//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon instructions in TableGen format. // //===----------------------------------------------------------------------===// include "HexagonInstrFormats.td" include "HexagonImmediates.td" //===----------------------------------------------------------------------===// // Hexagon Instruction Predicate Definitions. //===----------------------------------------------------------------------===// def HasV2T : Predicate<"Subtarget.hasV2TOps()">; def HasV2TOnly : Predicate<"Subtarget.hasV2TOpsOnly()">; def NoV2T : Predicate<"!Subtarget.hasV2TOps()">; def HasV3T : Predicate<"Subtarget.hasV3TOps()">; def HasV3TOnly : Predicate<"Subtarget.hasV3TOpsOnly()">; def NoV3T : Predicate<"!Subtarget.hasV3TOps()">; def HasV4T : Predicate<"Subtarget.hasV4TOps()">; def NoV4T : Predicate<"!Subtarget.hasV4TOps()">; def HasV5T : Predicate<"Subtarget.hasV5TOps()">; def NoV5T : Predicate<"!Subtarget.hasV5TOps()">; def UseMEMOP : Predicate<"Subtarget.useMemOps()">; def IEEERndNearV5T : Predicate<"Subtarget.modeIEEERndNear()">; // Addressing modes. def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>; def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>; def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>; def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>; def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>; def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>; def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>; // Address operands. def MEMrr : Operand<i32> { let PrintMethod = "printMEMrrOperand"; let MIOperandInfo = (ops IntRegs, IntRegs); } // Address operands def MEMri : Operand<i32> { let PrintMethod = "printMEMriOperand"; let MIOperandInfo = (ops IntRegs, IntRegs); } def MEMri_s11_2 : Operand<i32>, ComplexPattern<i32, 2, "SelectMEMriS11_2", []> { let PrintMethod = "printMEMriOperand"; let MIOperandInfo = (ops IntRegs, s11Imm); } def FrameIndex : Operand<i32> { let PrintMethod = "printFrameIndexOperand"; let MIOperandInfo = (ops IntRegs, s11Imm); } let PrintMethod = "printGlobalOperand" in def globaladdress : Operand<i32>; let PrintMethod = "printJumpTable" in def jumptablebase : Operand<i32>; def brtarget : Operand<OtherVT>; def calltarget : Operand<i32>; def bblabel : Operand<i32>; def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">; def symbolHi32 : Operand<i32> { let PrintMethod = "printSymbolHi"; } def symbolLo32 : Operand<i32> { let PrintMethod = "printSymbolLo"; } // Multi-class for logical operators. multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> { def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")), [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b, (i32 IntRegs:$c)))]>; } // Multi-class for compare ops. let isCompare = 1 in { multiclass CMP64_rr<string OpcStr, PatFrag OpNode> { def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>; } multiclass CMP32_rr<string OpcStr, PatFrag OpNode> { def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; } multiclass CMP32_rr_ri_s10<string OpcStr, PatFrag OpNode> { def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Imm:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), s10ImmPred:$c))]>; } multiclass CMP32_rr_ri_u9<string OpcStr, PatFrag OpNode> { def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Imm:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), u9ImmPred:$c))]>; } multiclass CMP32_ri_u8<string OpcStr, PatFrag OpNode> { def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u8Imm:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), u8ImmPred:$c))]>; } multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> { def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Imm:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), s8ImmPred:$c))]>; } } //===----------------------------------------------------------------------===// // ALU32/ALU + //===----------------------------------------------------------------------===// // Add. let isCommutable = 1, isPredicable = 1 in def ADD_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = add($src1, $src2)", [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; let isPredicable = 1 in def ADD_ri : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Imm:$src2), "$dst = add($src1, #$src2)", [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), s16ImmPred:$src2))]>; // Logical operations. let isPredicable = 1 in def XOR_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = xor($src1, $src2)", [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; let isCommutable = 1, isPredicable = 1 in def AND_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = and($src1, $src2)", [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def OR_ri : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s10Imm:$src2), "$dst = or($src1, #$src2)", [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), s10ImmPred:$src2))]>; def NOT_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = not($src1)", [(set (i32 IntRegs:$dst), (not (i32 IntRegs:$src1)))]>; def AND_ri : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s10Imm:$src2), "$dst = and($src1, #$src2)", [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), s10ImmPred:$src2))]>; let isCommutable = 1, isPredicable = 1 in def OR_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = or($src1, $src2)", [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Negate. def NEG : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = neg($src1)", [(set (i32 IntRegs:$dst), (ineg (i32 IntRegs:$src1)))]>; // Nop. let neverHasSideEffects = 1 in def NOP : ALU32_rr<(outs), (ins), "nop", []>; // Subtract. let isPredicable = 1 in def SUB_rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = sub($src1, $src2)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Rd32=sub(#s10,Rs32) def SUB_ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$src1, IntRegs:$src2), "$dst = sub(#$src1, $src2)", [(set IntRegs:$dst, (sub s10ImmPred:$src1, IntRegs:$src2))]>; // Transfer immediate. let isMoveImm = 1, isReMaterializable = 1, isPredicable = 1 in def TFRI : ALU32_ri<(outs IntRegs:$dst), (ins s16Imm:$src1), "$dst = #$src1", [(set (i32 IntRegs:$dst), s16ImmPred:$src1)]>; // Transfer register. let neverHasSideEffects = 1, isPredicable = 1 in def TFR : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", []>; let neverHasSideEffects = 1, isPredicable = 1 in def TFR64 : ALU32_ri<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = $src1", []>; // Transfer control register. let neverHasSideEffects = 1 in def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", []>; //===----------------------------------------------------------------------===// // ALU32/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// // Combine. let isPredicable = 1, neverHasSideEffects = 1 in def COMBINE_rr : ALU32_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = combine($src1, $src2)", []>; let neverHasSideEffects = 1 in def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst), (ins s8Imm:$src1, s8Imm:$src2), "$dst = combine(#$src1, #$src2)", []>; // Mux. def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3), "$dst = vmux($src1, $src2, $src3)", []>; def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst = mux($src1, $src2, $src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), (i32 IntRegs:$src3))))]>; def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2, IntRegs:$src3), "$dst = mux($src1, #$src2, $src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s8ImmPred:$src2, (i32 IntRegs:$src3))))]>; def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), "$dst = mux($src1, $src2, #$src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s8ImmPred:$src3)))]>; def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2, s8Imm:$src3), "$dst = mux($src1, #$src2, #$src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s8ImmPred:$src2, s8ImmPred:$src3)))]>; // Shift halfword. let isPredicable = 1 in def ASLH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = aslh($src1)", [(set (i32 IntRegs:$dst), (shl 16, (i32 IntRegs:$src1)))]>; let isPredicable = 1 in def ASRH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = asrh($src1)", [(set (i32 IntRegs:$dst), (sra 16, (i32 IntRegs:$src1)))]>; // Sign extend. let isPredicable = 1 in def SXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = sxtb($src1)", [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i8))]>; let isPredicable = 1 in def SXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = sxth($src1)", [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i16))]>; // Zero extend. let isPredicable = 1, neverHasSideEffects = 1 in def ZXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = zxtb($src1)", []>; let isPredicable = 1, neverHasSideEffects = 1 in def ZXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = zxth($src1)", []>; //===----------------------------------------------------------------------===// // ALU32/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PRED + //===----------------------------------------------------------------------===// // Conditional add. let neverHasSideEffects = 1, isPredicated = 1 in def ADD_ri_cPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), "if ($src1) $dst = add($src2, #$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_ri_cNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), "if (!$src1) $dst = add($src2, #$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_ri_cdnPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), "if ($src1.new) $dst = add($src2, #$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_ri_cdnNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), "if (!$src1.new) $dst = add($src2, #$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_rr_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = add($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = add($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = add($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def ADD_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = add($src2, $src3)", []>; // Conditional combine. let neverHasSideEffects = 1, isPredicated = 1 in def COMBINE_rr_cPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = combine($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def COMBINE_rr_cNotPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = combine($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def COMBINE_rr_cdnPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = combine($src2, $src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def COMBINE_rr_cdnNotPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = combine($src2, $src3)", []>; // Conditional logical operations. let isPredicated = 1 in def XOR_rr_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = xor($src2, $src3)", []>; let isPredicated = 1 in def XOR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = xor($src2, $src3)", []>; let isPredicated = 1 in def XOR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = xor($src2, $src3)", []>; let isPredicated = 1 in def XOR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = xor($src2, $src3)", []>; let isPredicated = 1 in def AND_rr_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = and($src2, $src3)", []>; let isPredicated = 1 in def AND_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = and($src2, $src3)", []>; let isPredicated = 1 in def AND_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = and($src2, $src3)", []>; let isPredicated = 1 in def AND_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = and($src2, $src3)", []>; let isPredicated = 1 in def OR_rr_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = or($src2, $src3)", []>; let isPredicated = 1 in def OR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = or($src2, $src3)", []>; let isPredicated = 1 in def OR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = or($src2, $src3)", []>; let isPredicated = 1 in def OR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = or($src2, $src3)", []>; // Conditional subtract. let isPredicated = 1 in def SUB_rr_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1) $dst = sub($src2, $src3)", []>; let isPredicated = 1 in def SUB_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1) $dst = sub($src2, $src3)", []>; let isPredicated = 1 in def SUB_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if ($src1.new) $dst = sub($src2, $src3)", []>; let isPredicated = 1 in def SUB_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "if (!$src1.new) $dst = sub($src2, $src3)", []>; // Conditional transfer. let neverHasSideEffects = 1, isPredicated = 1 in def TFR_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if ($src1) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFR_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if (!$src1) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFR64_cPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2), "if ($src1) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFR64_cNotPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2), "if (!$src1) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFRI_cPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2), "if ($src1) $dst = #$src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFRI_cNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2), "if (!$src1) $dst = #$src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFR_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if ($src1.new) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFR_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if (!$src1.new) $dst = $src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFRI_cdnPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2), "if ($src1.new) $dst = #$src2", []>; let neverHasSideEffects = 1, isPredicated = 1 in def TFRI_cdnNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2), "if (!$src1.new) $dst = #$src2", []>; // Compare. defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", setugt>; defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", setgt>; defm CMPLT : CMP32_rr<"cmp.lt", setlt>; defm CMPLTU : CMP32_rr<"cmp.ltu", setult>; defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", seteq>; defm CMPGE : CMP32_ri_s8<"cmp.ge", setge>; defm CMPGEU : CMP32_ri_u8<"cmp.geu", setuge>; //===----------------------------------------------------------------------===// // ALU32/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/ALU + //===----------------------------------------------------------------------===// // Add. def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = add($src1, $src2)", [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Add halfword. // Compare. defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>; defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>; defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>; // Logical operations. def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = and($src1, $src2)", [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = or($src1, $src2)", [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = xor($src1, $src2)", [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Maximum. def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = max($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setlt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = maxu($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setult (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = max($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setlt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = maxu($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setult (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; // Minimum. def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = min($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setgt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = minu($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setugt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = min($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setgt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = minu($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setugt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; // Subtract. def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = sub($src1, $src2)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Subtract halfword. // Transfer register. let neverHasSideEffects = 1 in def TFR_64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = $src1", []>; //===----------------------------------------------------------------------===// // ALU64/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/BIT + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/PERM + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CR + //===----------------------------------------------------------------------===// // Logical reductions on predicates. // Looping instructions. // Pipelined looping instructions. // Logical operations on predicates. def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = and($src1, $src2)", [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; let neverHasSideEffects = 1 in def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = and($src1, !$src2)", []>; def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = any8($src1)", []>; def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = all8($src1)", []>; def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = vitpack($src1, $src2)", []>; def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = valignb($src1, $src2, $src3)", []>; def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = vspliceb($src1, $src2, $src3)", []>; def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1), "$dst = mask($src1)", []>; def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = not($src1)", [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>; def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = or($src1, $src2)", [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = xor($src1, $src2)", [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; // User control register transfer. //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // J + //===----------------------------------------------------------------------===// // Jump to address. let isBranch = 1, isTerminator=1, isBarrier = 1, isPredicable = 1 in { def JMP : JInst< (outs), (ins brtarget:$offset), "jump $offset", [(br bb:$offset)]>; } // if (p0) jump let isBranch = 1, isTerminator=1, Defs = [PC], isPredicated = 1 in { def JMP_c : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if ($src) jump $offset", [(brcond (i1 PredRegs:$src), bb:$offset)]>; } // if (!p0) jump let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def JMP_cNot : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if (!$src) jump $offset", []>; } let isTerminator = 1, isBranch = 1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def BRCOND : JInst < (outs), (ins PredRegs:$pred, brtarget:$dst), "if ($pred) jump $dst", []>; } // Jump to address conditioned on new predicate. // if (p0) jump:t let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def JMP_cdnPt : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if ($src.new) jump:t $offset", []>; } // if (!p0) jump:t let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def JMP_cdnNotPt : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if (!$src.new) jump:t $offset", []>; } // Not taken. let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def JMP_cdnPnt : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if ($src.new) jump:nt $offset", []>; } // Not taken. let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], isPredicated = 1 in { def JMP_cdnNotPnt : JInst< (outs), (ins PredRegs:$src, brtarget:$offset), "if (!$src.new) jump:nt $offset", []>; } //===----------------------------------------------------------------------===// // J - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // JR + //===----------------------------------------------------------------------===// def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; // Jump to address from register. let isPredicable =1, isReturn = 1, isTerminator = 1, isBarrier = 1, Defs = [PC], Uses = [R31] in { def JMPR: JRInst<(outs), (ins), "jumpr r31", [(retflag)]>; } // Jump to address from register. let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1, Defs = [PC], Uses = [R31] in { def JMPR_cPt: JRInst<(outs), (ins PredRegs:$src1), "if ($src1) jumpr r31", []>; } // Jump to address from register. let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1, Defs = [PC], Uses = [R31] in { def JMPR_cNotPt: JRInst<(outs), (ins PredRegs:$src1), "if (!$src1) jumpr r31", []>; } //===----------------------------------------------------------------------===// // JR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// /// /// Make sure that in post increment load, the first operand is always the post /// increment operand. /// // Load doubleword. let isPredicable = 1 in def LDrid : LDInst<(outs DoubleRegs:$dst), (ins MEMri:$addr), "$dst = memd($addr)", [(set (i64 DoubleRegs:$dst), (i64 (load ADDRriS11_3:$addr)))]>; let isPredicable = 1, AddedComplexity = 20 in def LDrid_indexed : LDInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, s11_3Imm:$offset), "$dst = memd($src1+#$offset)", [(set (i64 DoubleRegs:$dst), (i64 (load (add (i32 IntRegs:$src1), s11_3ImmPred:$offset))))]>; let neverHasSideEffects = 1 in def LDrid_GP : LDInst2<(outs DoubleRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memd(#$global+$offset)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDd_GP : LDInst2<(outs DoubleRegs:$dst), (ins globaladdress:$global), "$dst = memd(#$global)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDrid : LDInst2PI<(outs DoubleRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memd($src1++#$offset)", [], "$src1 = $dst2">; // Load doubleword conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_cPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memd($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_cNotPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memd($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_indexed_cPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), "if ($src1) $dst = memd($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_indexed_cNotPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), "if (!$src1) $dst = memd($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrid_cPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3), "if ($src1) $dst1 = memd($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrid_cNotPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3), "if (!$src1) $dst1 = memd($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_cdnPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memd($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_cdnNotPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memd($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_indexed_cdnPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), "if ($src1.new) $dst = memd($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrid_indexed_cdnNotPt : LDInst2<(outs DoubleRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), "if (!$src1.new) $dst = memd($src2+#$src3)", []>; // Load byte. let isPredicable = 1 in def LDrib : LDInst<(outs IntRegs:$dst), (ins MEMri:$addr), "$dst = memb($addr)", [(set (i32 IntRegs:$dst), (i32 (sextloadi8 ADDRriS11_0:$addr)))]>; // Load byte any-extend. def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), (i32 (LDrib ADDRriS11_0:$addr)) >; // Indexed load byte. let isPredicable = 1, AddedComplexity = 20 in def LDrib_indexed : LDInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s11_0Imm:$offset), "$dst = memb($src1+#$offset)", [(set (i32 IntRegs:$dst), (i32 (sextloadi8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset))))]>; // Indexed load byte any-extend. let AddedComplexity = 20 in def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >; let neverHasSideEffects = 1 in def LDrib_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memb(#$global+$offset)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDb_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = memb(#$global)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDub_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = memub(#$global)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDrib : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memb($src1++#$offset)", [], "$src1 = $dst2">; // Load byte conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memb($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memb($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_indexed_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if ($src1) $dst = memb($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if (!$src1) $dst = memb($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrib_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), "if ($src1) $dst1 = memb($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrib_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), "if (!$src1) $dst1 = memb($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memb($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memb($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if ($src1.new) $dst = memb($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrib_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if (!$src1.new) $dst = memb($src2+#$src3)", []>; // Load halfword. let isPredicable = 1 in def LDrih : LDInst<(outs IntRegs:$dst), (ins MEMri:$addr), "$dst = memh($addr)", [(set (i32 IntRegs:$dst), (i32 (sextloadi16 ADDRriS11_1:$addr)))]>; let isPredicable = 1, AddedComplexity = 20 in def LDrih_indexed : LDInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s11_1Imm:$offset), "$dst = memh($src1+#$offset)", [(set (i32 IntRegs:$dst), (i32 (sextloadi16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset))))]>; def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), (i32 (LDrih ADDRriS11_1:$addr))>; let AddedComplexity = 20 in def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >; let neverHasSideEffects = 1 in def LDrih_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memh(#$global+$offset)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDh_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = memh(#$global)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDuh_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = memuh(#$global)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDrih : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memh($src1++#$offset)", [], "$src1 = $dst2">; // Load halfword conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_indexed_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if ($src1) $dst = memh($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if (!$src1) $dst = memh($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrih_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), "if ($src1) $dst1 = memh($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDrih_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), "if (!$src1) $dst1 = memh($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if ($src1.new) $dst = memh($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDrih_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if (!$src1.new) $dst = memh($src2+#$src3)", []>; // Load unsigned byte. let isPredicable = 1 in def LDriub : LDInst<(outs IntRegs:$dst), (ins MEMri:$addr), "$dst = memub($addr)", [(set (i32 IntRegs:$dst), (i32 (zextloadi8 ADDRriS11_0:$addr)))]>; def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (LDriub ADDRriS11_0:$addr))>; let isPredicable = 1, AddedComplexity = 20 in def LDriub_indexed : LDInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s11_0Imm:$offset), "$dst = memub($src1+#$offset)", [(set (i32 IntRegs:$dst), (i32 (zextloadi8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset))))]>; let AddedComplexity = 20 in def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>; let neverHasSideEffects = 1 in def LDriub_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memub(#$global+$offset)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDriub : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memub($src1++#$offset)", [], "$src1 = $dst2">; // Load unsigned byte conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memub($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memub($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_indexed_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if ($src1) $dst = memub($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if (!$src1) $dst = memub($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriub_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), "if ($src1) $dst1 = memub($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriub_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), "if (!$src1) $dst1 = memub($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memub($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memub($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if ($src1.new) $dst = memub($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriub_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), "if (!$src1.new) $dst = memub($src2+#$src3)", []>; // Load unsigned halfword. let isPredicable = 1 in def LDriuh : LDInst<(outs IntRegs:$dst), (ins MEMri:$addr), "$dst = memuh($addr)", [(set (i32 IntRegs:$dst), (i32 (zextloadi16 ADDRriS11_1:$addr)))]>; // Indexed load unsigned halfword. let isPredicable = 1, AddedComplexity = 20 in def LDriuh_indexed : LDInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s11_1Imm:$offset), "$dst = memuh($src1+#$offset)", [(set (i32 IntRegs:$dst), (i32 (zextloadi16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset))))]>; let neverHasSideEffects = 1 in def LDriuh_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memuh(#$global+$offset)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDriuh : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memuh($src1++#$offset)", [], "$src1 = $dst2">; // Load unsigned halfword conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memuh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memuh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_indexed_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if ($src1) $dst = memuh($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if (!$src1) $dst = memuh($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriuh_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), "if ($src1) $dst1 = memuh($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriuh_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), "if (!$src1) $dst1 = memuh($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memuh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memuh($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if ($src1.new) $dst = memuh($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriuh_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), "if (!$src1.new) $dst = memuh($src2+#$src3)", []>; // Load word. let isPredicable = 1 in def LDriw : LDInst<(outs IntRegs:$dst), (ins MEMri:$addr), "$dst = memw($addr)", [(set IntRegs:$dst, (i32 (load ADDRriS11_2:$addr)))]>; // Load predicate. let Defs = [R10,R11,D5], neverHasSideEffects = 1 in def LDriw_pred : LDInst<(outs PredRegs:$dst), (ins MEMri:$addr), "Error; should not emit", []>; // Indexed load. let isPredicable = 1, AddedComplexity = 20 in def LDriw_indexed : LDInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s11_2Imm:$offset), "$dst = memw($src1+#$offset)", [(set IntRegs:$dst, (i32 (load (add IntRegs:$src1, s11_2ImmPred:$offset))))]>; let neverHasSideEffects = 1 in def LDriw_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global, u16Imm:$offset), "$dst = memw(#$global+$offset)", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def LDw_GP : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = memw(#$global)", []>, Requires<[NoV4T]>; let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in def POST_LDriw : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), (ins IntRegs:$src1, s4Imm:$offset), "$dst = memw($src1++#$offset)", [], "$src1 = $dst2">; // Load word conditionally. let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1) $dst = memw($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1) $dst = memw($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_indexed_cPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), "if ($src1) $dst = memw($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), "if (!$src1) $dst = memw($src2+#$src3)", []>; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriw_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3), "if ($src1) $dst1 = memw($src2++#$src3)", [], "$src2 = $dst2">; let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in def POST_LDriw_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3), "if (!$src1) $dst1 = memw($src2++#$src3)", [], "$src2 = $dst2">; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if ($src1.new) $dst = memw($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, MEMri:$addr), "if (!$src1.new) $dst = memw($addr)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), "if ($src1.new) $dst = memw($src2+#$src3)", []>; let neverHasSideEffects = 1, isPredicated = 1 in def LDriw_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), "if (!$src1.new) $dst = memw($src2+#$src3)", []>; // Deallocate stack frame. let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { def DEALLOCFRAME : LDInst2<(outs), (ins i32imm:$amt1), "deallocframe", []>; } // Load and unpack bytes to halfwords. //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYH + //===----------------------------------------------------------------------===// // Multiply and use lower result. // Rd=+mpyi(Rs,#u8) def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2), "$dst =+ mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), u8ImmPred:$src2))]>; // Rd=-mpyi(Rs,#u8) def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, n8Imm:$src2), "$dst =- mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), n8ImmPred:$src2))]>; // Rd=mpyi(Rs,#m9) // s9 is NOT the same as m9 - but it works.. so far. // Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8) // depending on the value of m9. See Arch Spec. def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Imm:$src2), "$dst = mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), s9ImmPred:$src2))]>; // Rd=mpyi(Rs,Rt) def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyi($src1, $src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Rx+=mpyi(Rs,#u8) def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3), "$dst += mpyi($src2, #$src3)", [(set (i32 IntRegs:$dst), (add (mul (i32 IntRegs:$src2), u8ImmPred:$src3), (i32 IntRegs:$src1)))], "$src1 = $dst">; // Rx+=mpyi(Rs,Rt) def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpyi($src2, $src3)", [(set (i32 IntRegs:$dst), (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))], "$src1 = $dst">; // Rx-=mpyi(Rs,#u8) def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3), "$dst -= mpyi($src2, #$src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2), u8ImmPred:$src3)))], "$src1 = $dst">; // Multiply and use upper result. // Rd=mpy(Rs,Rt.H):<<1:rnd:sat // Rd=mpy(Rs,Rt.L):<<1:rnd:sat // Rd=mpy(Rs,Rt) def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Rd=mpy(Rs,Rt):rnd // Rd=mpyu(Rs,Rt) def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyu($src1, $src2)", [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Multiply and use full result. // Rdd=mpyu(Rs,Rt) def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyu($src1, $src2)", [(set (i64 DoubleRegs:$dst), (mul (i64 (anyext (i32 IntRegs:$src1))), (i64 (anyext (i32 IntRegs:$src2)))))]>; // Rdd=mpy(Rs,Rt) def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i64 DoubleRegs:$dst), (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2)))))]>; // Multiply and accumulate, use full result. // Rxx[+-]=mpy(Rs,Rt) // Rxx+=mpy(Rs,Rt) def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpy($src2, $src3)", [(set (i64 DoubleRegs:$dst), (add (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))), (i64 DoubleRegs:$src1)))], "$src1 = $dst">; // Rxx-=mpy(Rs,Rt) def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst -= mpy($src2, $src3)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3))))))], "$src1 = $dst">; // Rxx[+-]=mpyu(Rs,Rt) // Rxx+=mpyu(Rs,Rt) def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpyu($src2, $src3)", [(set (i64 DoubleRegs:$dst), (add (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))), (i64 DoubleRegs:$src1)))], "$src1 = $dst">; // Rxx-=mpyu(Rs,Rt) def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpyu($src2, $src3)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3))))))], "$src1 = $dst">; def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += add($src2, $src3)", [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))], "$src1 = $dst">; def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, s8Imm:$src3), "$dst += add($src2, #$src3)", [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), s8ImmPred:$src3), (i32 IntRegs:$src1)))], "$src1 = $dst">; def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst -= add($src2, $src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">; def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, s8Imm:$src3), "$dst -= add($src2, #$src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), s8ImmPred:$src3)))], "$src1 = $dst">; //===----------------------------------------------------------------------===// // MTYPE/MPYH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ST + //===----------------------------------------------------------------------===// /// /// Assumptions::: ****** DO NOT IGNORE ******** /// 1. Make sure that in post increment store, the zero'th operand is always the /// post increment operand. /// 2. Make sure that the store value operand(Rt/Rtt) in a store is always the /// last operand. /// // Store doubleword. let isPredicable = 1 in def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), "memd($addr) = $src1", [(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr)]>; // Indexed store double word. let AddedComplexity = 10, isPredicable = 1 in def STrid_indexed : STInst<(outs), (ins IntRegs:$src1, s11_3Imm:$src2, DoubleRegs:$src3), "memd($src1+#$src2) = $src3", [(store (i64 DoubleRegs:$src3), (add (i32 IntRegs:$src1), s11_3ImmPred:$src2))]>; let neverHasSideEffects = 1 in def STrid_GP : STInst2<(outs), (ins globaladdress:$global, u16Imm:$offset, DoubleRegs:$src), "memd(#$global+$offset) = $src", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def STd_GP : STInst2<(outs), (ins globaladdress:$global, DoubleRegs:$src), "memd(#$global) = $src", []>, Requires<[NoV4T]>; let hasCtrlDep = 1, isPredicable = 1 in def POST_STdri : STInstPI<(outs IntRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, s4Imm:$offset), "memd($src2++#$offset) = $src1", [(set IntRegs:$dst, (post_store (i64 DoubleRegs:$src1), (i32 IntRegs:$src2), s4_3ImmPred:$offset))], "$src2 = $dst">; // Store doubleword conditionally. // if ([!]Pv) memd(Rs+#u6:3)=Rtt // if (Pv) memd(Rs+#u6:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1 in def STrid_cPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2), "if ($src1) memd($addr) = $src2", []>; // if (!Pv) memd(Rs+#u6:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1 in def STrid_cNotPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2), "if (!$src1) memd($addr) = $src2", []>; // if (Pv) memd(Rs+#u6:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1 in def STrid_indexed_cPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3, DoubleRegs:$src4), "if ($src1) memd($src2+#$src3) = $src4", []>; // if (!Pv) memd(Rs+#u6:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1 in def STrid_indexed_cNotPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3, DoubleRegs:$src4), "if (!$src1) memd($src2+#$src3) = $src4", []>; // if ([!]Pv) memd(Rx++#s4:3)=Rtt // if (Pv) memd(Rx++#s4:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1 in def POST_STdri_cPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3, s4_3Imm:$offset), "if ($src1) memd($src3++#$offset) = $src2", [], "$src3 = $dst">; // if (!Pv) memd(Rx++#s4:3)=Rtt let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1, isPredicated = 1 in def POST_STdri_cNotPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3, s4_3Imm:$offset), "if (!$src1) memd($src3++#$offset) = $src2", [], "$src3 = $dst">; // Store byte. // memb(Rs+#s11:0)=Rt let isPredicable = 1 in def STrib : STInst<(outs), (ins MEMri:$addr, IntRegs:$src1), "memb($addr) = $src1", [(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr)]>; let AddedComplexity = 10, isPredicable = 1 in def STrib_indexed : STInst<(outs), (ins IntRegs:$src1, s11_0Imm:$src2, IntRegs:$src3), "memb($src1+#$src2) = $src3", [(truncstorei8 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1), s11_0ImmPred:$src2))]>; // memb(gp+#u16:0)=Rt let neverHasSideEffects = 1 in def STrib_GP : STInst2<(outs), (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), "memb(#$global+$offset) = $src", []>, Requires<[NoV4T]>; // memb(#global)=Rt let neverHasSideEffects = 1 in def STb_GP : STInst2<(outs), (ins globaladdress:$global, IntRegs:$src), "memb(#$global) = $src", []>, Requires<[NoV4T]>; // memb(Rx++#s4:0)=Rt let hasCtrlDep = 1, isPredicable = 1 in def POST_STbri : STInstPI<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset), "memb($src2++#$offset) = $src1", [(set IntRegs:$dst, (post_truncsti8 (i32 IntRegs:$src1), (i32 IntRegs:$src2), s4_0ImmPred:$offset))], "$src2 = $dst">; // Store byte conditionally. // if ([!]Pv) memb(Rs+#u6:0)=Rt // if (Pv) memb(Rs+#u6:0)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrib_cPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if ($src1) memb($addr) = $src2", []>; // if (!Pv) memb(Rs+#u6:0)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrib_cNotPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if (!$src1) memb($addr) = $src2", []>; // if (Pv) memb(Rs+#u6:0)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrib_indexed_cPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4), "if ($src1) memb($src2+#$src3) = $src4", []>; // if (!Pv) memb(Rs+#u6:0)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrib_indexed_cNotPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4), "if (!$src1) memb($src2+#$src3) = $src4", []>; // if ([!]Pv) memb(Rx++#s4:0)=Rt // if (Pv) memb(Rx++#s4:0)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_STbri_cPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset), "if ($src1) memb($src3++#$offset) = $src2", [],"$src3 = $dst">; // if (!Pv) memb(Rx++#s4:0)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_STbri_cNotPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset), "if (!$src1) memb($src3++#$offset) = $src2", [],"$src3 = $dst">; // Store halfword. // memh(Rs+#s11:1)=Rt let isPredicable = 1 in def STrih : STInst<(outs), (ins MEMri:$addr, IntRegs:$src1), "memh($addr) = $src1", [(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr)]>; let AddedComplexity = 10, isPredicable = 1 in def STrih_indexed : STInst<(outs), (ins IntRegs:$src1, s11_1Imm:$src2, IntRegs:$src3), "memh($src1+#$src2) = $src3", [(truncstorei16 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1), s11_1ImmPred:$src2))]>; let neverHasSideEffects = 1 in def STrih_GP : STInst2<(outs), (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), "memh(#$global+$offset) = $src", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def STh_GP : STInst2<(outs), (ins globaladdress:$global, IntRegs:$src), "memh(#$global) = $src", []>, Requires<[NoV4T]>; // memh(Rx++#s4:1)=Rt.H // memh(Rx++#s4:1)=Rt let hasCtrlDep = 1, isPredicable = 1 in def POST_SThri : STInstPI<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset), "memh($src2++#$offset) = $src1", [(set IntRegs:$dst, (post_truncsti16 (i32 IntRegs:$src1), (i32 IntRegs:$src2), s4_1ImmPred:$offset))], "$src2 = $dst">; // Store halfword conditionally. // if ([!]Pv) memh(Rs+#u6:1)=Rt // if (Pv) memh(Rs+#u6:1)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrih_cPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if ($src1) memh($addr) = $src2", []>; // if (!Pv) memh(Rs+#u6:1)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrih_cNotPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if (!$src1) memh($addr) = $src2", []>; // if (Pv) memh(Rs+#u6:1)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrih_indexed_cPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4), "if ($src1) memh($src2+#$src3) = $src4", []>; // if (!Pv) memh(Rs+#u6:1)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STrih_indexed_cNotPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4), "if (!$src1) memh($src2+#$src3) = $src4", []>; // if ([!]Pv) memh(Rx++#s4:1)=Rt // if (Pv) memh(Rx++#s4:1)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_SThri_cPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset), "if ($src1) memh($src3++#$offset) = $src2", [],"$src3 = $dst">; // if (!Pv) memh(Rx++#s4:1)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_SThri_cNotPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset), "if (!$src1) memh($src3++#$offset) = $src2", [],"$src3 = $dst">; // Store word. // Store predicate. let Defs = [R10,R11,D5], neverHasSideEffects = 1 in def STriw_pred : STInst2<(outs), (ins MEMri:$addr, PredRegs:$src1), "Error; should not emit", []>; // memw(Rs+#s11:2)=Rt let isPredicable = 1 in def STriw : STInst<(outs), (ins MEMri:$addr, IntRegs:$src1), "memw($addr) = $src1", [(store (i32 IntRegs:$src1), ADDRriS11_2:$addr)]>; let AddedComplexity = 10, isPredicable = 1 in def STriw_indexed : STInst<(outs), (ins IntRegs:$src1, s11_2Imm:$src2, IntRegs:$src3), "memw($src1+#$src2) = $src3", [(store (i32 IntRegs:$src3), (add (i32 IntRegs:$src1), s11_2ImmPred:$src2))]>; let neverHasSideEffects = 1 in def STriw_GP : STInst2<(outs), (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), "memw(#$global+$offset) = $src", []>, Requires<[NoV4T]>; let neverHasSideEffects = 1 in def STw_GP : STInst2<(outs), (ins globaladdress:$global, IntRegs:$src), "memw(#$global) = $src", []>, Requires<[NoV4T]>; let hasCtrlDep = 1, isPredicable = 1 in def POST_STwri : STInstPI<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset), "memw($src2++#$offset) = $src1", [(set IntRegs:$dst, (post_store (i32 IntRegs:$src1), (i32 IntRegs:$src2), s4_2ImmPred:$offset))], "$src2 = $dst">; // Store word conditionally. // if ([!]Pv) memw(Rs+#u6:2)=Rt // if (Pv) memw(Rs+#u6:2)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STriw_cPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if ($src1) memw($addr) = $src2", []>; // if (!Pv) memw(Rs+#u6:2)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STriw_cNotPt : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), "if (!$src1) memw($addr) = $src2", []>; // if (Pv) memw(Rs+#u6:2)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STriw_indexed_cPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4), "if ($src1) memw($src2+#$src3) = $src4", []>; // if (!Pv) memw(Rs+#u6:2)=Rt let neverHasSideEffects = 1, isPredicated = 1 in def STriw_indexed_cNotPt : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4), "if (!$src1) memw($src2+#$src3) = $src4", []>; // if ([!]Pv) memw(Rx++#s4:2)=Rt // if (Pv) memw(Rx++#s4:2)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_STwri_cPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset), "if ($src1) memw($src3++#$offset) = $src2", [],"$src3 = $dst">; // if (!Pv) memw(Rx++#s4:2)=Rt let hasCtrlDep = 1, isPredicated = 1 in def POST_STwri_cNotPt : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset), "if (!$src1) memw($src3++#$offset) = $src2", [],"$src3 = $dst">; // Allocate stack frame. let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in { def ALLOCFRAME : STInst2<(outs), (ins i32imm:$amt), "allocframe(#$amt)", []>; } //===----------------------------------------------------------------------===// // ST - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/ALU + //===----------------------------------------------------------------------===// // Logical NOT. def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = not($src1)", [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; // Sign extend word to doubleword. def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1), "$dst = sxtw($src1)", [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/BIT + //===----------------------------------------------------------------------===// // clrbit. def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = clrbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), (not (shl 1, u5ImmPred:$src2))))]>; def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = clrbit($src1, #$src2)", []>; // Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31). def : Pat <(and (i32 IntRegs:$src1), 2147483647), (CLRBIT_31 (i32 IntRegs:$src1), 31)>; // setbit. def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), (shl 1, u5ImmPred:$src2)))]>; // Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31). def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", []>; def : Pat <(or (i32 IntRegs:$src1), -2147483648), (SETBIT_31 (i32 IntRegs:$src1), 31)>; // togglebit. def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), (shl 1, u5ImmPred:$src2)))]>; // Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31). def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = togglebit($src1, #$src2)", []>; def : Pat <(xor (i32 IntRegs:$src1), -2147483648), (TOGBIT_31 (i32 IntRegs:$src1), 31)>; // Predicate transfer. let neverHasSideEffects = 1 in def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1), "$dst = $src1 /* Should almost never emit this. */", []>; def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), "$dst = $src1 /* Should almost never emit this. */", [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/SHIFT + //===----------------------------------------------------------------------===// // Shift by immediate. def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = asr($src1, #$src2)", [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = asr($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = asl($src1, #$src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = asl($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = lsr($src1, #$src2)", [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = lsr($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; // Shift by immediate and add. let AddedComplexity = 100 in def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u3Imm:$src3), "$dst = addasl($src1, $src2, #$src3)", [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), (shl (i32 IntRegs:$src2), u3ImmPred:$src3)))]>; // Shift by register. def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = asl($src1, $src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = asr($src1, $src2)", [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = lsl($src1, $src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = lsr($src1, $src2)", [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = asl($src1, $src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = lsl($src1, $src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = asr($src1, $src2)", [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = lsr($src1, $src2)", [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; //===----------------------------------------------------------------------===// // STYPE/SHIFT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/SUPER + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/USER + //===----------------------------------------------------------------------===// def SDHexagonBARRIER: SDTypeProfile<0, 0, []>; def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER, [SDNPHasChain]>; let hasSideEffects = 1, isHexagonSolo = 1 in def BARRIER : SYSInst<(outs), (ins), "barrier", [(HexagonBARRIER)]>; //===----------------------------------------------------------------------===// // SYSTEM/SUPER - //===----------------------------------------------------------------------===// // TFRI64 - assembly mapped. let isReMaterializable = 1 in def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), "$dst = #$src1", [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; // Pseudo instruction to encode a set of conditional transfers. // This instruction is used instead of a mux and trades-off codesize // for performance. We conduct this transformation optimistically in // the hope that these instructions get promoted to dot-new transfers. let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), (i32 IntRegs:$src3))))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s12ImmPred:$src3)))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, (i32 IntRegs:$src3))))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, s12ImmPred:$src3)))]>; // Generate frameindex addresses. let isReMaterializable = 1 in def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), "$dst = add($src1)", [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; // // CR - Type. // let neverHasSideEffects = 1, Defs = [SA0, LC0] in { def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2), "loop0($offset, #$src2)", []>; } let neverHasSideEffects = 1, Defs = [SA0, LC0] in { def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2), "loop0($offset, $src2)", []>; } let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1, Defs = [PC, LC0], Uses = [SA0, LC0] in { def ENDLOOP0 : Marker<(outs), (ins brtarget:$offset), ":endloop0", []>; } // Support for generating global address. // Taken from X86InstrInfo.td. def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; // HI/LO Instructions let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.l = #LO($global)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.h = #HI($global)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.l = #LO($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.h = #HI($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.l = #LO($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.h = #HI($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.l = #LO($label)", []>; let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.h = #HI($label)", []>; // This pattern is incorrect. When we add small data, we should change // this pattern to use memw(#foo). // This is for sdata. let isMoveImm = 1 in def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; // This is for non-sdata. let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst = CONST32(#$jt)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tjumptable:$jt))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32_GP tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), imm:$global) ]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), "$dst = CONST32($label)", [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), "$dst = CONST64(#$global)", [(set (i64 DoubleRegs:$dst), imm:$global) ]>; def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)", [(set (i1 PredRegs:$dst), 0)]>; def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i32 IntRegs:$dst), (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2))))), (i32 32)))))]>; // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def call : SDNode<"HexagonISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, // Optional Flag and Variable Arguments. // Its 1 Operand has pointer type. def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Defs = [R29, R30], Uses = [R31, R30, R29] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "Should never be emitted", [(callseq_start timm:$amt)]>; } let Defs = [R29, R30, R31], Uses = [R29] in { def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "Should never be emitted", [(callseq_end timm:$amt1, timm:$amt2)]>; } // Call subroutine. let isCall = 1, neverHasSideEffects = 1, Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { def CALL : JInst<(outs), (ins calltarget:$dst), "call $dst", []>; } // Call subroutine from register. let isCall = 1, neverHasSideEffects = 1, Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { def CALLR : JRInst<(outs), (ins IntRegs:$dst), "callr $dst", []>; } // Tail Calls. let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), "jump $dst // TAILCALL", []>; } let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), "jump $dst // TAILCALL", []>; } let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { def TCRETURNR : JInst<(outs), (ins IntRegs:$dst), "jumpr $dst // TAILCALL", []>; } // Map call instruction. def : Pat<(call (i32 IntRegs:$dst)), (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; //Tail calls. def : Pat<(HexagonTCRet tglobaladdr:$dst), (TCRETURNtg tglobaladdr:$dst)>; def : Pat<(HexagonTCRet texternalsym:$dst), (TCRETURNtext texternalsym:$dst)>; def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), (TCRETURNR (i32 IntRegs:$dst))>; // Atomic load and store support // 8 bit atomic load def : Pat<(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)), (i32 (LDub_GP tglobaladdr:$global))>, Requires<[NoV4T]>; def : Pat<(atomic_load_8 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; def : Pat<(atomic_load_8 ADDRriS11_0:$src1), (i32 (LDriub ADDRriS11_0:$src1))>; def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; // 16 bit atomic load def : Pat<(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)), (i32 (LDuh_GP tglobaladdr:$global))>, Requires<[NoV4T]>; def : Pat<(atomic_load_16 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; def : Pat<(atomic_load_16 ADDRriS11_1:$src1), (i32 (LDriuh ADDRriS11_1:$src1))>; def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; // 32 bit atomic load def : Pat<(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)), (i32 (LDw_GP tglobaladdr:$global))>, Requires<[NoV4T]>; def : Pat<(atomic_load_32 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; def : Pat<(atomic_load_32 ADDRriS11_2:$src1), (i32 (LDriw ADDRriS11_2:$src1))>; def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; // 64 bit atomic load def : Pat<(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)), (i64 (LDd_GP tglobaladdr:$global))>, Requires<[NoV4T]>; def : Pat<(atomic_load_64 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; def : Pat<(atomic_load_64 ADDRriS11_3:$src1), (i64 (LDrid ADDRriS11_3:$src1))>; def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; // 64 bit atomic store def : Pat<(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global), (i64 DoubleRegs:$src1)), (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_64 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset), (i64 DoubleRegs:$src1)), (STrid_GP tglobaladdr:$global, u16ImmPred:$offset, (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; // 8 bit atomic store def : Pat<(atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global), (i32 IntRegs:$src1)), (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_8 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset), (i32 IntRegs:$src1)), (STrib_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), (i32 IntRegs:$src1)), (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset, (i32 IntRegs:$src1))>; // 16 bit atomic store def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global), (i32 IntRegs:$src1)), (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_16 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset), (i32 IntRegs:$src1)), (STrih_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_16 (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset, (i32 IntRegs:$src1))>; // 32 bit atomic store def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global), (i32 IntRegs:$src1)), (STw_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_32 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset), (i32 IntRegs:$src1)), (STriw_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), (i32 IntRegs:$src1)), (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>; def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), (i64 DoubleRegs:$src1)), (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset, (i64 DoubleRegs:$src1))>; // Map from r0 = and(r1, 65535) to r0 = zxth(r1) def : Pat <(and (i32 IntRegs:$src1), 65535), (ZXTH (i32 IntRegs:$src1))>; // Map from r0 = and(r1, 255) to r0 = zxtb(r1). def : Pat <(and (i32 IntRegs:$src1), 255), (ZXTB (i32 IntRegs:$src1))>; // Map Add(p1, true) to p1 = not(p1). // Add(p1, false) should never be produced, // if it does, it got to be mapped to NOOP. def : Pat <(add (i1 PredRegs:$src1), -1), (NOT_p (i1 PredRegs:$src1))>; // Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) => // p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1). def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i32 IntRegs:$src3), (i32 IntRegs:$src4)), (i32 (TFR_condset_rr (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>, Requires<[HasV2TOnly]>; // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, s8ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) // => r0 = TFR_condset_ri(p0, r1, #i) def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, (i32 IntRegs:$src3)), (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), s12ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) // => r0 = TFR_condset_ir(p0, #i, r1) def : Pat <(select (not PredRegs:$src1), IntRegs:$src2, s12ImmPred:$src3), (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, (i32 IntRegs:$src2)))>; // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. def : Pat <(brcond (not PredRegs:$src1), bb:$offset), (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>; // Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). def : Pat <(and PredRegs:$src1, (not PredRegs:$src2)), (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; // Map from store(globaladdress + x) -> memd(#foo + x). let AddedComplexity = 100 in def : Pat <(store (i64 DoubleRegs:$src1), (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (STrid_GP tglobaladdr:$global, u16ImmPred:$offset, (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress) -> memd(#foo). let AddedComplexity = 100 in def : Pat <(store (i64 DoubleRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress + x) -> memw(#foo + x). let AddedComplexity = 100 in def : Pat <(store (i32 IntRegs:$src1), (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (STriw_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress) -> memw(#foo + 0). let AddedComplexity = 100 in def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>; // Map from store(globaladdress) -> memw(#foo). let AddedComplexity = 100 in def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress + x) -> memh(#foo + x). let AddedComplexity = 100 in def : Pat <(truncstorei16 (i32 IntRegs:$src1), (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (STrih_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress) -> memh(#foo). let AddedComplexity = 100 in def : Pat <(truncstorei16 (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress + x) -> memb(#foo + x). let AddedComplexity = 100 in def : Pat <(truncstorei8 (i32 IntRegs:$src1), (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset)), (STrib_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from store(globaladdress) -> memb(#foo). let AddedComplexity = 100 in def : Pat <(truncstorei8 (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memw(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (load (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memw(#foo). let AddedComplexity = 100 in def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDw_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memd(#foo + x). let AddedComplexity = 100 in def : Pat <(i64 (load (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memw(#foo + 0). let AddedComplexity = 100 in def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))), (i64 (LDd_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd. let AddedComplexity = 100 in def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))), (i1 (TFR_PdRs (i32 (LDb_GP tglobaladdr:$global))))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memh(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (extloadi16 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDrih_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memh(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDrih_GP tglobaladdr:$global, 0))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memuh(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (zextloadi16 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memuh(#foo). let AddedComplexity = 100 in def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDriuh_GP tglobaladdr:$global, 0))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memh(#foo). let AddedComplexity = 100 in def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDh_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memuh(#foo). let AddedComplexity = 100 in def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDuh_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memb(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (extloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memb(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (sextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress + x) -> memub(#foo + x). let AddedComplexity = 100 in def : Pat <(i32 (zextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), u16ImmPred:$offset))), (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memb(#foo). let AddedComplexity = 100 in def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDb_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memb(#foo). let AddedComplexity = 100 in def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDb_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from load(globaladdress) -> memub(#foo). let AddedComplexity = 100 in def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDub_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // When the Interprocedural Global Variable optimizer realizes that a // certain global variable takes only two constant values, it shrinks the // global to a boolean. Catch those loads here in the following 3 patterns. let AddedComplexity = 100 in def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDb_GP tglobaladdr:$global))>, Requires<[NoV4T]>; let AddedComplexity = 100 in def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDb_GP tglobaladdr:$global))>, Requires<[NoV4T]>; let AddedComplexity = 100 in def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))), (i32 (LDub_GP tglobaladdr:$global))>, Requires<[NoV4T]>; // Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>; // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // We want to prevent emitting pnot's as much as possible. // Map brcond with an unsupported setcc to a JMP_cNot. def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_cNot (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), bb:$offset), (JMP_cNot (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), (JMP_c (i1 PredRegs:$src1), bb:$offset)>; def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset), (JMP_cNot (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2), bb:$offset)>; def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_c (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_cNot (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), bb:$offset)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src3)), (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_hireg)))), (i32 (MUX_rr (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_loreg))))))>; // Map from a 1-bit select to logical ops. // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)), (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)), (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; // Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. def : Pat<(i1 (load ADDRriS11_2:$addr)), (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>; // Map for truncating from 64 immediates to 32 bit immediates. def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; // Map for truncating from i64 immediates to i1 bit immediates. def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))))>; // Map memb(Rs) = Rdd -> memb(Rs) = Rt. def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memh(Rs) = Rdd -> memh(Rs) = Rt. def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt. def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (TFRI 1))>; let AddedComplexity = 100 in // Map from i1 = constant<-1>; memw(CONST32(#foo)) = i1 -> r0 = 1; // memw(#foo) = r0 def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)), (STb_GP tglobaladdr:$global, (TFRI 1))>, Requires<[NoV4T]>; // Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (TFRI 1))>; // Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>; // Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs). // Hexagon_TODO: We can probably use combine but that will cost 2 instructions. // Better way to do this? def : Pat<(i64 (anyext (i32 IntRegs:$src1))), (i64 (SXTW (i32 IntRegs:$src1)))>; // Map cmple -> cmpgt. // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ImmPred:$src2)), (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ImmPred:$src2)))>; // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Rss <= Rtt -> !(Rss > Rtt). def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Map cmpne -> cmpeq. // Hexagon_TODO: We should improve on this. // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2))))>; // Map cmpne(Rs) -> !cmpeqe(Rs). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; // Convert setne back to xor for hexagon since we compute w/ pred registers. def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; // Map cmpne(Rss) -> !cmpew(Rss). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))))>; // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ImmPred:$src2)), (i1 (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2))>; // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). // rss >= rtt -> !(rtt > rss). def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))))>; // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). // rs < rt -> !(rs >= rt). def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), (i1 (NOT_p (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2)))>; // Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). // rss < rtt -> (rtt > rss). def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). // rs < rt -> rt > rs. def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Generate cmpgeu(Rs, #u8) def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ImmPred:$src2)), (i1 (CMPGEUri (i32 IntRegs:$src1), u8ImmPred:$src2))>; // Generate cmpgtu(Rs, #u9) def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)), (i1 (CMPGTUri (i32 IntRegs:$src1), u9ImmPred:$src2))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; // Map from cmpleu(Rs, Rs) -> !cmpgtu(Rs, Rs). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Sign extends. // i1 -> i32 def : Pat <(i32 (sext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>; // i1 -> i64 def : Pat <(i64 (sext (i1 PredRegs:$src1))), (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>; // Convert sign-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; // Convert any-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; // Convert sign-extended load back to load and sign extend. // i16 -> i64 def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>; // Convert sign-extended load back to load and sign extend. // i32 -> i64 def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>; // Zero extends. // i1 -> i32 def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // i1 -> i64 def : Pat <(i64 (zext (i1 PredRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>; // i32 -> i64 def : Pat <(i64 (zext (i32 IntRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>; // i8 -> i64 def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>; // i16 -> i64 def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>; // i32 -> i64 def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>; def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), (i32 (LDriw ADDRriS11_0:$src1))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (anyext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) def : Pat <(i64 (anyext (i1 PredRegs:$src1))), (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>; // Any extended 64-bit load. // anyext i32 -> i64 def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>; // anyext i16 -> i64. def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>; // Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). def : Pat<(i64 (zext (i32 IntRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>; // Multiply 64-bit unsigned and use upper result. def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (MPYU64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64_acc (i64 (MPYU64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Multiply 64-bit signed and use upper result. def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (MPY64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPY64_acc (i64 (MPY64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Hexagon specific ISD nodes. //def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", SDTHexagonADJDYNALLOC>; // Needed to tag these instructions for stack layout. let usesCustomInserter = 1 in def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Imm:$src2), "$dst = add($src1, #$src2)", [(set (i32 IntRegs:$dst), (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), s16ImmPred:$src2))]>; def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", [(set (i32 IntRegs:$dst), (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; let AddedComplexity = 100 in def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), (COPY (i32 IntRegs:$src1))>; def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in def BR_JT : JRInst<(outs), (ins IntRegs:$src), "jumpr $src", [(HexagonBR_JT (i32 IntRegs:$src))]>; def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; def : Pat<(HexagonWrapperJT tjumptable:$dst), (i32 (CONST32_set_jt tjumptable:$dst))>; // XTYPE/SHIFT // Multi-class for logical operators : // Shift by immediate/register and accumulate/logical multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> { def _ri : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), [(set (i32 IntRegs:$dst), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$src2), u5ImmPred:$src3)))], "$src1 = $dst">; def d_ri : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))], "$src1 = $dst">; } // Multi-class for logical operators : // Shift by register and accumulate/logical (32/64 bits) multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> { def _rr : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), [(set (i32 IntRegs:$dst), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">; def d_rr : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">; } multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> { let AddedComplexity = 100 in defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>; defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>; defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>; defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>; } multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> { let AddedComplexity = 100 in defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>; defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>; defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>; defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>; } multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> { let AddedComplexity = 100 in defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>; } defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>, xtype_xor_imm<"asl", shl>; defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>, xtype_xor_imm<"lsr", srl>; defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>; defm LSL : basic_xtype_reg<"lsl", shl>; // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>; //===----------------------------------------------------------------------===// // V3 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV3.td" //===----------------------------------------------------------------------===// // V3 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V4 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV4.td" //===----------------------------------------------------------------------===// // V4 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V5 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV5.td" //===----------------------------------------------------------------------===// // V5 Instructions - //===----------------------------------------------------------------------===//