//===-- NVPTXISelDAGToDAG.h - A dag to dag inst selector for NVPTX --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the NVPTX target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "nvptx-isel" #include "NVPTX.h" #include "NVPTXISelLowering.h" #include "NVPTXRegisterInfo.h" #include "NVPTXTargetMachine.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Compiler.h" #include "llvm/Intrinsics.h" using namespace llvm; namespace { class LLVM_LIBRARY_VISIBILITY NVPTXDAGToDAGISel : public SelectionDAGISel { // If true, generate corresponding FPCONTRACT. This is // language dependent (i.e. CUDA and OpenCL works differently). bool doFMADF32; bool doFMAF64; bool doFMAF32; bool doFMAF64AGG; bool doFMAF32AGG; bool allowFMA; // 0: use div.approx // 1: use div.full // 2: For sm_20 and later, ieee-compliant div.rnd.f32 can be generated; // Otherwise, use div.full int do_DIVF32_PREC; // If true, add .ftz to f32 instructions. // This is only meaningful for sm_20 and later, as the default // is not ftz. // For sm earlier than sm_20, f32 denorms are always ftz by the // hardware. // We always add the .ftz modifier regardless of the sm value // when Use32FTZ is true. bool UseF32FTZ; // If true, generate mul.wide from sext and mul bool doMulWide; public: explicit NVPTXDAGToDAGISel(NVPTXTargetMachine &tm, CodeGenOpt::Level OptLevel); // Pass Name virtual const char *getPassName() const { return "NVPTX DAG->DAG Pattern Instruction Selection"; } const NVPTXSubtarget &Subtarget; virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps); private: // Include the pieces autogenerated from the target description. #include "NVPTXGenDAGISel.inc" SDNode *Select(SDNode *N); SDNode* SelectLoad(SDNode *N); SDNode* SelectStore(SDNode *N); inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } // Match direct address complex pattern. bool SelectDirectAddr(SDValue N, SDValue &Address); bool SelectADDRri_imp(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt); bool SelectADDRri(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRri64(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRsi_imp(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt); bool SelectADDRsi(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRsi64(SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset); bool ChkMemSDNodeAddressSpace(SDNode *N, unsigned int spN) const; bool UndefOrImm(SDValue Op, SDValue N, SDValue &Retval); }; }