, 0, 0); const char* str2 = "case default const {THIS\nPART\nSKIPPED} do"; i::Utf8ToUtf16CharacterStream stream2(reinterpret_cast<const i::byte*>(str2), static_cast<unsigned>(strlen(str2))); i::Token::Value expectations2[] = { i::Token::CASE, i::Token::DEFAULT, i::Token::CONST, i::Token::LBRACE, // Skipped part here i::Token::RBRACE, i::Token::DO, i::Token::EOS, i::Token::ILLEGAL }; ASSERT_EQ('{', str2[19]); ASSERT_EQ('}', str2[37]); TestStreamScanner(&stream2, expectations2, 20, 37); const char* str3 = "{}}}}"; i::Token::Value expectations3[] = { i::Token::LBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::EOS, i::Token::ILLEGAL }; // Skip zero-four RBRACEs. for (int i = 0; i <= 4; i++) { expectations3[6 - i] = i::Token::ILLEGAL; expectations3[5 - i] = i::Token::EOS; i::Utf8ToUtf16CharacterStream stream3( reinterpret_cast<const i::byte*>(str3), static_cast<unsigned>(strlen(str3))); TestStreamScanner(&stream3, expectations3, 1, 1 + i); } } void TestScanRegExp(const char* re_source, const char* expected) { i::Utf8ToUtf16CharacterStream stream( reinterpret_cast<const i::byte*>(re_source), static_cast<unsigned>(strlen(re_source))); i::Scanner scanner(i::Isolate::Current()->unicode_cache()); scanner.Initialize(&stream); i::Token::Value start = scanner.peek(); CHECK(start == i::Token::DIV || start == i::Token::ASSIGN_DIV); CHECK(scanner.ScanRegExpPattern(start == i::Token::ASSIGN_DIV)); scanner.Next(); // Current token is now the regexp literal. CHECK(scanner.is_literal_ascii()); i::Vector<const char> actual = scanner.literal_ascii_string(); for (int i = 0; i < actual.length(); i++) { CHECK_NE('\0', expected[i]); CHECK_EQ(expected[i], actual[i]); } } TEST(RegExpScanning) { v8::V8::Initialize(); // RegExp token with added garbage at the end. The scanner should only // scan the RegExp until the terminating slash just before "flipperwald". TestScanRegExp("/b/flipperwald", "b"); // Incomplete escape sequences doesn't hide the terminating slash. TestScanRegExp("/\\x/flipperwald", "\\x"); TestScanRegExp("/\\u/flipperwald", "\\u"); TestScanRegExp("/\\u1/flipperwald", "\\u1"); TestScanRegExp("/\\u12/flipperwald", "\\u12"); TestScanRegExp("/\\u123/flipperwald", "\\u123"); TestScanRegExp("/\\c/flipperwald", "\\c"); TestScanRegExp("/\\c//flipperwald", "\\c"); // Slashes inside character classes are not terminating. TestScanRegExp("/[/]/flipperwald", "[/]"); TestScanRegExp("/[\\s-/]/flipperwald", "[\\s-/]"); // Incomplete escape sequences inside a character class doesn't hide // the end of the character class. TestScanRegExp("/[\\c/]/flipperwald", "[\\c/]"); TestScanRegExp("/[\\c]/flipperwald", "[\\c]"); TestScanRegExp("/[\\x]/flipperwald", "[\\x]"); TestScanRegExp("/[\\x1]/flipperwald", "[\\x1]"); TestScanRegExp("/[\\u]/flipperwald", "[\\u]"); TestScanRegExp("/[\\u1]/flipperwald", "[\\u1]"); TestScanRegExp("/[\\u12]/flipperwald", "[\\u12]"); TestScanRegExp("/[\\u123]/flipperwald", "[\\u123]"); // Escaped ']'s wont end the character class. TestScanRegExp("/[\\]/]/flipperwald", "[\\]/]"); // Escaped slashes are not terminating. TestScanRegExp("/\\//flipperwald", "\\/"); // Starting with '=' works too. TestScanRegExp("/=/", "="); TestScanRegExp("/=?/", "=?"); } static int Utf8LengthHelper(const char* s) { int len = i::StrLength(s); int character_length = len; for (int i = 0; i < len; i++) { unsigned char c = s[i]; int input_offset = 0; int output_adjust = 0; if (c > 0x7f) { if (c < 0xc0) continue; if (c >= 0xf0) { if (c >= 0xf8) { // 5 and 6 byte UTF-8 sequences turn into a kBadChar for each UTF-8 // byte. continue; // Handle first UTF-8 byte. } if ((c & 7) == 0 && ((s[i + 1] & 0x30) == 0)) { // This 4 byte sequence could have been coded as a 3 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 3; // 4 bytes of UTF-8 turn into 2 UTF-16 code units. character_length -= 2; } else if (c >= 0xe0) { if ((c & 0xf) == 0 && ((s[i + 1] & 0x20) == 0)) { // This 3 byte sequence could have been coded as a 2 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 2; // 3 bytes of UTF-8 turn into 1 UTF-16 code unit. output_adjust = 2; } else { if ((c & 0x1e) == 0) { // This 2 byte sequence could have been coded as a 1 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 1; // 2 bytes of UTF-8 turn into 1 UTF-16 code unit. output_adjust = 1; } bool bad = false; for (int j = 1; j <= input_offset; j++) { if ((s[i + j] & 0xc0) != 0x80) { // Bad UTF-8 sequence turns the first in the sequence into kBadChar, // which is a single UTF-16 code unit. bad = true; break; } } if (!bad) { i += input_offset; character_length -= output_adjust; } } } return character_length; } TEST(ScopePositions) { // Test the parser for correctly setting the start and end positions // of a scope. We check the scope positions of exactly one scope // nested in the global scope of a program. 'inner source' is the // source code that determines the part of the source belonging // to the nested scope. 'outer_prefix' and 'outer_suffix' are // parts of the source that belong to the global scope. struct SourceData { const char* outer_prefix; const char* inner_source; const char* outer_suffix; i::ScopeType scope_type; i::LanguageMode language_mode; }; const SourceData source_data[] = { { " with ({}) ", "{ block; }", " more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " with ({}) ", "{ block; }", "; more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " with ({}) ", "{\n" " block;\n" " }", "\n" " more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " with ({}) ", "statement;", " more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " with ({}) ", "statement", "\n" " more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " with ({})\n" " ", "statement;", "\n" " more;", i::WITH_SCOPE, i::CLASSIC_MODE }, { " try {} catch ", "(e) { block; }", " more;", i::CATCH_SCOPE, i::CLASSIC_MODE }, { " try {} catch ", "(e) { block; }", "; more;", i::CATCH_SCOPE, i::CLASSIC_MODE }, { " try {} catch ", "(e) {\n" " block;\n" " }", "\n" " more;", i::CATCH_SCOPE, i::CLASSIC_MODE }, { " try {} catch ", "(e) { block; }", " finally { block; } more;", i::CATCH_SCOPE, i::CLASSIC_MODE }, { " start;\n" " ", "{ let block; }", " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " start;\n" " ", "{ let block; }", "; more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " start;\n" " ", "{\n" " let block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " start;\n" " function fun", "(a,b) { infunction; }", " more;", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { " start;\n" " function fun", "(a,b) {\n" " infunction;\n" " }", "\n" " more;", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x) { block; }", " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x) { block; }", "; more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x) {\n" " block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x) statement;", " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x) statement", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x = 1 ; x < 10; ++ x)\n" " statement;", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {}) { block; }", " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {}) { block; }", "; more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {}) {\n" " block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {}) statement;", " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {}) statement", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, { " for ", "(let x in {})\n" " statement;", "\n" " more;", i::BLOCK_SCOPE, i::EXTENDED_MODE }, // Check that 6-byte and 4-byte encodings of UTF-8 strings do not throw // the preparser off in terms of byte offsets. // 6 byte encoding. { " 'foo\355\240\201\355\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // 4 byte encoding. { " 'foo\360\220\220\212';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // 3 byte encoding of \u0fff. { " 'foo\340\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 6 byte encoding with missing last byte. { " 'foo\355\240\201\355\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 3 byte encoding of \u0fff with missing last byte. { " 'foo\340\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 3 byte encoding of \u0fff with missing 2 last bytes. { " 'foo\340';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 3 byte encoding of \u00ff should be a 2 byte encoding. { " 'foo\340\203\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 3 byte encoding of \u007f should be a 2 byte encoding. { " 'foo\340\201\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Unpaired lead surrogate. { " 'foo\355\240\201';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Unpaired lead surrogate where following code point is a 3 byte sequence. { " 'foo\355\240\201\340\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Unpaired lead surrogate where following code point is a 4 byte encoding // of a trail surrogate. { " 'foo\355\240\201\360\215\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Unpaired trail surrogate. { " 'foo\355\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // 2 byte encoding of \u00ff. { " 'foo\303\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 2 byte encoding of \u00ff with missing last byte. { " 'foo\303';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Broken 2 byte encoding of \u007f should be a 1 byte encoding. { " 'foo\301\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Illegal 5 byte encoding. { " 'foo\370\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Illegal 6 byte encoding. { " 'foo\374\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Illegal 0xfe byte { " 'foo\376\277\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, // Illegal 0xff byte { " 'foo\377\277\277\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { " 'foo';\n" " (function fun", "(a,b) { 'bar\355\240\201\355\260\213'; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { " 'foo';\n" " (function fun", "(a,b) { 'bar\360\220\220\214'; }", ")();", i::FUNCTION_SCOPE, i::CLASSIC_MODE }, { NULL, NULL, NULL, i::EVAL_SCOPE, i::CLASSIC_MODE } }; v8::HandleScope handles; v8::Persistent<v8::Context> context = v8::Context::New(); v8::Context::Scope context_scope(context); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); i::FLAG_harmony_scoping = true; for (int i = 0; source_data[i].outer_prefix; i++) { int kPrefixLen = Utf8LengthHelper(source_data[i].outer_prefix); int kInnerLen = Utf8LengthHelper(source_data[i].inner_source); int kSuffixLen = Utf8LengthHelper(source_data[i].outer_suffix); int kPrefixByteLen = i::StrLength(source_data[i].outer_prefix); int kInnerByteLen = i::StrLength(source_data[i].inner_source); int kSuffixByteLen = i::StrLength(source_data[i].outer_suffix); int kProgramSize = kPrefixLen + kInnerLen + kSuffixLen; int kProgramByteSize = kPrefixByteLen + kInnerByteLen + kSuffixByteLen; i::Vector<char> program = i::Vector<char>::New(kProgramByteSize + 1); i::OS::SNPrintF(program, "%s%s%s", source_data[i].outer_prefix, source_data[i].inner_source, source_data[i].outer_suffix); // Parse program source. i::Handle<i::String> source( FACTORY->NewStringFromUtf8(i::CStrVector(program.start()))); CHECK_EQ(source->length(), kProgramSize); i::Handle<i::Script> script = FACTORY->NewScript(source); i::Parser parser(script, i::kAllowLazy | i::EXTENDED_MODE, NULL, NULL); i::CompilationInfo info(script); info.MarkAsGlobal(); info.SetLanguageMode(source_data[i].language_mode); i::FunctionLiteral* function = parser.ParseProgram(&info); CHECK(function != NULL); // Check scope types and positions. i::Scope* scope = function->scope(); CHECK(scope->is_global_scope()); CHECK_EQ(scope->start_position(), 0); CHECK_EQ(scope->end_position(), kProgramSize); CHECK_EQ(scope->inner_scopes()->length(), 1); i::Scope* inner_scope = scope->inner_scopes()->at(0); CHECK_EQ(inner_scope->type(), source_data[i].scope_type); CHECK_EQ(inner_scope->start_position(), kPrefixLen); // The end position of a token is one position after the last // character belonging to that token. CHECK_EQ(inner_scope->end_position(), kPrefixLen + kInnerLen); } } void TestParserSync(i::Handle<i::String> source, int flags) { uintptr_t stack_limit = i::Isolate::Current()->stack_guard()->real_climit(); bool harmony_scoping = ((i::kLanguageModeMask & flags) == i::EXTENDED_MODE); // Preparse the data. i::CompleteParserRecorder log; i::Scanner scanner(i::Isolate::Current()->unicode_cache()); i::GenericStringUtf16CharacterStream stream(source, 0, source->length()); scanner.SetHarmonyScoping(harmony_scoping); scanner.Initialize(&stream); v8::preparser::PreParser::PreParseResult result = v8::preparser::PreParser::PreParseProgram( &scanner, &log, flags, stack_limit); CHECK_EQ(v8::preparser::PreParser::kPreParseSuccess, result); i::ScriptDataImpl data(log.ExtractData()); // Parse the data i::Handle<i::Script> script = FACTORY->NewScript(source); bool save_harmony_scoping = i::FLAG_harmony_scoping; i::FLAG_harmony_scoping = harmony_scoping; i::Parser parser(script, flags, NULL, NULL); i::CompilationInfo info(script); info.MarkAsGlobal(); i::FunctionLiteral* function = parser.ParseProgram(&info); i::FLAG_harmony_scoping = save_harmony_scoping; i::String* type_string = NULL; if (function == NULL) { // Extract exception from the parser. i::Handle<i::String> type_symbol = FACTORY->LookupAsciiSymbol("type"); CHECK(i::Isolate::Current()->has_pending_exception()); i::MaybeObject* maybe_object = i::Isolate::Current()->pending_exception(); i::JSObject* exception = NULL; CHECK(maybe_object->To(&exception)); // Get the type string. maybe_object = exception->GetProperty(*type_symbol); CHECK(maybe_object->To(&type_string)); } // Check that preparsing fails iff parsing fails. if (data.has_error() && function != NULL) { i::OS::Print( "Preparser failed on:\n" "\t%s\n" "with error:\n" "\t%s\n" "However, the parser succeeded", *source->ToCString(), data.BuildMessage()); CHECK(false); } else if (!data.has_error() && function == NULL) { i::OS::Print( "Parser failed on:\n" "\t%s\n" "with error:\n" "\t%s\n" "However, the preparser succeeded", *source->ToCString(), *type_string->ToCString()); CHECK(false); } // Check that preparser and parser produce the same error. if (function == NULL) { if (!type_string->IsEqualTo(i::CStrVector(data.BuildMessage()))) { i::OS::Print( "Expected parser and preparser to produce the same error on:\n" "\t%s\n" "However, found the following error messages\n" "\tparser: %s\n" "\tpreparser: %s\n", *source->ToCString(), *type_string->ToCString(), data.BuildMessage()); CHECK(false); } } } void TestParserSyncWithFlags(i::Handle<i::String> source) { static const int kFlagsCount = 6; const int flags[kFlagsCount] = { i::kNoParsingFlags | i::CLASSIC_MODE, i::kNoParsingFlags | i::STRICT_MODE, i::kNoParsingFlags | i::EXTENDED_MODE, i::kAllowLazy | i::CLASSIC_MODE, i::kAllowLazy | i::STRICT_MODE, i::kAllowLazy | i::EXTENDED_MODE }; for (int k = 0; k < kFlagsCount; ++k) { TestParserSync(source, flags[k]); } } TEST(ParserSync) { const char* context_data[][2] = { { "", "" }, { "{", "}" }, { "if (true) ", " else {}" }, { "if (true) {} else ", "" }, { "if (true) ", "" }, { "do ", " while (false)" }, { "while (false) ", "" }, { "for (;;) ", "" }, { "with ({})", "" }, { "switch (12) { case 12: ", "}" }, { "switch (12) { default: ", "}" }, { "label2: ", "" }, { NULL, NULL } }; const char* statement_data[] = { "{}", "var x", "var x = 1", "const x", "const x = 1", ";", "12", "if (false) {} else ;", "if (false) {} else {}", "if (false) {} else 12", "if (false) ;" "if (false) {}", "if (false) 12", "do {} while (false)", "for (;;) ;", "for (;;) {}", "for (;;) 12", "continue", "continue label", "continue\nlabel", "break", "break label", "break\nlabel", "return", "return 12", "return\n12", "with ({}) ;", "with ({}) {}", "with ({}) 12", "switch ({}) { default: }" "label3: " "throw", "throw 12", "throw\n12", "try {} catch(e) {}", "try {} finally {}", "try {} catch(e) {} finally {}", "debugger", NULL }; const char* termination_data[] = { "", ";", "\n", ";\n", "\n;", NULL }; v8::HandleScope handles; v8::Persistent<v8::Context> context = v8::Context::New(); v8::Context::Scope context_scope(context); int marker; i::Isolate::Current()->stack_guard()->SetStackLimit( reinterpret_cast<uintptr_t>(&marker) - 128 * 1024); for (int i = 0; context_data[i][0] != NULL; ++i) { for (int j = 0; statement_data[j] != NULL; ++j) { for (int k = 0; termination_data[k] != NULL; ++k) { int kPrefixLen = i::StrLength(context_data[i][0]); int kStatementLen = i::StrLength(statement_data[j]); int kTerminationLen = i::StrLength(termination_data[k]); int kSuffixLen = i::StrLength(context_data[i][1]); int kProgramSize = kPrefixLen + kStatementLen + kTerminationLen + kSuffixLen + i::StrLength("label: for (;;) { }"); // Plug the source code pieces together. i::Vector<char> program = i::Vector<char>::New(kProgramSize + 1); int length = i::OS::SNPrintF(program, "label: for (;;) { %s%s%s%s }", context_data[i][0], statement_data[j], termination_data[k], context_data[i][1]); CHECK(length == kProgramSize); i::Handle<i::String> source = FACTORY->NewStringFromAscii(i::CStrVector(program.start())); TestParserSyncWithFlags(source); } } } }