//===-- VectorElementize.cpp - Remove unreachable blocks for codegen --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass converts operations on vector types to operations on their // element types. // // For generic binary and unary vector instructions, the conversion is simple. // Suppose we have // av = bv Vop cv // where av, bv, and cv are vector virtual registers, and Vop is a vector op. // This gets converted to the following : // a1 = b1 Sop c1 // a2 = b2 Sop c2 // // VectorToScalarMap maintains the vector vreg to scalar vreg mapping. // For the above example, the map will look as follows: // av => [a1, a2] // bv => [b1, b2] // // In addition, initVectorInfo creates the following opcode->opcode map. // Vop => Sop // OtherVop => OtherSop // ... // // For vector specific instructions like vecbuild, vecshuffle etc, the // conversion is different. Look at comments near the functions with // prefix createVec<...>. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/Constant.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "NVPTX.h" #include "NVPTXTargetMachine.h" using namespace llvm; namespace { class LLVM_LIBRARY_VISIBILITY VectorElementize : public MachineFunctionPass { virtual bool runOnMachineFunction(MachineFunction &F); NVPTXTargetMachine &TM; MachineRegisterInfo *MRI; const NVPTXRegisterInfo *RegInfo; const NVPTXInstrInfo *InstrInfo; llvm::DenseMap<const TargetRegisterClass *, const TargetRegisterClass *> RegClassMap; llvm::DenseMap<unsigned, bool> SimpleMoveMap; llvm::DenseMap<unsigned, SmallVector<unsigned, 4> > VectorToScalarMap; bool isVectorInstr(MachineInstr *); SmallVector<unsigned, 4> getScalarRegisters(unsigned); unsigned getScalarVersion(unsigned); unsigned getScalarVersion(MachineInstr *); bool isVectorRegister(unsigned); const TargetRegisterClass *getScalarRegClass(const TargetRegisterClass *RC); unsigned numCopiesNeeded(MachineInstr *); void createLoadCopy(MachineFunction&, MachineInstr *, std::vector<MachineInstr *>&); void createStoreCopy(MachineFunction&, MachineInstr *, std::vector<MachineInstr *>&); void createVecDest(MachineFunction&, MachineInstr *, std::vector<MachineInstr *>&); void createCopies(MachineFunction&, MachineInstr *, std::vector<MachineInstr *>&); unsigned copyProp(MachineFunction&); unsigned removeDeadMoves(MachineFunction&); void elementize(MachineFunction&); bool isSimpleMove(MachineInstr *); void createVecShuffle(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies); void createVecExtract(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies); void createVecInsert(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies); void createVecBuild(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies); public: static char ID; // Pass identification, replacement for typeid VectorElementize(NVPTXTargetMachine &tm) : MachineFunctionPass(ID), TM(tm) {} virtual const char *getPassName() const { return "Convert LLVM vector types to their element types"; } }; char VectorElementize::ID = 1; } static cl::opt<bool> RemoveRedundantMoves("nvptx-remove-redundant-moves", cl::desc("NVPTX: Remove redundant moves introduced by vector lowering"), cl::init(true)); #define VECINST(x) ((((x)->getDesc().TSFlags) & NVPTX::VecInstTypeMask) \ >> NVPTX::VecInstTypeShift) #define ISVECINST(x) (VECINST(x) != NVPTX::VecNOP) #define ISVECLOAD(x) (VECINST(x) == NVPTX::VecLoad) #define ISVECSTORE(x) (VECINST(x) == NVPTX::VecStore) #define ISVECBUILD(x) (VECINST(x) == NVPTX::VecBuild) #define ISVECSHUFFLE(x) (VECINST(x) == NVPTX::VecShuffle) #define ISVECEXTRACT(x) (VECINST(x) == NVPTX::VecExtract) #define ISVECINSERT(x) (VECINST(x) == NVPTX::VecInsert) #define ISVECDEST(x) (VECINST(x) == NVPTX::VecDest) bool VectorElementize::isSimpleMove(MachineInstr *mi) { if (mi->isCopy()) return true; unsigned TSFlags = (mi->getDesc().TSFlags & NVPTX::SimpleMoveMask) >> NVPTX::SimpleMoveShift; return (TSFlags == 1); } bool VectorElementize::isVectorInstr(MachineInstr *mi) { if ((mi->getOpcode() == NVPTX::PHI) || (mi->getOpcode() == NVPTX::IMPLICIT_DEF) || mi->isCopy()) { MachineOperand dest = mi->getOperand(0); return isVectorRegister(dest.getReg()); } return ISVECINST(mi); } unsigned VectorElementize::getScalarVersion(MachineInstr *mi) { return getScalarVersion(mi->getOpcode()); } ///============================================================================= ///Instr is assumed to be a vector instruction. For most vector instructions, ///the size of the destination vector register gives the number of scalar copies ///needed. For VecStore, size of getOperand(1) gives the number of scalar copies ///needed. For VecExtract, the dest is a scalar. So getOperand(1) gives the ///number of scalar copies needed. ///============================================================================= unsigned VectorElementize::numCopiesNeeded(MachineInstr *Instr) { unsigned numDefs=0; unsigned def; for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { MachineOperand oper = Instr->getOperand(i); if (!oper.isReg()) continue; if (!oper.isDef()) continue; def = i; numDefs++; } assert((numDefs <= 1) && "Only 0 or 1 defs supported"); if (numDefs == 1) { unsigned regnum = Instr->getOperand(def).getReg(); if (ISVECEXTRACT(Instr)) regnum = Instr->getOperand(1).getReg(); return getNVPTXVectorSize(MRI->getRegClass(regnum)); } else if (numDefs == 0) { assert(ISVECSTORE(Instr) && "Only 0 def instruction supported is vector store"); unsigned regnum = Instr->getOperand(0).getReg(); return getNVPTXVectorSize(MRI->getRegClass(regnum)); } return 1; } const TargetRegisterClass *VectorElementize:: getScalarRegClass(const TargetRegisterClass *RC) { assert(isNVPTXVectorRegClass(RC) && "Not a vector register class"); return getNVPTXElemClass(RC); } bool VectorElementize::isVectorRegister(unsigned reg) { const TargetRegisterClass *RC=MRI->getRegClass(reg); return isNVPTXVectorRegClass(RC); } ///============================================================================= ///For every vector register 'v' that is not already in the VectorToScalarMap, ///create n scalar registers of the corresponding element type, where n ///is 2 or 4 (getNVPTXVectorSize) and add it VectorToScalarMap. ///============================================================================= SmallVector<unsigned, 4> VectorElementize::getScalarRegisters(unsigned regnum) { assert(isVectorRegister(regnum) && "Expecting a vector register here"); // Create the scalar registers and put them in the map, if not already there. if (VectorToScalarMap.find(regnum) == VectorToScalarMap.end()) { const TargetRegisterClass *vecClass = MRI->getRegClass(regnum); const TargetRegisterClass *scalarClass = getScalarRegClass(vecClass); SmallVector<unsigned, 4> temp; for (unsigned i=0, e=getNVPTXVectorSize(vecClass); i!=e; ++i) temp.push_back(MRI->createVirtualRegister(scalarClass)); VectorToScalarMap[regnum] = temp; } return VectorToScalarMap[regnum]; } ///============================================================================= ///For a vector load of the form ///va <= ldv2 [addr] ///the following multi output instruction is created : ///[v1, v2] <= LD [addr] ///Look at NVPTXVector.td for the definitions of multi output loads. ///============================================================================= void VectorElementize::createLoadCopy(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { copies.push_back(F.CloneMachineInstr(Instr)); MachineInstr *copy=copies[0]; copy->setDesc(InstrInfo->get(getScalarVersion(copy))); // Remove the dest, that should be a vector operand. MachineOperand dest = copy->getOperand(0); unsigned regnum = dest.getReg(); SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); copy->RemoveOperand(0); std::vector<MachineOperand> otherOperands; for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) otherOperands.push_back(copy->getOperand(i)); for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) copy->RemoveOperand(0); for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) { copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], true)); } for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) copy->addOperand(otherOperands[i]); } ///============================================================================= ///For a vector store of the form ///stv2 va, [addr] ///the following multi input instruction is created : ///ST v1, v2, [addr] ///Look at NVPTXVector.td for the definitions of multi input stores. ///============================================================================= void VectorElementize::createStoreCopy(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { copies.push_back(F.CloneMachineInstr(Instr)); MachineInstr *copy=copies[0]; copy->setDesc(InstrInfo->get(getScalarVersion(copy))); MachineOperand src = copy->getOperand(0); unsigned regnum = src.getReg(); SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); copy->RemoveOperand(0); std::vector<MachineOperand> otherOperands; for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) otherOperands.push_back(copy->getOperand(i)); for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) copy->RemoveOperand(0); for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], false)); for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) copy->addOperand(otherOperands[i]); } ///============================================================================= ///va <= shufflev2 vb, vc, <i1>, <i2> ///gets converted to 2 moves into a1 and a2. The source of the moves depend on ///i1 and i2. i1, i2 can belong to the set {0, 1, 2, 3} for shufflev2. For ///shufflev4 the set is {0,..7}. For example, if i1=3, i2=0, the move ///instructions will be ///a1 <= c2 ///a2 <= b1 ///============================================================================= void VectorElementize::createVecShuffle(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { unsigned numcopies=numCopiesNeeded(Instr); unsigned destregnum = Instr->getOperand(0).getReg(); unsigned src1regnum = Instr->getOperand(1).getReg(); unsigned src2regnum = Instr->getOperand(2).getReg(); SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); SmallVector<unsigned, 4> src1 = getScalarRegisters(src1regnum); SmallVector<unsigned, 4> src2 = getScalarRegisters(src2regnum); DebugLoc DL = Instr->getDebugLoc(); for (unsigned i=0; i<numcopies; i++) { MachineInstr *copy = BuildMI(F, DL, InstrInfo->get(getScalarVersion(Instr)), dest[i]); MachineOperand which=Instr->getOperand(3+i); assert(which.isImm() && "Shuffle operand not a constant"); int src=which.getImm(); int elem=src%numcopies; if (which.getImm() < numcopies) copy->addOperand(MachineOperand::CreateReg(src1[elem], false)); else copy->addOperand(MachineOperand::CreateReg(src2[elem], false)); copies.push_back(copy); } } ///============================================================================= ///a <= extractv2 va, <i1> ///gets turned into a simple move to the scalar register a. The source depends ///on i1. ///============================================================================= void VectorElementize::createVecExtract(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { unsigned srcregnum = Instr->getOperand(1).getReg(); SmallVector<unsigned, 4> src = getScalarRegisters(srcregnum); MachineOperand which = Instr->getOperand(2); assert(which.isImm() && "Extract operand not a constant"); DebugLoc DL = Instr->getDebugLoc(); MachineInstr *copy = BuildMI(F, DL, InstrInfo->get(getScalarVersion(Instr)), Instr->getOperand(0).getReg()); copy->addOperand(MachineOperand::CreateReg(src[which.getImm()], false)); copies.push_back(copy); } ///============================================================================= ///va <= vecinsertv2 vb, c, <i1> ///This instruction copies all elements of vb to va, except the 'i1'th element. ///The scalar value c becomes the 'i1'th element of va. ///This gets translated to 2 (4 for vecinsertv4) moves. ///============================================================================= void VectorElementize::createVecInsert(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { unsigned numcopies=numCopiesNeeded(Instr); unsigned destregnum = Instr->getOperand(0).getReg(); unsigned srcregnum = Instr->getOperand(1).getReg(); SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); SmallVector<unsigned, 4> src = getScalarRegisters(srcregnum); MachineOperand which=Instr->getOperand(3); assert(which.isImm() && "Insert operand not a constant"); unsigned int elem=which.getImm(); DebugLoc DL = Instr->getDebugLoc(); for (unsigned i=0; i<numcopies; i++) { MachineInstr *copy = BuildMI(F, DL, InstrInfo->get(getScalarVersion(Instr)), dest[i]); if (i != elem) copy->addOperand(MachineOperand::CreateReg(src[i], false)); else copy->addOperand(Instr->getOperand(2)); copies.push_back(copy); } } ///============================================================================= ///va <= buildv2 b1, b2 ///gets translated to ///a1 <= b1 ///a2 <= b2 ///============================================================================= void VectorElementize::createVecBuild(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { unsigned numcopies=numCopiesNeeded(Instr); unsigned destregnum = Instr->getOperand(0).getReg(); SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); DebugLoc DL = Instr->getDebugLoc(); for (unsigned i=0; i<numcopies; i++) { MachineInstr *copy = BuildMI(F, DL, InstrInfo->get(getScalarVersion(Instr)), dest[i]); copy->addOperand(Instr->getOperand(1+i)); copies.push_back(copy); } } ///============================================================================= ///For a tex inst of the form ///va <= op [scalar operands] ///the following multi output instruction is created : ///[v1, v2] <= op' [scalar operands] ///============================================================================= void VectorElementize::createVecDest(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { copies.push_back(F.CloneMachineInstr(Instr)); MachineInstr *copy=copies[0]; copy->setDesc(InstrInfo->get(getScalarVersion(copy))); // Remove the dest, that should be a vector operand. MachineOperand dest = copy->getOperand(0); unsigned regnum = dest.getReg(); SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); copy->RemoveOperand(0); std::vector<MachineOperand> otherOperands; for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) otherOperands.push_back(copy->getOperand(i)); for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) copy->RemoveOperand(0); for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], true)); for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) copy->addOperand(otherOperands[i]); } ///============================================================================= ///Look at the vector instruction type and dispatch to the createVec<...> ///function that creates the scalar copies. ///============================================================================= void VectorElementize::createCopies(MachineFunction& F, MachineInstr *Instr, std::vector<MachineInstr *>& copies) { if (ISVECLOAD(Instr)) { createLoadCopy(F, Instr, copies); return; } if (ISVECSTORE(Instr)) { createStoreCopy(F, Instr, copies); return; } if (ISVECSHUFFLE(Instr)) { createVecShuffle(F, Instr, copies); return; } if (ISVECEXTRACT(Instr)) { createVecExtract(F, Instr, copies); return; } if (ISVECINSERT(Instr)) { createVecInsert(F, Instr, copies); return; } if (ISVECDEST(Instr)) { createVecDest(F, Instr, copies); return; } if (ISVECBUILD(Instr)) { createVecBuild(F, Instr, copies); return; } unsigned numcopies=numCopiesNeeded(Instr); for (unsigned i=0; i<numcopies; ++i) copies.push_back(F.CloneMachineInstr(Instr)); for (unsigned i=0; i<numcopies; ++i) { MachineInstr *copy = copies[i]; std::vector<MachineOperand> allOperands; std::vector<bool> isDef; for (unsigned j=0, e=copy->getNumOperands(); j!=e; ++j) { MachineOperand oper = copy->getOperand(j); allOperands.push_back(oper); if (oper.isReg()) isDef.push_back(oper.isDef()); else isDef.push_back(false); } for (unsigned j=0, e=copy->getNumOperands(); j!=e; ++j) copy->RemoveOperand(0); copy->setDesc(InstrInfo->get(getScalarVersion(Instr))); for (unsigned j=0, e=allOperands.size(); j!=e; ++j) { MachineOperand oper=allOperands[j]; if (oper.isReg()) { unsigned regnum = oper.getReg(); if (isVectorRegister(regnum)) { SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], isDef[j])); } else copy->addOperand(oper); } else copy->addOperand(oper); } } } ///============================================================================= ///Scan through all basic blocks, looking for vector instructions. ///For each vector instruction I, insert the scalar copies before I, and ///add I into toRemove vector. Finally remove all instructions in toRemove. ///============================================================================= void VectorElementize::elementize(MachineFunction &F) { for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); BI!=BE; ++BI) { MachineBasicBlock *BB = &*BI; std::vector<MachineInstr *> copies; std::vector<MachineInstr *> toRemove; for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); II!=IE; ++II) { MachineInstr *Instr = &*II; if (!isVectorInstr(Instr)) continue; copies.clear(); createCopies(F, Instr, copies); for (unsigned i=0, e=copies.size(); i!=e; ++i) BB->insert(II, copies[i]); assert((copies.size() > 0) && "Problem in createCopies"); toRemove.push_back(Instr); } for (unsigned i=0, e=toRemove.size(); i!=e; ++i) F.DeleteMachineInstr(toRemove[i]->getParent()->remove(toRemove[i])); } } ///============================================================================= ///a <= b ///... ///... ///x <= op(a, ...) ///gets converted to /// ///x <= op(b, ...) ///The original move is still present. This works on SSA form machine code. ///Note that a <= b should be a simple vreg-to-vreg move instruction. ///TBD : I didn't find a function that can do replaceOperand, so I remove ///all operands and add all of them again, replacing the one while adding. ///============================================================================= unsigned VectorElementize::copyProp(MachineFunction &F) { unsigned numReplacements = 0; for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); BI!=BE; ++BI) { MachineBasicBlock *BB = &*BI; for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); II!=IE; ++II) { MachineInstr *Instr = &*II; // Don't do copy propagation on PHI as it will cause unnecessary // live range overlap. if ((Instr->getOpcode() == TargetOpcode::PHI) || (Instr->getOpcode() == TargetOpcode::DBG_VALUE)) continue; bool needsReplacement = false; for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { MachineOperand oper = Instr->getOperand(i); if (!oper.isReg()) continue; if (oper.isDef()) continue; if (!RegInfo->isVirtualRegister(oper.getReg())) continue; MachineInstr *defInstr = MRI->getVRegDef(oper.getReg()); if (!defInstr) continue; if (!isSimpleMove(defInstr)) continue; MachineOperand defSrc = defInstr->getOperand(1); if (!defSrc.isReg()) continue; if (!RegInfo->isVirtualRegister(defSrc.getReg())) continue; needsReplacement = true; } if (!needsReplacement) continue; numReplacements++; std::vector<MachineOperand> operands; for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { MachineOperand oper = Instr->getOperand(i); bool flag = false; do { if (!(oper.isReg())) break; if (oper.isDef()) break; if (!(RegInfo->isVirtualRegister(oper.getReg()))) break; MachineInstr *defInstr = MRI->getVRegDef(oper.getReg()); if (!(isSimpleMove(defInstr))) break; MachineOperand defSrc = defInstr->getOperand(1); if (!(defSrc.isReg())) break; if (!(RegInfo->isVirtualRegister(defSrc.getReg()))) break; operands.push_back(defSrc); flag = true; } while (0); if (flag == false) operands.push_back(oper); } for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) Instr->RemoveOperand(0); for (unsigned i=0, e=operands.size(); i!=e; ++i) Instr->addOperand(operands[i]); } } return numReplacements; } ///============================================================================= ///Look for simple vreg-to-vreg instructions whose use_empty() is true, add ///them to deadMoves vector. Then remove all instructions in deadMoves. ///============================================================================= unsigned VectorElementize::removeDeadMoves(MachineFunction &F) { std::vector<MachineInstr *> deadMoves; for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); BI!=BE; ++BI) { MachineBasicBlock *BB = &*BI; for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); II!=IE; ++II) { MachineInstr *Instr = &*II; if (!isSimpleMove(Instr)) continue; MachineOperand dest = Instr->getOperand(0); assert(dest.isReg() && "dest of move not a register"); assert(RegInfo->isVirtualRegister(dest.getReg()) && "dest of move not a virtual register"); if (MRI->use_empty(dest.getReg())) { deadMoves.push_back(Instr); } } } for (unsigned i=0, e=deadMoves.size(); i!=e; ++i) F.DeleteMachineInstr(deadMoves[i]->getParent()->remove(deadMoves[i])); return deadMoves.size(); } ///============================================================================= ///Main function for this pass. ///============================================================================= bool VectorElementize::runOnMachineFunction(MachineFunction &F) { MRI = &F.getRegInfo(); RegInfo = TM.getRegisterInfo(); InstrInfo = TM.getInstrInfo(); VectorToScalarMap.clear(); elementize(F); if (RemoveRedundantMoves) while (1) { if (copyProp(F) == 0) break; removeDeadMoves(F); } return true; } FunctionPass *llvm::createVectorElementizePass(NVPTXTargetMachine &tm) { return new VectorElementize(tm); } unsigned VectorElementize::getScalarVersion(unsigned opcode) { if (opcode == NVPTX::PHI) return opcode; if (opcode == NVPTX::IMPLICIT_DEF) return opcode; switch(opcode) { default: llvm_unreachable("Scalar version not set, fix NVPTXVector.td"); case TargetOpcode::COPY: return TargetOpcode::COPY; case NVPTX::AddCCCV2I32: return NVPTX::ADDCCCi32rr; case NVPTX::AddCCCV4I32: return NVPTX::ADDCCCi32rr; case NVPTX::AddCCV2I32: return NVPTX::ADDCCi32rr; case NVPTX::AddCCV4I32: return NVPTX::ADDCCi32rr; case NVPTX::Build_Vector2_f32: return NVPTX::FMOV32rr; case NVPTX::Build_Vector2_f64: return NVPTX::FMOV64rr; case NVPTX::Build_Vector2_i16: return NVPTX::IMOV16rr; case NVPTX::Build_Vector2_i32: return NVPTX::IMOV32rr; case NVPTX::Build_Vector2_i64: return NVPTX::IMOV64rr; case NVPTX::Build_Vector2_i8: return NVPTX::IMOV8rr; case NVPTX::Build_Vector4_f32: return NVPTX::FMOV32rr; case NVPTX::Build_Vector4_i16: return NVPTX::IMOV16rr; case NVPTX::Build_Vector4_i32: return NVPTX::IMOV32rr; case NVPTX::Build_Vector4_i8: return NVPTX::IMOV8rr; case NVPTX::CVTv2i16tov2i32: return NVPTX::Zint_extendext16to32; case NVPTX::CVTv2i64tov2i32: return NVPTX::TRUNC_64to32; case NVPTX::CVTv2i8tov2i32: return NVPTX::Zint_extendext8to32; case NVPTX::CVTv4i16tov4i32: return NVPTX::Zint_extendext16to32; case NVPTX::CVTv4i8tov4i32: return NVPTX::Zint_extendext8to32; case NVPTX::F32MAD_ftzV2: return NVPTX::FMAD32_ftzrrr; case NVPTX::F32MADV2: return NVPTX::FMAD32rrr; case NVPTX::F32MAD_ftzV4: return NVPTX::FMAD32_ftzrrr; case NVPTX::F32MADV4: return NVPTX::FMAD32rrr; case NVPTX::F32FMA_ftzV2: return NVPTX::FMA32_ftzrrr; case NVPTX::F32FMAV2: return NVPTX::FMA32rrr; case NVPTX::F32FMA_ftzV4: return NVPTX::FMA32_ftzrrr; case NVPTX::F32FMAV4: return NVPTX::FMA32rrr; case NVPTX::F64FMAV2: return NVPTX::FMA64rrr; case NVPTX::FVecEQV2F32: return NVPTX::FSetEQf32rr_toi32; case NVPTX::FVecEQV2F64: return NVPTX::FSetEQf64rr_toi64; case NVPTX::FVecEQV4F32: return NVPTX::FSetEQf32rr_toi32; case NVPTX::FVecGEV2F32: return NVPTX::FSetGEf32rr_toi32; case NVPTX::FVecGEV2F64: return NVPTX::FSetGEf64rr_toi64; case NVPTX::FVecGEV4F32: return NVPTX::FSetGEf32rr_toi32; case NVPTX::FVecGTV2F32: return NVPTX::FSetGTf32rr_toi32; case NVPTX::FVecGTV2F64: return NVPTX::FSetGTf64rr_toi64; case NVPTX::FVecGTV4F32: return NVPTX::FSetGTf32rr_toi32; case NVPTX::FVecLEV2F32: return NVPTX::FSetLEf32rr_toi32; case NVPTX::FVecLEV2F64: return NVPTX::FSetLEf64rr_toi64; case NVPTX::FVecLEV4F32: return NVPTX::FSetLEf32rr_toi32; case NVPTX::FVecLTV2F32: return NVPTX::FSetLTf32rr_toi32; case NVPTX::FVecLTV2F64: return NVPTX::FSetLTf64rr_toi64; case NVPTX::FVecLTV4F32: return NVPTX::FSetLTf32rr_toi32; case NVPTX::FVecNANV2F32: return NVPTX::FSetNANf32rr_toi32; case NVPTX::FVecNANV2F64: return NVPTX::FSetNANf64rr_toi64; case NVPTX::FVecNANV4F32: return NVPTX::FSetNANf32rr_toi32; case NVPTX::FVecNEV2F32: return NVPTX::FSetNEf32rr_toi32; case NVPTX::FVecNEV2F64: return NVPTX::FSetNEf64rr_toi64; case NVPTX::FVecNEV4F32: return NVPTX::FSetNEf32rr_toi32; case NVPTX::FVecNUMV2F32: return NVPTX::FSetNUMf32rr_toi32; case NVPTX::FVecNUMV2F64: return NVPTX::FSetNUMf64rr_toi64; case NVPTX::FVecNUMV4F32: return NVPTX::FSetNUMf32rr_toi32; case NVPTX::FVecUEQV2F32: return NVPTX::FSetUEQf32rr_toi32; case NVPTX::FVecUEQV2F64: return NVPTX::FSetUEQf64rr_toi64; case NVPTX::FVecUEQV4F32: return NVPTX::FSetUEQf32rr_toi32; case NVPTX::FVecUGEV2F32: return NVPTX::FSetUGEf32rr_toi32; case NVPTX::FVecUGEV2F64: return NVPTX::FSetUGEf64rr_toi64; case NVPTX::FVecUGEV4F32: return NVPTX::FSetUGEf32rr_toi32; case NVPTX::FVecUGTV2F32: return NVPTX::FSetUGTf32rr_toi32; case NVPTX::FVecUGTV2F64: return NVPTX::FSetUGTf64rr_toi64; case NVPTX::FVecUGTV4F32: return NVPTX::FSetUGTf32rr_toi32; case NVPTX::FVecULEV2F32: return NVPTX::FSetULEf32rr_toi32; case NVPTX::FVecULEV2F64: return NVPTX::FSetULEf64rr_toi64; case NVPTX::FVecULEV4F32: return NVPTX::FSetULEf32rr_toi32; case NVPTX::FVecULTV2F32: return NVPTX::FSetULTf32rr_toi32; case NVPTX::FVecULTV2F64: return NVPTX::FSetULTf64rr_toi64; case NVPTX::FVecULTV4F32: return NVPTX::FSetULTf32rr_toi32; case NVPTX::FVecUNEV2F32: return NVPTX::FSetUNEf32rr_toi32; case NVPTX::FVecUNEV2F64: return NVPTX::FSetUNEf64rr_toi64; case NVPTX::FVecUNEV4F32: return NVPTX::FSetUNEf32rr_toi32; case NVPTX::I16MADV2: return NVPTX::MAD16rrr; case NVPTX::I16MADV4: return NVPTX::MAD16rrr; case NVPTX::I32MADV2: return NVPTX::MAD32rrr; case NVPTX::I32MADV4: return NVPTX::MAD32rrr; case NVPTX::I64MADV2: return NVPTX::MAD64rrr; case NVPTX::I8MADV2: return NVPTX::MAD8rrr; case NVPTX::I8MADV4: return NVPTX::MAD8rrr; case NVPTX::ShiftLV2I16: return NVPTX::SHLi16rr; case NVPTX::ShiftLV2I32: return NVPTX::SHLi32rr; case NVPTX::ShiftLV2I64: return NVPTX::SHLi64rr; case NVPTX::ShiftLV2I8: return NVPTX::SHLi8rr; case NVPTX::ShiftLV4I16: return NVPTX::SHLi16rr; case NVPTX::ShiftLV4I32: return NVPTX::SHLi32rr; case NVPTX::ShiftLV4I8: return NVPTX::SHLi8rr; case NVPTX::ShiftRAV2I16: return NVPTX::SRAi16rr; case NVPTX::ShiftRAV2I32: return NVPTX::SRAi32rr; case NVPTX::ShiftRAV2I64: return NVPTX::SRAi64rr; case NVPTX::ShiftRAV2I8: return NVPTX::SRAi8rr; case NVPTX::ShiftRAV4I16: return NVPTX::SRAi16rr; case NVPTX::ShiftRAV4I32: return NVPTX::SRAi32rr; case NVPTX::ShiftRAV4I8: return NVPTX::SRAi8rr; case NVPTX::ShiftRLV2I16: return NVPTX::SRLi16rr; case NVPTX::ShiftRLV2I32: return NVPTX::SRLi32rr; case NVPTX::ShiftRLV2I64: return NVPTX::SRLi64rr; case NVPTX::ShiftRLV2I8: return NVPTX::SRLi8rr; case NVPTX::ShiftRLV4I16: return NVPTX::SRLi16rr; case NVPTX::ShiftRLV4I32: return NVPTX::SRLi32rr; case NVPTX::ShiftRLV4I8: return NVPTX::SRLi8rr; case NVPTX::SubCCCV2I32: return NVPTX::SUBCCCi32rr; case NVPTX::SubCCCV4I32: return NVPTX::SUBCCCi32rr; case NVPTX::SubCCV2I32: return NVPTX::SUBCCi32rr; case NVPTX::SubCCV4I32: return NVPTX::SUBCCi32rr; case NVPTX::V2F32Div_prec_ftz: return NVPTX::FDIV32rr_prec_ftz; case NVPTX::V2F32Div_prec: return NVPTX::FDIV32rr_prec; case NVPTX::V2F32Div_ftz: return NVPTX::FDIV32rr_ftz; case NVPTX::V2F32Div: return NVPTX::FDIV32rr; case NVPTX::V2F32_Select: return NVPTX::SELECTf32rr; case NVPTX::V2F64Div: return NVPTX::FDIV64rr; case NVPTX::V2F64_Select: return NVPTX::SELECTf64rr; case NVPTX::V2I16_Select: return NVPTX::SELECTi16rr; case NVPTX::V2I32_Select: return NVPTX::SELECTi32rr; case NVPTX::V2I64_Select: return NVPTX::SELECTi64rr; case NVPTX::V2I8_Select: return NVPTX::SELECTi8rr; case NVPTX::V2f32Extract: return NVPTX::FMOV32rr; case NVPTX::V2f32Insert: return NVPTX::FMOV32rr; case NVPTX::V2f32Mov: return NVPTX::FMOV32rr; case NVPTX::V2f64Extract: return NVPTX::FMOV64rr; case NVPTX::V2f64Insert: return NVPTX::FMOV64rr; case NVPTX::V2f64Mov: return NVPTX::FMOV64rr; case NVPTX::V2i16Extract: return NVPTX::IMOV16rr; case NVPTX::V2i16Insert: return NVPTX::IMOV16rr; case NVPTX::V2i16Mov: return NVPTX::IMOV16rr; case NVPTX::V2i32Extract: return NVPTX::IMOV32rr; case NVPTX::V2i32Insert: return NVPTX::IMOV32rr; case NVPTX::V2i32Mov: return NVPTX::IMOV32rr; case NVPTX::V2i64Extract: return NVPTX::IMOV64rr; case NVPTX::V2i64Insert: return NVPTX::IMOV64rr; case NVPTX::V2i64Mov: return NVPTX::IMOV64rr; case NVPTX::V2i8Extract: return NVPTX::IMOV8rr; case NVPTX::V2i8Insert: return NVPTX::IMOV8rr; case NVPTX::V2i8Mov: return NVPTX::IMOV8rr; case NVPTX::V4F32Div_prec_ftz: return NVPTX::FDIV32rr_prec_ftz; case NVPTX::V4F32Div_prec: return NVPTX::FDIV32rr_prec; case NVPTX::V4F32Div_ftz: return NVPTX::FDIV32rr_ftz; case NVPTX::V4F32Div: return NVPTX::FDIV32rr; case NVPTX::V4F32_Select: return NVPTX::SELECTf32rr; case NVPTX::V4I16_Select: return NVPTX::SELECTi16rr; case NVPTX::V4I32_Select: return NVPTX::SELECTi32rr; case NVPTX::V4I8_Select: return NVPTX::SELECTi8rr; case NVPTX::V4f32Extract: return NVPTX::FMOV32rr; case NVPTX::V4f32Insert: return NVPTX::FMOV32rr; case NVPTX::V4f32Mov: return NVPTX::FMOV32rr; case NVPTX::V4i16Extract: return NVPTX::IMOV16rr; case NVPTX::V4i16Insert: return NVPTX::IMOV16rr; case NVPTX::V4i16Mov: return NVPTX::IMOV16rr; case NVPTX::V4i32Extract: return NVPTX::IMOV32rr; case NVPTX::V4i32Insert: return NVPTX::IMOV32rr; case NVPTX::V4i32Mov: return NVPTX::IMOV32rr; case NVPTX::V4i8Extract: return NVPTX::IMOV8rr; case NVPTX::V4i8Insert: return NVPTX::IMOV8rr; case NVPTX::V4i8Mov: return NVPTX::IMOV8rr; case NVPTX::VAddV2I16: return NVPTX::ADDi16rr; case NVPTX::VAddV2I32: return NVPTX::ADDi32rr; case NVPTX::VAddV2I64: return NVPTX::ADDi64rr; case NVPTX::VAddV2I8: return NVPTX::ADDi8rr; case NVPTX::VAddV4I16: return NVPTX::ADDi16rr; case NVPTX::VAddV4I32: return NVPTX::ADDi32rr; case NVPTX::VAddV4I8: return NVPTX::ADDi8rr; case NVPTX::VAddfV2F32: return NVPTX::FADDf32rr; case NVPTX::VAddfV2F32_ftz: return NVPTX::FADDf32rr_ftz; case NVPTX::VAddfV2F64: return NVPTX::FADDf64rr; case NVPTX::VAddfV4F32: return NVPTX::FADDf32rr; case NVPTX::VAddfV4F32_ftz: return NVPTX::FADDf32rr_ftz; case NVPTX::VAndV2I16: return NVPTX::ANDb16rr; case NVPTX::VAndV2I32: return NVPTX::ANDb32rr; case NVPTX::VAndV2I64: return NVPTX::ANDb64rr; case NVPTX::VAndV2I8: return NVPTX::ANDb8rr; case NVPTX::VAndV4I16: return NVPTX::ANDb16rr; case NVPTX::VAndV4I32: return NVPTX::ANDb32rr; case NVPTX::VAndV4I8: return NVPTX::ANDb8rr; case NVPTX::VMulfV2F32_ftz: return NVPTX::FMULf32rr_ftz; case NVPTX::VMulfV2F32: return NVPTX::FMULf32rr; case NVPTX::VMulfV2F64: return NVPTX::FMULf64rr; case NVPTX::VMulfV4F32_ftz: return NVPTX::FMULf32rr_ftz; case NVPTX::VMulfV4F32: return NVPTX::FMULf32rr; case NVPTX::VMultHSV2I16: return NVPTX::MULTHSi16rr; case NVPTX::VMultHSV2I32: return NVPTX::MULTHSi32rr; case NVPTX::VMultHSV2I64: return NVPTX::MULTHSi64rr; case NVPTX::VMultHSV2I8: return NVPTX::MULTHSi8rr; case NVPTX::VMultHSV4I16: return NVPTX::MULTHSi16rr; case NVPTX::VMultHSV4I32: return NVPTX::MULTHSi32rr; case NVPTX::VMultHSV4I8: return NVPTX::MULTHSi8rr; case NVPTX::VMultHUV2I16: return NVPTX::MULTHUi16rr; case NVPTX::VMultHUV2I32: return NVPTX::MULTHUi32rr; case NVPTX::VMultHUV2I64: return NVPTX::MULTHUi64rr; case NVPTX::VMultHUV2I8: return NVPTX::MULTHUi8rr; case NVPTX::VMultHUV4I16: return NVPTX::MULTHUi16rr; case NVPTX::VMultHUV4I32: return NVPTX::MULTHUi32rr; case NVPTX::VMultHUV4I8: return NVPTX::MULTHUi8rr; case NVPTX::VMultV2I16: return NVPTX::MULTi16rr; case NVPTX::VMultV2I32: return NVPTX::MULTi32rr; case NVPTX::VMultV2I64: return NVPTX::MULTi64rr; case NVPTX::VMultV2I8: return NVPTX::MULTi8rr; case NVPTX::VMultV4I16: return NVPTX::MULTi16rr; case NVPTX::VMultV4I32: return NVPTX::MULTi32rr; case NVPTX::VMultV4I8: return NVPTX::MULTi8rr; case NVPTX::VNegV2I16: return NVPTX::INEG16; case NVPTX::VNegV2I32: return NVPTX::INEG32; case NVPTX::VNegV2I64: return NVPTX::INEG64; case NVPTX::VNegV2I8: return NVPTX::INEG8; case NVPTX::VNegV4I16: return NVPTX::INEG16; case NVPTX::VNegV4I32: return NVPTX::INEG32; case NVPTX::VNegV4I8: return NVPTX::INEG8; case NVPTX::VNegv2f32: return NVPTX::FNEGf32; case NVPTX::VNegv2f32_ftz: return NVPTX::FNEGf32_ftz; case NVPTX::VNegv2f64: return NVPTX::FNEGf64; case NVPTX::VNegv4f32: return NVPTX::FNEGf32; case NVPTX::VNegv4f32_ftz: return NVPTX::FNEGf32_ftz; case NVPTX::VNotV2I16: return NVPTX::NOT16; case NVPTX::VNotV2I32: return NVPTX::NOT32; case NVPTX::VNotV2I64: return NVPTX::NOT64; case NVPTX::VNotV2I8: return NVPTX::NOT8; case NVPTX::VNotV4I16: return NVPTX::NOT16; case NVPTX::VNotV4I32: return NVPTX::NOT32; case NVPTX::VNotV4I8: return NVPTX::NOT8; case NVPTX::VOrV2I16: return NVPTX::ORb16rr; case NVPTX::VOrV2I32: return NVPTX::ORb32rr; case NVPTX::VOrV2I64: return NVPTX::ORb64rr; case NVPTX::VOrV2I8: return NVPTX::ORb8rr; case NVPTX::VOrV4I16: return NVPTX::ORb16rr; case NVPTX::VOrV4I32: return NVPTX::ORb32rr; case NVPTX::VOrV4I8: return NVPTX::ORb8rr; case NVPTX::VSDivV2I16: return NVPTX::SDIVi16rr; case NVPTX::VSDivV2I32: return NVPTX::SDIVi32rr; case NVPTX::VSDivV2I64: return NVPTX::SDIVi64rr; case NVPTX::VSDivV2I8: return NVPTX::SDIVi8rr; case NVPTX::VSDivV4I16: return NVPTX::SDIVi16rr; case NVPTX::VSDivV4I32: return NVPTX::SDIVi32rr; case NVPTX::VSDivV4I8: return NVPTX::SDIVi8rr; case NVPTX::VSRemV2I16: return NVPTX::SREMi16rr; case NVPTX::VSRemV2I32: return NVPTX::SREMi32rr; case NVPTX::VSRemV2I64: return NVPTX::SREMi64rr; case NVPTX::VSRemV2I8: return NVPTX::SREMi8rr; case NVPTX::VSRemV4I16: return NVPTX::SREMi16rr; case NVPTX::VSRemV4I32: return NVPTX::SREMi32rr; case NVPTX::VSRemV4I8: return NVPTX::SREMi8rr; case NVPTX::VSubV2I16: return NVPTX::SUBi16rr; case NVPTX::VSubV2I32: return NVPTX::SUBi32rr; case NVPTX::VSubV2I64: return NVPTX::SUBi64rr; case NVPTX::VSubV2I8: return NVPTX::SUBi8rr; case NVPTX::VSubV4I16: return NVPTX::SUBi16rr; case NVPTX::VSubV4I32: return NVPTX::SUBi32rr; case NVPTX::VSubV4I8: return NVPTX::SUBi8rr; case NVPTX::VSubfV2F32_ftz: return NVPTX::FSUBf32rr_ftz; case NVPTX::VSubfV2F32: return NVPTX::FSUBf32rr; case NVPTX::VSubfV2F64: return NVPTX::FSUBf64rr; case NVPTX::VSubfV4F32_ftz: return NVPTX::FSUBf32rr_ftz; case NVPTX::VSubfV4F32: return NVPTX::FSUBf32rr; case NVPTX::VUDivV2I16: return NVPTX::UDIVi16rr; case NVPTX::VUDivV2I32: return NVPTX::UDIVi32rr; case NVPTX::VUDivV2I64: return NVPTX::UDIVi64rr; case NVPTX::VUDivV2I8: return NVPTX::UDIVi8rr; case NVPTX::VUDivV4I16: return NVPTX::UDIVi16rr; case NVPTX::VUDivV4I32: return NVPTX::UDIVi32rr; case NVPTX::VUDivV4I8: return NVPTX::UDIVi8rr; case NVPTX::VURemV2I16: return NVPTX::UREMi16rr; case NVPTX::VURemV2I32: return NVPTX::UREMi32rr; case NVPTX::VURemV2I64: return NVPTX::UREMi64rr; case NVPTX::VURemV2I8: return NVPTX::UREMi8rr; case NVPTX::VURemV4I16: return NVPTX::UREMi16rr; case NVPTX::VURemV4I32: return NVPTX::UREMi32rr; case NVPTX::VURemV4I8: return NVPTX::UREMi8rr; case NVPTX::VXorV2I16: return NVPTX::XORb16rr; case NVPTX::VXorV2I32: return NVPTX::XORb32rr; case NVPTX::VXorV2I64: return NVPTX::XORb64rr; case NVPTX::VXorV2I8: return NVPTX::XORb8rr; case NVPTX::VXorV4I16: return NVPTX::XORb16rr; case NVPTX::VXorV4I32: return NVPTX::XORb32rr; case NVPTX::VXorV4I8: return NVPTX::XORb8rr; case NVPTX::VecSEQV2I16: return NVPTX::ISetSEQi16rr_toi16; case NVPTX::VecSEQV2I32: return NVPTX::ISetSEQi32rr_toi32; case NVPTX::VecSEQV2I64: return NVPTX::ISetSEQi64rr_toi64; case NVPTX::VecSEQV2I8: return NVPTX::ISetSEQi8rr_toi8; case NVPTX::VecSEQV4I16: return NVPTX::ISetSEQi16rr_toi16; case NVPTX::VecSEQV4I32: return NVPTX::ISetSEQi32rr_toi32; case NVPTX::VecSEQV4I8: return NVPTX::ISetSEQi8rr_toi8; case NVPTX::VecSGEV2I16: return NVPTX::ISetSGEi16rr_toi16; case NVPTX::VecSGEV2I32: return NVPTX::ISetSGEi32rr_toi32; case NVPTX::VecSGEV2I64: return NVPTX::ISetSGEi64rr_toi64; case NVPTX::VecSGEV2I8: return NVPTX::ISetSGEi8rr_toi8; case NVPTX::VecSGEV4I16: return NVPTX::ISetSGEi16rr_toi16; case NVPTX::VecSGEV4I32: return NVPTX::ISetSGEi32rr_toi32; case NVPTX::VecSGEV4I8: return NVPTX::ISetSGEi8rr_toi8; case NVPTX::VecSGTV2I16: return NVPTX::ISetSGTi16rr_toi16; case NVPTX::VecSGTV2I32: return NVPTX::ISetSGTi32rr_toi32; case NVPTX::VecSGTV2I64: return NVPTX::ISetSGTi64rr_toi64; case NVPTX::VecSGTV2I8: return NVPTX::ISetSGTi8rr_toi8; case NVPTX::VecSGTV4I16: return NVPTX::ISetSGTi16rr_toi16; case NVPTX::VecSGTV4I32: return NVPTX::ISetSGTi32rr_toi32; case NVPTX::VecSGTV4I8: return NVPTX::ISetSGTi8rr_toi8; case NVPTX::VecSLEV2I16: return NVPTX::ISetSLEi16rr_toi16; case NVPTX::VecSLEV2I32: return NVPTX::ISetSLEi32rr_toi32; case NVPTX::VecSLEV2I64: return NVPTX::ISetSLEi64rr_toi64; case NVPTX::VecSLEV2I8: return NVPTX::ISetSLEi8rr_toi8; case NVPTX::VecSLEV4I16: return NVPTX::ISetSLEi16rr_toi16; case NVPTX::VecSLEV4I32: return NVPTX::ISetSLEi32rr_toi32; case NVPTX::VecSLEV4I8: return NVPTX::ISetSLEi8rr_toi8; case NVPTX::VecSLTV2I16: return NVPTX::ISetSLTi16rr_toi16; case NVPTX::VecSLTV2I32: return NVPTX::ISetSLTi32rr_toi32; case NVPTX::VecSLTV2I64: return NVPTX::ISetSLTi64rr_toi64; case NVPTX::VecSLTV2I8: return NVPTX::ISetSLTi8rr_toi8; case NVPTX::VecSLTV4I16: return NVPTX::ISetSLTi16rr_toi16; case NVPTX::VecSLTV4I32: return NVPTX::ISetSLTi32rr_toi32; case NVPTX::VecSLTV4I8: return NVPTX::ISetSLTi8rr_toi8; case NVPTX::VecSNEV2I16: return NVPTX::ISetSNEi16rr_toi16; case NVPTX::VecSNEV2I32: return NVPTX::ISetSNEi32rr_toi32; case NVPTX::VecSNEV2I64: return NVPTX::ISetSNEi64rr_toi64; case NVPTX::VecSNEV2I8: return NVPTX::ISetSNEi8rr_toi8; case NVPTX::VecSNEV4I16: return NVPTX::ISetSNEi16rr_toi16; case NVPTX::VecSNEV4I32: return NVPTX::ISetSNEi32rr_toi32; case NVPTX::VecSNEV4I8: return NVPTX::ISetSNEi8rr_toi8; case NVPTX::VecShuffle_v2f32: return NVPTX::FMOV32rr; case NVPTX::VecShuffle_v2f64: return NVPTX::FMOV64rr; case NVPTX::VecShuffle_v2i16: return NVPTX::IMOV16rr; case NVPTX::VecShuffle_v2i32: return NVPTX::IMOV32rr; case NVPTX::VecShuffle_v2i64: return NVPTX::IMOV64rr; case NVPTX::VecShuffle_v2i8: return NVPTX::IMOV8rr; case NVPTX::VecShuffle_v4f32: return NVPTX::FMOV32rr; case NVPTX::VecShuffle_v4i16: return NVPTX::IMOV16rr; case NVPTX::VecShuffle_v4i32: return NVPTX::IMOV32rr; case NVPTX::VecShuffle_v4i8: return NVPTX::IMOV8rr; case NVPTX::VecUEQV2I16: return NVPTX::ISetUEQi16rr_toi16; case NVPTX::VecUEQV2I32: return NVPTX::ISetUEQi32rr_toi32; case NVPTX::VecUEQV2I64: return NVPTX::ISetUEQi64rr_toi64; case NVPTX::VecUEQV2I8: return NVPTX::ISetUEQi8rr_toi8; case NVPTX::VecUEQV4I16: return NVPTX::ISetUEQi16rr_toi16; case NVPTX::VecUEQV4I32: return NVPTX::ISetUEQi32rr_toi32; case NVPTX::VecUEQV4I8: return NVPTX::ISetUEQi8rr_toi8; case NVPTX::VecUGEV2I16: return NVPTX::ISetUGEi16rr_toi16; case NVPTX::VecUGEV2I32: return NVPTX::ISetUGEi32rr_toi32; case NVPTX::VecUGEV2I64: return NVPTX::ISetUGEi64rr_toi64; case NVPTX::VecUGEV2I8: return NVPTX::ISetUGEi8rr_toi8; case NVPTX::VecUGEV4I16: return NVPTX::ISetUGEi16rr_toi16; case NVPTX::VecUGEV4I32: return NVPTX::ISetUGEi32rr_toi32; case NVPTX::VecUGEV4I8: return NVPTX::ISetUGEi8rr_toi8; case NVPTX::VecUGTV2I16: return NVPTX::ISetUGTi16rr_toi16; case NVPTX::VecUGTV2I32: return NVPTX::ISetUGTi32rr_toi32; case NVPTX::VecUGTV2I64: return NVPTX::ISetUGTi64rr_toi64; case NVPTX::VecUGTV2I8: return NVPTX::ISetUGTi8rr_toi8; case NVPTX::VecUGTV4I16: return NVPTX::ISetUGTi16rr_toi16; case NVPTX::VecUGTV4I32: return NVPTX::ISetUGTi32rr_toi32; case NVPTX::VecUGTV4I8: return NVPTX::ISetUGTi8rr_toi8; case NVPTX::VecULEV2I16: return NVPTX::ISetULEi16rr_toi16; case NVPTX::VecULEV2I32: return NVPTX::ISetULEi32rr_toi32; case NVPTX::VecULEV2I64: return NVPTX::ISetULEi64rr_toi64; case NVPTX::VecULEV2I8: return NVPTX::ISetULEi8rr_toi8; case NVPTX::VecULEV4I16: return NVPTX::ISetULEi16rr_toi16; case NVPTX::VecULEV4I32: return NVPTX::ISetULEi32rr_toi32; case NVPTX::VecULEV4I8: return NVPTX::ISetULEi8rr_toi8; case NVPTX::VecULTV2I16: return NVPTX::ISetULTi16rr_toi16; case NVPTX::VecULTV2I32: return NVPTX::ISetULTi32rr_toi32; case NVPTX::VecULTV2I64: return NVPTX::ISetULTi64rr_toi64; case NVPTX::VecULTV2I8: return NVPTX::ISetULTi8rr_toi8; case NVPTX::VecULTV4I16: return NVPTX::ISetULTi16rr_toi16; case NVPTX::VecULTV4I32: return NVPTX::ISetULTi32rr_toi32; case NVPTX::VecULTV4I8: return NVPTX::ISetULTi8rr_toi8; case NVPTX::VecUNEV2I16: return NVPTX::ISetUNEi16rr_toi16; case NVPTX::VecUNEV2I32: return NVPTX::ISetUNEi32rr_toi32; case NVPTX::VecUNEV2I64: return NVPTX::ISetUNEi64rr_toi64; case NVPTX::VecUNEV2I8: return NVPTX::ISetUNEi8rr_toi8; case NVPTX::VecUNEV4I16: return NVPTX::ISetUNEi16rr_toi16; case NVPTX::VecUNEV4I32: return NVPTX::ISetUNEi32rr_toi32; case NVPTX::VecUNEV4I8: return NVPTX::ISetUNEi8rr_toi8; case NVPTX::INT_PTX_LDU_G_v2i8_32: return NVPTX::INT_PTX_LDU_G_v2i8_ELE_32; case NVPTX::INT_PTX_LDU_G_v4i8_32: return NVPTX::INT_PTX_LDU_G_v4i8_ELE_32; case NVPTX::INT_PTX_LDU_G_v2i16_32: return NVPTX::INT_PTX_LDU_G_v2i16_ELE_32; case NVPTX::INT_PTX_LDU_G_v4i16_32: return NVPTX::INT_PTX_LDU_G_v4i16_ELE_32; case NVPTX::INT_PTX_LDU_G_v2i32_32: return NVPTX::INT_PTX_LDU_G_v2i32_ELE_32; case NVPTX::INT_PTX_LDU_G_v4i32_32: return NVPTX::INT_PTX_LDU_G_v4i32_ELE_32; case NVPTX::INT_PTX_LDU_G_v2f32_32: return NVPTX::INT_PTX_LDU_G_v2f32_ELE_32; case NVPTX::INT_PTX_LDU_G_v4f32_32: return NVPTX::INT_PTX_LDU_G_v4f32_ELE_32; case NVPTX::INT_PTX_LDU_G_v2i64_32: return NVPTX::INT_PTX_LDU_G_v2i64_ELE_32; case NVPTX::INT_PTX_LDU_G_v2f64_32: return NVPTX::INT_PTX_LDU_G_v2f64_ELE_32; case NVPTX::INT_PTX_LDU_G_v2i8_64: return NVPTX::INT_PTX_LDU_G_v2i8_ELE_64; case NVPTX::INT_PTX_LDU_G_v4i8_64: return NVPTX::INT_PTX_LDU_G_v4i8_ELE_64; case NVPTX::INT_PTX_LDU_G_v2i16_64: return NVPTX::INT_PTX_LDU_G_v2i16_ELE_64; case NVPTX::INT_PTX_LDU_G_v4i16_64: return NVPTX::INT_PTX_LDU_G_v4i16_ELE_64; case NVPTX::INT_PTX_LDU_G_v2i32_64: return NVPTX::INT_PTX_LDU_G_v2i32_ELE_64; case NVPTX::INT_PTX_LDU_G_v4i32_64: return NVPTX::INT_PTX_LDU_G_v4i32_ELE_64; case NVPTX::INT_PTX_LDU_G_v2f32_64: return NVPTX::INT_PTX_LDU_G_v2f32_ELE_64; case NVPTX::INT_PTX_LDU_G_v4f32_64: return NVPTX::INT_PTX_LDU_G_v4f32_ELE_64; case NVPTX::INT_PTX_LDU_G_v2i64_64: return NVPTX::INT_PTX_LDU_G_v2i64_ELE_64; case NVPTX::INT_PTX_LDU_G_v2f64_64: return NVPTX::INT_PTX_LDU_G_v2f64_ELE_64; case NVPTX::LoadParamV4I32: return NVPTX::LoadParamScalar4I32; case NVPTX::LoadParamV4I16: return NVPTX::LoadParamScalar4I16; case NVPTX::LoadParamV4I8: return NVPTX::LoadParamScalar4I8; case NVPTX::LoadParamV2I64: return NVPTX::LoadParamScalar2I64; case NVPTX::LoadParamV2I32: return NVPTX::LoadParamScalar2I32; case NVPTX::LoadParamV2I16: return NVPTX::LoadParamScalar2I16; case NVPTX::LoadParamV2I8: return NVPTX::LoadParamScalar2I8; case NVPTX::LoadParamV4F32: return NVPTX::LoadParamScalar4F32; case NVPTX::LoadParamV2F32: return NVPTX::LoadParamScalar2F32; case NVPTX::LoadParamV2F64: return NVPTX::LoadParamScalar2F64; case NVPTX::StoreParamV4I32: return NVPTX::StoreParamScalar4I32; case NVPTX::StoreParamV4I16: return NVPTX::StoreParamScalar4I16; case NVPTX::StoreParamV4I8: return NVPTX::StoreParamScalar4I8; case NVPTX::StoreParamV2I64: return NVPTX::StoreParamScalar2I64; case NVPTX::StoreParamV2I32: return NVPTX::StoreParamScalar2I32; case NVPTX::StoreParamV2I16: return NVPTX::StoreParamScalar2I16; case NVPTX::StoreParamV2I8: return NVPTX::StoreParamScalar2I8; case NVPTX::StoreParamV4F32: return NVPTX::StoreParamScalar4F32; case NVPTX::StoreParamV2F32: return NVPTX::StoreParamScalar2F32; case NVPTX::StoreParamV2F64: return NVPTX::StoreParamScalar2F64; case NVPTX::StoreRetvalV4I32: return NVPTX::StoreRetvalScalar4I32; case NVPTX::StoreRetvalV4I16: return NVPTX::StoreRetvalScalar4I16; case NVPTX::StoreRetvalV4I8: return NVPTX::StoreRetvalScalar4I8; case NVPTX::StoreRetvalV2I64: return NVPTX::StoreRetvalScalar2I64; case NVPTX::StoreRetvalV2I32: return NVPTX::StoreRetvalScalar2I32; case NVPTX::StoreRetvalV2I16: return NVPTX::StoreRetvalScalar2I16; case NVPTX::StoreRetvalV2I8: return NVPTX::StoreRetvalScalar2I8; case NVPTX::StoreRetvalV4F32: return NVPTX::StoreRetvalScalar4F32; case NVPTX::StoreRetvalV2F32: return NVPTX::StoreRetvalScalar2F32; case NVPTX::StoreRetvalV2F64: return NVPTX::StoreRetvalScalar2F64; case NVPTX::VecI32toV4I8: return NVPTX::I32toV4I8; case NVPTX::VecI64toV4I16: return NVPTX::I64toV4I16; case NVPTX::VecI16toV2I8: return NVPTX::I16toV2I8; case NVPTX::VecI32toV2I16: return NVPTX::I32toV2I16; case NVPTX::VecI64toV2I32: return NVPTX::I64toV2I32; case NVPTX::VecF64toV2F32: return NVPTX::F64toV2F32; case NVPTX::LD_v2i8_avar: return NVPTX::LDV_i8_v2_avar; case NVPTX::LD_v2i8_areg: return NVPTX::LDV_i8_v2_areg; case NVPTX::LD_v2i8_ari: return NVPTX::LDV_i8_v2_ari; case NVPTX::LD_v2i8_asi: return NVPTX::LDV_i8_v2_asi; case NVPTX::LD_v4i8_avar: return NVPTX::LDV_i8_v4_avar; case NVPTX::LD_v4i8_areg: return NVPTX::LDV_i8_v4_areg; case NVPTX::LD_v4i8_ari: return NVPTX::LDV_i8_v4_ari; case NVPTX::LD_v4i8_asi: return NVPTX::LDV_i8_v4_asi; case NVPTX::LD_v2i16_avar: return NVPTX::LDV_i16_v2_avar; case NVPTX::LD_v2i16_areg: return NVPTX::LDV_i16_v2_areg; case NVPTX::LD_v2i16_ari: return NVPTX::LDV_i16_v2_ari; case NVPTX::LD_v2i16_asi: return NVPTX::LDV_i16_v2_asi; case NVPTX::LD_v4i16_avar: return NVPTX::LDV_i16_v4_avar; case NVPTX::LD_v4i16_areg: return NVPTX::LDV_i16_v4_areg; case NVPTX::LD_v4i16_ari: return NVPTX::LDV_i16_v4_ari; case NVPTX::LD_v4i16_asi: return NVPTX::LDV_i16_v4_asi; case NVPTX::LD_v2i32_avar: return NVPTX::LDV_i32_v2_avar; case NVPTX::LD_v2i32_areg: return NVPTX::LDV_i32_v2_areg; case NVPTX::LD_v2i32_ari: return NVPTX::LDV_i32_v2_ari; case NVPTX::LD_v2i32_asi: return NVPTX::LDV_i32_v2_asi; case NVPTX::LD_v4i32_avar: return NVPTX::LDV_i32_v4_avar; case NVPTX::LD_v4i32_areg: return NVPTX::LDV_i32_v4_areg; case NVPTX::LD_v4i32_ari: return NVPTX::LDV_i32_v4_ari; case NVPTX::LD_v4i32_asi: return NVPTX::LDV_i32_v4_asi; case NVPTX::LD_v2f32_avar: return NVPTX::LDV_f32_v2_avar; case NVPTX::LD_v2f32_areg: return NVPTX::LDV_f32_v2_areg; case NVPTX::LD_v2f32_ari: return NVPTX::LDV_f32_v2_ari; case NVPTX::LD_v2f32_asi: return NVPTX::LDV_f32_v2_asi; case NVPTX::LD_v4f32_avar: return NVPTX::LDV_f32_v4_avar; case NVPTX::LD_v4f32_areg: return NVPTX::LDV_f32_v4_areg; case NVPTX::LD_v4f32_ari: return NVPTX::LDV_f32_v4_ari; case NVPTX::LD_v4f32_asi: return NVPTX::LDV_f32_v4_asi; case NVPTX::LD_v2i64_avar: return NVPTX::LDV_i64_v2_avar; case NVPTX::LD_v2i64_areg: return NVPTX::LDV_i64_v2_areg; case NVPTX::LD_v2i64_ari: return NVPTX::LDV_i64_v2_ari; case NVPTX::LD_v2i64_asi: return NVPTX::LDV_i64_v2_asi; case NVPTX::LD_v2f64_avar: return NVPTX::LDV_f64_v2_avar; case NVPTX::LD_v2f64_areg: return NVPTX::LDV_f64_v2_areg; case NVPTX::LD_v2f64_ari: return NVPTX::LDV_f64_v2_ari; case NVPTX::LD_v2f64_asi: return NVPTX::LDV_f64_v2_asi; case NVPTX::ST_v2i8_avar: return NVPTX::STV_i8_v2_avar; case NVPTX::ST_v2i8_areg: return NVPTX::STV_i8_v2_areg; case NVPTX::ST_v2i8_ari: return NVPTX::STV_i8_v2_ari; case NVPTX::ST_v2i8_asi: return NVPTX::STV_i8_v2_asi; case NVPTX::ST_v4i8_avar: return NVPTX::STV_i8_v4_avar; case NVPTX::ST_v4i8_areg: return NVPTX::STV_i8_v4_areg; case NVPTX::ST_v4i8_ari: return NVPTX::STV_i8_v4_ari; case NVPTX::ST_v4i8_asi: return NVPTX::STV_i8_v4_asi; case NVPTX::ST_v2i16_avar: return NVPTX::STV_i16_v2_avar; case NVPTX::ST_v2i16_areg: return NVPTX::STV_i16_v2_areg; case NVPTX::ST_v2i16_ari: return NVPTX::STV_i16_v2_ari; case NVPTX::ST_v2i16_asi: return NVPTX::STV_i16_v2_asi; case NVPTX::ST_v4i16_avar: return NVPTX::STV_i16_v4_avar; case NVPTX::ST_v4i16_areg: return NVPTX::STV_i16_v4_areg; case NVPTX::ST_v4i16_ari: return NVPTX::STV_i16_v4_ari; case NVPTX::ST_v4i16_asi: return NVPTX::STV_i16_v4_asi; case NVPTX::ST_v2i32_avar: return NVPTX::STV_i32_v2_avar; case NVPTX::ST_v2i32_areg: return NVPTX::STV_i32_v2_areg; case NVPTX::ST_v2i32_ari: return NVPTX::STV_i32_v2_ari; case NVPTX::ST_v2i32_asi: return NVPTX::STV_i32_v2_asi; case NVPTX::ST_v4i32_avar: return NVPTX::STV_i32_v4_avar; case NVPTX::ST_v4i32_areg: return NVPTX::STV_i32_v4_areg; case NVPTX::ST_v4i32_ari: return NVPTX::STV_i32_v4_ari; case NVPTX::ST_v4i32_asi: return NVPTX::STV_i32_v4_asi; case NVPTX::ST_v2f32_avar: return NVPTX::STV_f32_v2_avar; case NVPTX::ST_v2f32_areg: return NVPTX::STV_f32_v2_areg; case NVPTX::ST_v2f32_ari: return NVPTX::STV_f32_v2_ari; case NVPTX::ST_v2f32_asi: return NVPTX::STV_f32_v2_asi; case NVPTX::ST_v4f32_avar: return NVPTX::STV_f32_v4_avar; case NVPTX::ST_v4f32_areg: return NVPTX::STV_f32_v4_areg; case NVPTX::ST_v4f32_ari: return NVPTX::STV_f32_v4_ari; case NVPTX::ST_v4f32_asi: return NVPTX::STV_f32_v4_asi; case NVPTX::ST_v2i64_avar: return NVPTX::STV_i64_v2_avar; case NVPTX::ST_v2i64_areg: return NVPTX::STV_i64_v2_areg; case NVPTX::ST_v2i64_ari: return NVPTX::STV_i64_v2_ari; case NVPTX::ST_v2i64_asi: return NVPTX::STV_i64_v2_asi; case NVPTX::ST_v2f64_avar: return NVPTX::STV_f64_v2_avar; case NVPTX::ST_v2f64_areg: return NVPTX::STV_f64_v2_areg; case NVPTX::ST_v2f64_ari: return NVPTX::STV_f64_v2_ari; case NVPTX::ST_v2f64_asi: return NVPTX::STV_f64_v2_asi; } return 0; }