//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "misched"

#include "HexagonMachineScheduler.h"

#include <queue>

using namespace llvm;

static cl::opt<bool> ForceTopDown("vliw-misched-topdown", cl::Hidden,
                                  cl::desc("Force top-down list scheduling"));
static cl::opt<bool> ForceBottomUp("vliw-misched-bottomup", cl::Hidden,
                                   cl::desc("Force bottom-up list scheduling"));

#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("vliw-view-misched-dags", cl::Hidden,
  cl::desc("Pop up a window to show MISched dags after they are processed"));

static cl::opt<unsigned> MISchedCutoff("vliw-misched-cutoff", cl::Hidden,
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
#else
static bool ViewMISchedDAGs = false;
#endif // NDEBUG

/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
  assert(I != Beg && "reached the top of the region, cannot decrement");
  while (--I != Beg) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
  for(; I != End; ++I) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
///
/// FIXME: Adjust SuccSU height based on MinLatency.
void VLIWMachineScheduler::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --SuccSU->NumPredsLeft;
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    SchedImpl->releaseTopNode(SuccSU);
}

/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void VLIWMachineScheduler::releaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    releaseSucc(SU, &*I);
  }
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
/// NumSuccsLeft reaches zero, release the predecessor node.
///
/// FIXME: Adjust PredSU height based on MinLatency.
void VLIWMachineScheduler::releasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    SchedImpl->releaseBottomNode(PredSU);
}

/// releasePredecessors - Call releasePred on each of SU's predecessors.
void VLIWMachineScheduler::releasePredecessors(SUnit *SU) {
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    releasePred(SU, &*I);
  }
}

void VLIWMachineScheduler::moveInstruction(MachineInstr *MI,
                                    MachineBasicBlock::iterator InsertPos) {
  // Advance RegionBegin if the first instruction moves down.
  if (&*RegionBegin == MI)
    ++RegionBegin;

  // Update the instruction stream.
  BB->splice(InsertPos, BB, MI);

  // Update LiveIntervals
  LIS->handleMove(MI);

  // Recede RegionBegin if an instruction moves above the first.
  if (RegionBegin == InsertPos)
    RegionBegin = MI;
}

bool VLIWMachineScheduler::checkSchedLimit() {
#ifndef NDEBUG
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    CurrentTop = CurrentBottom;
    return false;
  }
  ++NumInstrsScheduled;
#endif
  return true;
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void VLIWMachineScheduler::enterRegion(MachineBasicBlock *bb,
                                MachineBasicBlock::iterator begin,
                                MachineBasicBlock::iterator end,
                                unsigned endcount)
{
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);

  // For convenience remember the end of the liveness region.
  LiveRegionEnd =
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
}

// Setup the register pressure trackers for the top scheduled top and bottom
// scheduled regions.
void VLIWMachineScheduler::initRegPressure() {
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Close the RPTracker to finalize live ins.
  RPTracker.closeRegion();

  DEBUG(RPTracker.getPressure().dump(TRI));

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Close one end of the tracker so we can call
  // getMaxUpward/DownwardPressureDelta before advancing across any
  // instructions. This converts currently live regs into live ins/outs.
  TopRPTracker.closeTop();
  BotRPTracker.closeBottom();

  // Account for liveness generated by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    BotRPTracker.recede();

  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");

  // Cache the list of excess pressure sets in this region. This will also track
  // the max pressure in the scheduled code for these sets.
  RegionCriticalPSets.clear();
  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    unsigned Limit = TRI->getRegPressureSetLimit(i);
    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
          << "Limit " << Limit
          << " Actual " << RegionPressure[i] << "\n");
    if (RegionPressure[i] > Limit)
      RegionCriticalPSets.push_back(PressureElement(i, 0));
  }
  DEBUG(dbgs() << "Excess PSets: ";
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
          dbgs() << TRI->getRegPressureSetName(
            RegionCriticalPSets[i].PSetID) << " ";
        dbgs() << "\n");

  TotalPackets = 0;
}

// FIXME: When the pressure tracker deals in pressure differences then we won't
// iterate over all RegionCriticalPSets[i].
void VLIWMachineScheduler::
updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
    unsigned ID = RegionCriticalPSets[i].PSetID;
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
    if ((int)NewMaxPressure[ID] > MaxUnits)
      MaxUnits = NewMaxPressure[ID];
  }
}

/// Check if scheduling of this SU is possible
/// in the current packet.
/// It is _not_ precise (statefull), it is more like
/// another heuristic. Many corner cases are figured
/// empirically.
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
  if (!SU || !SU->getInstr())
    return false;

  // First see if the pipeline could receive this instruction
  // in the current cycle.
  switch (SU->getInstr()->getOpcode()) {
  default:
    if (!ResourcesModel->canReserveResources(SU->getInstr()))
      return false;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
    break;
  }

  // Now see if there are no other dependencies to instructions already
  // in the packet.
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    if (Packet[i]->Succs.size() == 0)
      continue;
    for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
         E = Packet[i]->Succs.end(); I != E; ++I) {
      // Since we do not add pseudos to packets, might as well
      // ignore order dependencies.
      if (I->isCtrl())
        continue;

      if (I->getSUnit() == SU)
        return false;
    }
  }
  return true;
}

/// Keep track of available resources.
bool VLIWResourceModel::reserveResources(SUnit *SU) {
  bool startNewCycle = false;
  // If this SU does not fit in the packet
  // start a new one.
  if (!isResourceAvailable(SU)) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    startNewCycle = true;
  }

  switch (SU->getInstr()->getOpcode()) {
  default:
    ResourcesModel->reserveResources(SU->getInstr());
    break;
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::PROLOG_LABEL:
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
    break;
  }
  Packet.push_back(SU);

#ifndef NDEBUG
  DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    DEBUG(dbgs() << "\t[" << i << "] SU(");
    DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    DEBUG(Packet[i]->getInstr()->dump());
  }
#endif

  // If packet is now full, reset the state so in the next cycle
  // we start fresh.
  if (Packet.size() >= InstrItins->SchedModel->IssueWidth) {
    ResourcesModel->clearResources();
    Packet.clear();
    TotalPackets++;
    startNewCycle = true;
  }

  return startNewCycle;
}

// Release all DAG roots for scheduling.
void VLIWMachineScheduler::releaseRoots() {
  SmallVector<SUnit*, 16> BotRoots;

  for (std::vector<SUnit>::iterator
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    // A SUnit is ready to top schedule if it has no predecessors.
    if (I->Preds.empty())
      SchedImpl->releaseTopNode(&(*I));
    // A SUnit is ready to bottom schedule if it has no successors.
    if (I->Succs.empty())
      BotRoots.push_back(&(*I));
  }
  // Release bottom roots in reverse order so the higher priority nodes appear
  // first. This is more natural and slightly more efficient.
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
    SchedImpl->releaseBottomNode(*I);
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
void VLIWMachineScheduler::schedule() {
  DEBUG(dbgs()
        << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
        << " " << BB->getName()
        << " in_func " << BB->getParent()->getFunction()->getName()
        << " at loop depth "  << MLI->getLoopDepth(BB)
        << " \n");

  // Initialize the register pressure tracker used by buildSchedGraph.
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Account for liveness generate by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    RPTracker.recede();

  // Build the DAG, and compute current register pressure.
  buildSchedGraph(AA, &RPTracker);

  // Initialize top/bottom trackers after computing region pressure.
  initRegPressure();

  // To view Height/Depth correctly, they should be accessed at least once.
  DEBUG(unsigned maxH = 0;
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          if (SUnits[su].getHeight() > maxH)
            maxH = SUnits[su].getHeight();
        dbgs() << "Max Height " << maxH << "\n";);
  DEBUG(unsigned maxD = 0;
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          if (SUnits[su].getDepth() > maxD)
            maxD = SUnits[su].getDepth();
        dbgs() << "Max Depth " << maxD << "\n";);
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  if (ViewMISchedDAGs) viewGraph();

  SchedImpl->initialize(this);

  // Release edges from the special Entry node or to the special Exit node.
  releaseSuccessors(&EntrySU);
  releasePredecessors(&ExitSU);

  // Release all DAG roots for scheduling.
  releaseRoots();

  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
  CurrentBottom = RegionEnd;
  bool IsTopNode = false;
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    if (!checkSchedLimit())
      break;

    // Move the instruction to its new location in the instruction stream.
    MachineInstr *MI = SU->getInstr();

    if (IsTopNode) {
      assert(SU->isTopReady() && "node still has unscheduled dependencies");
      if (&*CurrentTop == MI)
        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
      else {
        moveInstruction(MI, CurrentTop);
        TopRPTracker.setPos(MI);
      }

      // Update top scheduled pressure.
      TopRPTracker.advance();
      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);

      // Release dependent instructions for scheduling.
      releaseSuccessors(SU);
    } else {
      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
      MachineBasicBlock::iterator priorII =
        priorNonDebug(CurrentBottom, CurrentTop);
      if (&*priorII == MI)
        CurrentBottom = priorII;
      else {
        if (&*CurrentTop == MI) {
          CurrentTop = nextIfDebug(++CurrentTop, priorII);
          TopRPTracker.setPos(CurrentTop);
        }
        moveInstruction(MI, CurrentBottom);
        CurrentBottom = MI;
      }
      // Update bottom scheduled pressure.
      BotRPTracker.recede();
      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);

      // Release dependent instructions for scheduling.
      releasePredecessors(SU);
    }
    SU->isScheduled = true;
    SchedImpl->schedNode(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();
}

/// Reinsert any remaining debug_values, just like the PostRA scheduler.
void VLIWMachineScheduler::placeDebugValues() {
  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue) {
    BB->splice(RegionBegin, BB, FirstDbgValue);
    RegionBegin = FirstDbgValue;
  }

  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrevMI = P.second;
    BB->splice(++OrigPrevMI, BB, DbgValue);
    if (OrigPrevMI == llvm::prior(RegionEnd))
      RegionEnd = DbgValue;
  }
  DbgValues.clear();
  FirstDbgValue = NULL;
}

void ConvergingVLIWScheduler::initialize(VLIWMachineScheduler *dag) {
  DAG = dag;
  TRI = DAG->TRI;
  Top.DAG = dag;
  Bot.DAG = dag;

  // Initialize the HazardRecognizers.
  const TargetMachine &TM = DAG->MF.getTarget();
  const InstrItineraryData *Itin = TM.getInstrItineraryData();
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);

  Top.ResourceModel = new VLIWResourceModel(TM);
  Bot.ResourceModel = new VLIWResourceModel(TM);

  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
}

void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
#endif
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
  }
  Top.releaseNode(SU, SU->TopReadyCycle);
}

void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  assert(SU->getInstr() && "Scheduled SUnit must have instr");

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
#endif
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
  }
  Bot.releaseNode(SU, SU->BotReadyCycle);
}

/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled())
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;

  if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth())
    return true;

  return false;
}

void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
                                                     unsigned ReadyCycle) {
  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  if (ReadyCycle > CurrCycle || checkHazard(SU))

    Pending.push(SU);
  else
    Available.push(SU);
}

/// Move the boundary of scheduled code by one cycle.
void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
  unsigned Width = DAG->getIssueWidth();
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;

  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  } else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;

  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
        << CurrCycle << '\n');
}

/// Move the boundary of scheduled code by one SUnit.
void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
  bool startNewCycle = false;

  // Update the reservation table.
  if (HazardRec->isEnabled()) {
    if (!isTop() && SU->isCall) {
      // Calls are scheduled with their preceding instructions. For bottom-up
      // scheduling, clear the pipeline state before emitting.
      HazardRec->Reset();
    }
    HazardRec->EmitInstruction(SU);
  }

  // Update DFA model.
  startNewCycle = ResourceModel->reserveResources(SU);

  // Check the instruction group dispatch limit.
  // TODO: Check if this SU must end a dispatch group.
  IssueCount += DAG->getNumMicroOps(SU->getInstr());
  if (startNewCycle) {
    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    bumpCycle();
  }
  else
    DEBUG(dbgs() << "*** IssueCount " << IssueCount
          << " at cycle " << CurrCycle << '\n');
}

/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
  // If the available queue is empty, it is safe to reset MinReadyCycle.
  if (Available.empty())
    MinReadyCycle = UINT_MAX;

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    SUnit *SU = *(Pending.begin()+i);
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;

    if (ReadyCycle < MinReadyCycle)
      MinReadyCycle = ReadyCycle;

    if (ReadyCycle > CurrCycle)
      continue;

    if (checkHazard(SU))
      continue;

    Available.push(SU);
    Pending.remove(Pending.begin()+i);
    --i; --e;
  }
  CheckPending = false;
}

/// Remove SU from the ready set for this boundary.
void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
  if (Available.isInQueue(SU))
    Available.remove(Available.find(SU));
  else {
    assert(Pending.isInQueue(SU) && "bad ready count");
    Pending.remove(Pending.find(SU));
  }
}

/// If this queue only has one ready candidate, return it. As a side effect,
/// advance the cycle until at least one node is ready. If multiple instructions
/// are ready, return NULL.
SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
  if (CheckPending)
    releasePending();

  for (unsigned i = 0; Available.empty(); ++i) {
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
           "permanent hazard"); (void)i;
    bumpCycle();
    releasePending();
  }
  if (Available.size() == 1)
    return *Available.begin();
  return NULL;
}

#ifndef NDEBUG
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
                                             const ReadyQueue &Q,
                                             SUnit *SU, PressureElement P) {
  dbgs() << Label << " " << Q.getName() << " ";
  if (P.isValid())
    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
           << " ";
  else
    dbgs() << "     ";
  SU->dump(DAG);
}
#endif

/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
  SUnit *OnlyAvailablePred = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    SUnit &Pred = *I->getSUnit();
    if (!Pred.isScheduled) {
      // We found an available, but not scheduled, predecessor.  If it's the
      // only one we have found, keep track of it... otherwise give up.
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
        return 0;
      OnlyAvailablePred = &Pred;
    }
  }
  return OnlyAvailablePred;
}

/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
  SUnit *OnlyAvailableSucc = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    SUnit &Succ = *I->getSUnit();
    if (!Succ.isScheduled) {
      // We found an available, but not scheduled, successor.  If it's the
      // only one we have found, keep track of it... otherwise give up.
      if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
        return 0;
      OnlyAvailableSucc = &Succ;
    }
  }
  return OnlyAvailableSucc;
}

// Constants used to denote relative importance of
// heuristic components for cost computation.
static const unsigned PriorityOne = 200;
static const unsigned PriorityTwo = 100;
static const unsigned PriorityThree = 50;
static const unsigned PriorityFour = 20;
static const unsigned ScaleTwo = 10;
static const unsigned FactorOne = 2;

/// Single point to compute overall scheduling cost.
/// TODO: More heuristics will be used soon.
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
                                            SchedCandidate &Candidate,
                                            RegPressureDelta &Delta,
                                            bool verbose) {
  // Initial trivial priority.
  int ResCount = 1;

  // Do not waste time on a node that is already scheduled.
  if (!SU || SU->isScheduled)
    return ResCount;

  // Forced priority is high.
  if (SU->isScheduleHigh)
    ResCount += PriorityOne;

  // Critical path first.
  if (Q.getID() == TopQID) {
    ResCount += (SU->getHeight() * ScaleTwo);

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Top.ResourceModel->isResourceAvailable(SU))
      ResCount <<= FactorOne;
  } else {
    ResCount += (SU->getDepth() * ScaleTwo);

    // If resources are available for it, multiply the
    // chance of scheduling.
    if (Bot.ResourceModel->isResourceAvailable(SU))
      ResCount <<= FactorOne;
  }

  unsigned NumNodesBlocking = 0;
  if (Q.getID() == TopQID) {
    // How many SUs does it block from scheduling?
    // Look at all of the successors of this node.
    // Count the number of nodes that
    // this node is the sole unscheduled node for.
    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
         I != E; ++I)
      if (getSingleUnscheduledPred(I->getSUnit()) == SU)
        ++NumNodesBlocking;
  } else {
    // How many unscheduled predecessors block this node?
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I)
      if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
        ++NumNodesBlocking;
  }
  ResCount += (NumNodesBlocking * ScaleTwo);

  // Factor in reg pressure as a heuristic.
  ResCount -= (Delta.Excess.UnitIncrease*PriorityThree);
  ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree);

  DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");

  return ResCount;
}

/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
                  SchedCandidate &Candidate) {
  DEBUG(Q.dump());

  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  // BestSU remains NULL if no top candidates beat the best existing candidate.
  CandResult FoundCandidate = NoCand;
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    RegPressureDelta RPDelta;
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
                                    DAG->getRegionCriticalPSets(),
                                    DAG->getRegPressure().MaxSetPressure);

    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);

    // Initialize the candidate if needed.
    if (!Candidate.SU) {
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = NodeOrder;
      continue;
    }

    // Best cost.
    if (CurrentCost > Candidate.SCost) {
      DEBUG(traceCandidate("CCAND", Q, *I));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      Candidate.SCost = CurrentCost;
      FoundCandidate = BestCost;
      continue;
    }

    // Fall through to original instruction order.
    // Only consider node order if Candidate was chosen from this Q.
    if (FoundCandidate == NoCand)
      continue;
  }
  return FoundCandidate;
}

/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  SchedCandidate BotCand;
  // Prefer bottom scheduling when heuristics are silent.
  CandResult BotResult = pickNodeFromQueue(Bot.Available,
                                           DAG->getBotRPTracker(), BotCand);
  assert(BotResult != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that provides the least increase in
  // Excess pressure, we can immediately schedule from that Q.
  //
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
  // affects picking from either Q. If scheduling in one direction must
  // increase pressure for one of the excess PSets, then schedule in that
  // direction first to provide more freedom in the other direction.
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
    IsTopNode = false;
    return BotCand.SU;
  }
  // Check if the top Q has a better candidate.
  SchedCandidate TopCand;
  CandResult TopResult = pickNodeFromQueue(Top.Available,
                                           DAG->getTopRPTracker(), TopCand);
  assert(TopResult != NoCand && "failed to find the first candidate");

  if (TopResult == SingleExcess || TopResult == SingleCritical) {
    IsTopNode = true;
    return TopCand.SU;
  }
  // If either Q has a single candidate that minimizes pressure above the
  // original region's pressure pick it.
  if (BotResult == SingleMax) {
    IsTopNode = false;
    return BotCand.SU;
  }
  if (TopResult == SingleMax) {
    IsTopNode = true;
    return TopCand.SU;
  }
  if (TopCand.SCost > BotCand.SCost) {
    IsTopNode = true;
    return TopCand.SU;
  }
  // Otherwise prefer the bottom candidate in node order.
  IsTopNode = false;
  return BotCand.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return NULL;
  }
  SUnit *SU;
  if (ForceTopDown) {
    SU = Top.pickOnlyChoice();
    if (!SU) {
      SchedCandidate TopCand;
      CandResult TopResult =
        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
      assert(TopResult != NoCand && "failed to find the first candidate");
      (void)TopResult;
      SU = TopCand.SU;
    }
    IsTopNode = true;
  } else if (ForceBottomUp) {
    SU = Bot.pickOnlyChoice();
    if (!SU) {
      SchedCandidate BotCand;
      CandResult BotResult =
        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
      assert(BotResult != NoCand && "failed to find the first candidate");
      (void)BotResult;
      SU = BotCand.SU;
    }
    IsTopNode = false;
  } else {
    SU = pickNodeBidrectional(IsTopNode);
  }
  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
        << " Scheduling Instruction in cycle "
        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
        SU->dump(DAG));
  return SU;
}

/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
/// to update it's state based on the current cycle before MachineSchedStrategy
/// does.
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  if (IsTopNode) {
    SU->TopReadyCycle = Top.CurrCycle;
    Top.bumpNode(SU);
  } else {
    SU->BotReadyCycle = Bot.CurrCycle;
    Bot.bumpNode(SU);
  }
}