//===-- SPUOperands.td - Cell SPU Instruction Operands -----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Cell SPU Instruction Operands: //===----------------------------------------------------------------------===// // TO_IMM32 - Convert an i8/i16 to i32. def TO_IMM32 : SDNodeXForm<imm, [{ return getI32Imm(N->getZExtValue()); }]>; // TO_IMM16 - Convert an i8/i32 to i16. def TO_IMM16 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(N->getZExtValue(), MVT::i16); }]>; def LO16 : SDNodeXForm<imm, [{ unsigned val = N->getZExtValue(); // Transformation function: get the low 16 bits. return getI32Imm(val & 0xffff); }]>; def LO16_vec : SDNodeXForm<scalar_to_vector, [{ SDValue OpVal(0, 0); // Transformation function: get the low 16 bit immediate from a build_vector // node. assert(N->getOpcode() == ISD::BUILD_VECTOR && "LO16_vec got something other than a BUILD_VECTOR"); // Get first constant operand... for (unsigned i = 0, e = N->getNumOperands(); OpVal.getNode() == 0 && i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (OpVal.getNode() == 0) OpVal = N->getOperand(i); } assert(OpVal.getNode() != 0 && "LO16_vec did not locate a <defined> node"); ConstantSDNode *CN = cast<ConstantSDNode>(OpVal); return getI32Imm((unsigned)CN->getZExtValue() & 0xffff); }]>; // Transform an immediate, returning the high 16 bits shifted down: def HI16 : SDNodeXForm<imm, [{ return getI32Imm((unsigned)N->getZExtValue() >> 16); }]>; // Transformation function: shift the high 16 bit immediate from a build_vector // node into the low 16 bits, and return a 16-bit constant. def HI16_vec : SDNodeXForm<scalar_to_vector, [{ SDValue OpVal(0, 0); assert(N->getOpcode() == ISD::BUILD_VECTOR && "HI16_vec got something other than a BUILD_VECTOR"); // Get first constant operand... for (unsigned i = 0, e = N->getNumOperands(); OpVal.getNode() == 0 && i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (OpVal.getNode() == 0) OpVal = N->getOperand(i); } assert(OpVal.getNode() != 0 && "HI16_vec did not locate a <defined> node"); ConstantSDNode *CN = cast<ConstantSDNode>(OpVal); return getI32Imm((unsigned)CN->getZExtValue() >> 16); }]>; // simm7 predicate - True if the immediate fits in an 7-bit signed // field. def simm7: PatLeaf<(imm), [{ int sextVal = int(N->getSExtValue()); return (sextVal >= -64 && sextVal <= 63); }]>; // uimm7 predicate - True if the immediate fits in an 7-bit unsigned // field. def uimm7: PatLeaf<(imm), [{ return (N->getZExtValue() <= 0x7f); }]>; // immSExt8 predicate - True if the immediate fits in an 8-bit sign extended // field. def immSExt8 : PatLeaf<(imm), [{ int Value = int(N->getSExtValue()); return (Value >= -(1 << 8) && Value <= (1 << 8) - 1); }]>; // immU8: immediate, unsigned 8-bit quantity def immU8 : PatLeaf<(imm), [{ return (N->getZExtValue() <= 0xff); }]>; // i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign // extended field. Used by RI10Form instructions like 'ldq'. def i32ImmSExt10 : PatLeaf<(imm), [{ return isI32IntS10Immediate(N); }]>; // i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned // field. Used by RI10Form instructions like 'ldq'. def i32ImmUns10 : PatLeaf<(imm), [{ return isI32IntU10Immediate(N); }]>; // i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign // extended field. Used by RI10Form instructions like 'ldq'. def i16ImmSExt10 : PatLeaf<(imm), [{ return isI16IntS10Immediate(N); }]>; // i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned // value. Used by RI10Form instructions. def i16ImmUns10 : PatLeaf<(imm), [{ return isI16IntU10Immediate(N); }]>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended // field. short Ignored; return isIntS16Immediate(N, Ignored); }]>; def immZExt16 : PatLeaf<(imm), [{ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended // field. return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; def immU16 : PatLeaf<(imm), [{ // immU16 predicate- True if the immediate fits into a 16-bit unsigned field. return (uint64_t)N->getZExtValue() == (N->getZExtValue() & 0xffff); }]>; def imm18 : PatLeaf<(imm), [{ // imm18 predicate: True if the immediate fits into an 18-bit unsigned field. int Value = (int) N->getZExtValue(); return isUInt<18>(Value); }]>; def lo16 : PatLeaf<(imm), [{ // lo16 predicate - returns true if the immediate has all zeros in the // low order bits and is a 32-bit constant: if (N->getValueType(0) == MVT::i32) { uint32_t val = N->getZExtValue(); return ((val & 0x0000ffff) == val); } return false; }], LO16>; def hi16 : PatLeaf<(imm), [{ // hi16 predicate - returns true if the immediate has all zeros in the // low order bits and is a 32-bit constant: if (N->getValueType(0) == MVT::i32) { uint32_t val = uint32_t(N->getZExtValue()); return ((val & 0xffff0000) == val); } else if (N->getValueType(0) == MVT::i64) { uint64_t val = N->getZExtValue(); return ((val & 0xffff0000ULL) == val); } return false; }], HI16>; def bitshift : PatLeaf<(imm), [{ // bitshift predicate - returns true if 0 < imm <= 7 for SHLQBII // (shift left quadword by bits immediate) int64_t Val = N->getZExtValue(); return (Val > 0 && Val <= 7); }]>; //===----------------------------------------------------------------------===// // Floating point operands: //===----------------------------------------------------------------------===// // Transform a float, returning the high 16 bits shifted down, as if // the float was really an unsigned integer: def HI16_f32 : SDNodeXForm<fpimm, [{ float fval = N->getValueAPF().convertToFloat(); return getI32Imm(FloatToBits(fval) >> 16); }]>; // Transformation function on floats: get the low 16 bits as if the float was // an unsigned integer. def LO16_f32 : SDNodeXForm<fpimm, [{ float fval = N->getValueAPF().convertToFloat(); return getI32Imm(FloatToBits(fval) & 0xffff); }]>; def FPimm_sext16 : SDNodeXForm<fpimm, [{ float fval = N->getValueAPF().convertToFloat(); return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16)); }]>; def FPimm_u18 : SDNodeXForm<fpimm, [{ float fval = N->getValueAPF().convertToFloat(); return getI32Imm(FloatToBits(fval) & ((1 << 18) - 1)); }]>; def fpimmSExt16 : PatLeaf<(fpimm), [{ short Ignored; return isFPS16Immediate(N, Ignored); }], FPimm_sext16>; // Does the SFP constant only have upp 16 bits set? def hi16_f32 : PatLeaf<(fpimm), [{ if (N->getValueType(0) == MVT::f32) { uint32_t val = FloatToBits(N->getValueAPF().convertToFloat()); return ((val & 0xffff0000) == val); } return false; }], HI16_f32>; // Does the SFP constant fit into 18 bits? def fpimm18 : PatLeaf<(fpimm), [{ if (N->getValueType(0) == MVT::f32) { uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat()); return isUInt<18>(Value); } return false; }], FPimm_u18>; //===----------------------------------------------------------------------===// // 64-bit operands (TODO): //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // build_vector operands: //===----------------------------------------------------------------------===// // v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended // immediate constant load for v16i8 vectors. N.B.: The incoming constant has // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a). def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8); }]>; // v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant // load, works in conjunction with its transform function. N.B.: This relies the // incoming constant being a 16-bit quantity, where the upper and lower bytes // are EXACTLY the same (e.g., 0x2a2a) def v16i8SExt8Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0; }], v16i8SExt8Imm_xform>; // v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit // immediate constant load for v16i8 vectors. N.B.: The incoming constant has // to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a). def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8); }]>; // v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant // load, works in conjunction with its transform function. N.B.: This relies the // incoming constant being a 16-bit quantity, where the upper and lower bytes // are EXACTLY the same (e.g., 0x2a2a) def v16i8U8Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0; }], v16i8U8Imm_xform>; // v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended // immediate constant load for v8i16 vectors. def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16); }]>; // v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant // load, works in conjunction with its transform function. def v8i16SExt8Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).getNode() != 0; }], v8i16SExt8Imm_xform>; // v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended // immediate constant load for v8i16 vectors. def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16); }]>; // v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant // load, works in conjunction with its transform function. def v8i16SExt10Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0; }], v8i16SExt10Imm_xform>; // v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned // immediate constant load for v8i16 vectors. def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16); }]>; // v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant // load, works in conjunction with its transform function. def v8i16Uns10Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0; }], v8i16Uns10Imm_xform>; // v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended // immediate constant load for v8i16 vectors. def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16); }]>; // v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant // load, works in conjunction with its transform function. def v8i16SExt16Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).getNode() != 0; }], v8i16Uns16Imm_xform>; // v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended // immediate constant load for v4i32 vectors. def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32); }]>; // v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant // load, works in conjunction with its transform function. def v4i32SExt10Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0; }], v4i32SExt10Imm_xform>; // v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned // immediate constant load for v4i32 vectors. def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32); }]>; // v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant // load, works in conjunction with its transform function. def v4i32Uns10Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0; }], v4i32Uns10Imm_xform>; // v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended // immediate constant load for v4i32 vectors. def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32); }]>; // v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant // load, works in conjunction with its transform function. def v4i32SExt16Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).getNode() != 0; }], v4i32SExt16Imm_xform>; // v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned // immediate constant load for v4i32 vectors. def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32); }]>; // v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load, // works in conjunction with its transform function. def v4i32Uns18Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).getNode() != 0; }], v4i32Uns18Imm_xform>; // ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant // load. def ILHUvec_get_imm: SDNodeXForm<build_vector, [{ return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32); }]>; /// immILHUvec: Predicate test for a ILHU constant vector. def immILHUvec: PatLeaf<(build_vector), [{ return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).getNode() != 0; }], ILHUvec_get_imm>; // Catch-all for any other i32 vector constants def v4i32_get_imm: SDNodeXForm<build_vector, [{ return SPU::get_v4i32_imm(N, *CurDAG); }]>; def v4i32Imm: PatLeaf<(build_vector), [{ return SPU::get_v4i32_imm(N, *CurDAG).getNode() != 0; }], v4i32_get_imm>; // v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended // immediate constant load for v2i64 vectors. def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64); }]>; // v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant // load, works in conjunction with its transform function. def v2i64SExt10Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).getNode() != 0; }], v2i64SExt10Imm_xform>; // v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended // immediate constant load for v2i64 vectors. def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64); }]>; // v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant // load, works in conjunction with its transform function. def v2i64SExt16Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).getNode() != 0; }], v2i64SExt16Imm_xform>; // v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned // immediate constant load for v2i64 vectors. def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{ return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64); }]>; // v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load, // works in conjunction with its transform function. def v2i64Uns18Imm: PatLeaf<(build_vector), [{ return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).getNode() != 0; }], v2i64Uns18Imm_xform>; /// immILHUvec: Predicate test for a ILHU constant vector. def immILHUvec_i64: PatLeaf<(build_vector), [{ return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).getNode() != 0; }], ILHUvec_get_imm>; // Catch-all for any other i32 vector constants def v2i64_get_imm: SDNodeXForm<build_vector, [{ return SPU::get_v2i64_imm(N, *CurDAG); }]>; def v2i64Imm: PatLeaf<(build_vector), [{ return SPU::get_v2i64_imm(N, *CurDAG).getNode() != 0; }], v2i64_get_imm>; //===----------------------------------------------------------------------===// // Operand Definitions. def s7imm: Operand<i8> { let PrintMethod = "printS7ImmOperand"; } def s7imm_i8: Operand<i8> { let PrintMethod = "printS7ImmOperand"; } def u7imm: Operand<i16> { let PrintMethod = "printU7ImmOperand"; } def u7imm_i8: Operand<i8> { let PrintMethod = "printU7ImmOperand"; } def u7imm_i32: Operand<i32> { let PrintMethod = "printU7ImmOperand"; } // Halfword, signed 10-bit constant def s10imm : Operand<i16> { let PrintMethod = "printS10ImmOperand"; } def s10imm_i8: Operand<i8> { let PrintMethod = "printS10ImmOperand"; } def s10imm_i32: Operand<i32> { let PrintMethod = "printS10ImmOperand"; } def s10imm_i64: Operand<i64> { let PrintMethod = "printS10ImmOperand"; } // Unsigned 10-bit integers: def u10imm: Operand<i16> { let PrintMethod = "printU10ImmOperand"; } def u10imm_i8: Operand<i8> { let PrintMethod = "printU10ImmOperand"; } def u10imm_i32: Operand<i32> { let PrintMethod = "printU10ImmOperand"; } def s16imm : Operand<i16> { let PrintMethod = "printS16ImmOperand"; } def s16imm_i8: Operand<i8> { let PrintMethod = "printS16ImmOperand"; } def s16imm_i32: Operand<i32> { let PrintMethod = "printS16ImmOperand"; } def s16imm_i64: Operand<i64> { let PrintMethod = "printS16ImmOperand"; } def s16imm_f32: Operand<f32> { let PrintMethod = "printS16ImmOperand"; } def s16imm_f64: Operand<f64> { let PrintMethod = "printS16ImmOperand"; } def u16imm_i64 : Operand<i64> { let PrintMethod = "printU16ImmOperand"; } def u16imm_i32 : Operand<i32> { let PrintMethod = "printU16ImmOperand"; } def u16imm : Operand<i16> { let PrintMethod = "printU16ImmOperand"; } def f16imm : Operand<f32> { let PrintMethod = "printU16ImmOperand"; } def s18imm : Operand<i32> { let PrintMethod = "printS18ImmOperand"; } def u18imm : Operand<i32> { let PrintMethod = "printU18ImmOperand"; } def u18imm_i64 : Operand<i64> { let PrintMethod = "printU18ImmOperand"; } def f18imm : Operand<f32> { let PrintMethod = "printU18ImmOperand"; } def f18imm_f64 : Operand<f64> { let PrintMethod = "printU18ImmOperand"; } // Negated 7-bit halfword rotate immediate operands def rothNeg7imm : Operand<i32> { let PrintMethod = "printROTHNeg7Imm"; } def rothNeg7imm_i16 : Operand<i16> { let PrintMethod = "printROTHNeg7Imm"; } // Negated 7-bit word rotate immediate operands def rotNeg7imm : Operand<i32> { let PrintMethod = "printROTNeg7Imm"; } def rotNeg7imm_i16 : Operand<i16> { let PrintMethod = "printROTNeg7Imm"; } def rotNeg7imm_i8 : Operand<i8> { let PrintMethod = "printROTNeg7Imm"; } def target : Operand<OtherVT> { let PrintMethod = "printBranchOperand"; } // Absolute address call target def calltarget : Operand<iPTR> { let PrintMethod = "printCallOperand"; let MIOperandInfo = (ops u18imm:$calldest); } // PC relative call target def relcalltarget : Operand<iPTR> { let PrintMethod = "printPCRelativeOperand"; let MIOperandInfo = (ops s16imm:$calldest); } // Branch targets: def brtarget : Operand<OtherVT> { let PrintMethod = "printPCRelativeOperand"; } // Hint for branch target def hbrtarget : Operand<OtherVT> { let PrintMethod = "printHBROperand"; } // Indirect call target def indcalltarget : Operand<iPTR> { let PrintMethod = "printCallOperand"; let MIOperandInfo = (ops ptr_rc:$calldest); } def symbolHi: Operand<i32> { let PrintMethod = "printSymbolHi"; } def symbolLo: Operand<i32> { let PrintMethod = "printSymbolLo"; } def symbolLSA: Operand<i32> { let PrintMethod = "printSymbolLSA"; } // Shuffle address memory operaand [s7imm(reg) d-format] def shufaddr : Operand<iPTR> { let PrintMethod = "printShufAddr"; let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg); } // memory s10imm(reg) operand def dformaddr : Operand<iPTR> { let PrintMethod = "printDFormAddr"; let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg); } // 256K local store address // N.B.: The tblgen code generator expects to have two operands, an offset // and a pointer. Of these, only the immediate is actually used. def addr256k : Operand<iPTR> { let PrintMethod = "printAddr256K"; let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg); } // memory s18imm(reg) operand def memri18 : Operand<iPTR> { let PrintMethod = "printMemRegImmS18"; let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg); } // memory register + register operand def memrr : Operand<iPTR> { let PrintMethod = "printMemRegReg"; let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b); } // Define SPU-specific addressing modes: These come in three basic // flavors: // // D-form : [r+I10] (10-bit signed offset + reg) // X-form : [r+r] (reg+reg) // A-form : abs (256K LSA offset) // D-form(2): [r+I7] (7-bit signed offset + reg) def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", [], [SDNPWantRoot]>; def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", [], [SDNPWantRoot]>; def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", [], [SDNPWantRoot]>; def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", [], [SDNPWantRoot]>;