//===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that splits the constant pool up into 'islands' // which are scattered through-out the function. This is required due to the // limited pc-relative displacements that ARM has. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-cp-islands" #include "ARM.h" #include "ARMMachineFunctionInfo.h" #include "Thumb2InstrInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include <algorithm> using namespace llvm; STATISTIC(NumCPEs, "Number of constpool entries"); STATISTIC(NumSplit, "Number of uncond branches inserted"); STATISTIC(NumCBrFixed, "Number of cond branches fixed"); STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); STATISTIC(NumTBs, "Number of table branches generated"); STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); static cl::opt<bool> AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), cl::desc("Adjust basic block layout to better use TB[BH]")); // FIXME: This option should be removed once it has received sufficient testing. static cl::opt<bool> AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), cl::desc("Align constant islands in code")); /// UnknownPadding - Return the worst case padding that could result from /// unknown offset bits. This does not include alignment padding caused by /// known offset bits. /// /// @param LogAlign log2(alignment) /// @param KnownBits Number of known low offset bits. static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { if (KnownBits < LogAlign) return (1u << LogAlign) - (1u << KnownBits); return 0; } namespace { /// ARMConstantIslands - Due to limited PC-relative displacements, ARM /// requires constant pool entries to be scattered among the instructions /// inside a function. To do this, it completely ignores the normal LLVM /// constant pool; instead, it places constants wherever it feels like with /// special instructions. /// /// The terminology used in this pass includes: /// Islands - Clumps of constants placed in the function. /// Water - Potential places where an island could be formed. /// CPE - A constant pool entry that has been placed somewhere, which /// tracks a list of users. class ARMConstantIslands : public MachineFunctionPass { /// BasicBlockInfo - Information about the offset and size of a single /// basic block. struct BasicBlockInfo { /// Offset - Distance from the beginning of the function to the beginning /// of this basic block. /// /// Offsets are computed assuming worst case padding before an aligned /// block. This means that subtracting basic block offsets always gives a /// conservative estimate of the real distance which may be smaller. /// /// Because worst case padding is used, the computed offset of an aligned /// block may not actually be aligned. unsigned Offset; /// Size - Size of the basic block in bytes. If the block contains /// inline assembly, this is a worst case estimate. /// /// The size does not include any alignment padding whether from the /// beginning of the block, or from an aligned jump table at the end. unsigned Size; /// KnownBits - The number of low bits in Offset that are known to be /// exact. The remaining bits of Offset are an upper bound. uint8_t KnownBits; /// Unalign - When non-zero, the block contains instructions (inline asm) /// of unknown size. The real size may be smaller than Size bytes by a /// multiple of 1 << Unalign. uint8_t Unalign; /// PostAlign - When non-zero, the block terminator contains a .align /// directive, so the end of the block is aligned to 1 << PostAlign /// bytes. uint8_t PostAlign; BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), PostAlign(0) {} /// Compute the number of known offset bits internally to this block. /// This number should be used to predict worst case padding when /// splitting the block. unsigned internalKnownBits() const { unsigned Bits = Unalign ? Unalign : KnownBits; // If the block size isn't a multiple of the known bits, assume the // worst case padding. if (Size & ((1u << Bits) - 1)) Bits = CountTrailingZeros_32(Size); return Bits; } /// Compute the offset immediately following this block. If LogAlign is /// specified, return the offset the successor block will get if it has /// this alignment. unsigned postOffset(unsigned LogAlign = 0) const { unsigned PO = Offset + Size; unsigned LA = std::max(unsigned(PostAlign), LogAlign); if (!LA) return PO; // Add alignment padding from the terminator. return PO + UnknownPadding(LA, internalKnownBits()); } /// Compute the number of known low bits of postOffset. If this block /// contains inline asm, the number of known bits drops to the /// instruction alignment. An aligned terminator may increase the number /// of know bits. /// If LogAlign is given, also consider the alignment of the next block. unsigned postKnownBits(unsigned LogAlign = 0) const { return std::max(std::max(unsigned(PostAlign), LogAlign), internalKnownBits()); } }; std::vector<BasicBlockInfo> BBInfo; /// WaterList - A sorted list of basic blocks where islands could be placed /// (i.e. blocks that don't fall through to the following block, due /// to a return, unreachable, or unconditional branch). std::vector<MachineBasicBlock*> WaterList; /// NewWaterList - The subset of WaterList that was created since the /// previous iteration by inserting unconditional branches. SmallSet<MachineBasicBlock*, 4> NewWaterList; typedef std::vector<MachineBasicBlock*>::iterator water_iterator; /// CPUser - One user of a constant pool, keeping the machine instruction /// pointer, the constant pool being referenced, and the max displacement /// allowed from the instruction to the CP. The HighWaterMark records the /// highest basic block where a new CPEntry can be placed. To ensure this /// pass terminates, the CP entries are initially placed at the end of the /// function and then move monotonically to lower addresses. The /// exception to this rule is when the current CP entry for a particular /// CPUser is out of range, but there is another CP entry for the same /// constant value in range. We want to use the existing in-range CP /// entry, but if it later moves out of range, the search for new water /// should resume where it left off. The HighWaterMark is used to record /// that point. struct CPUser { MachineInstr *MI; MachineInstr *CPEMI; MachineBasicBlock *HighWaterMark; private: unsigned MaxDisp; public: bool NegOk; bool IsSoImm; bool KnownAlignment; CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, bool neg, bool soimm) : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), KnownAlignment(false) { HighWaterMark = CPEMI->getParent(); } /// getMaxDisp - Returns the maximum displacement supported by MI. /// Correct for unknown alignment. /// Conservatively subtract 2 bytes to handle weird alignment effects. unsigned getMaxDisp() const { return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; } }; /// CPUsers - Keep track of all of the machine instructions that use various /// constant pools and their max displacement. std::vector<CPUser> CPUsers; /// CPEntry - One per constant pool entry, keeping the machine instruction /// pointer, the constpool index, and the number of CPUser's which /// reference this entry. struct CPEntry { MachineInstr *CPEMI; unsigned CPI; unsigned RefCount; CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} }; /// CPEntries - Keep track of all of the constant pool entry machine /// instructions. For each original constpool index (i.e. those that /// existed upon entry to this pass), it keeps a vector of entries. /// Original elements are cloned as we go along; the clones are /// put in the vector of the original element, but have distinct CPIs. std::vector<std::vector<CPEntry> > CPEntries; /// ImmBranch - One per immediate branch, keeping the machine instruction /// pointer, conditional or unconditional, the max displacement, /// and (if isCond is true) the corresponding unconditional branch /// opcode. struct ImmBranch { MachineInstr *MI; unsigned MaxDisp : 31; bool isCond : 1; int UncondBr; ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} }; /// ImmBranches - Keep track of all the immediate branch instructions. /// std::vector<ImmBranch> ImmBranches; /// PushPopMIs - Keep track of all the Thumb push / pop instructions. /// SmallVector<MachineInstr*, 4> PushPopMIs; /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. SmallVector<MachineInstr*, 4> T2JumpTables; /// HasFarJump - True if any far jump instruction has been emitted during /// the branch fix up pass. bool HasFarJump; MachineFunction *MF; MachineConstantPool *MCP; const ARMBaseInstrInfo *TII; const ARMSubtarget *STI; ARMFunctionInfo *AFI; bool isThumb; bool isThumb1; bool isThumb2; public: static char ID; ARMConstantIslands() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM constant island placement and branch shortening pass"; } private: void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); unsigned getCPELogAlign(const MachineInstr *CPEMI); void scanFunctionJumpTables(); void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); void adjustBBOffsetsAfter(MachineBasicBlock *BB); bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); int findInRangeCPEntry(CPUser& U, unsigned UserOffset); bool findAvailableWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); void createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB); bool handleConstantPoolUser(unsigned CPUserIndex); void removeDeadCPEMI(MachineInstr *CPEMI); bool removeUnusedCPEntries(); bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned Disp, bool NegOk, bool DoDump = false); bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, unsigned &Growth); bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); bool fixupImmediateBr(ImmBranch &Br); bool fixupConditionalBr(ImmBranch &Br); bool fixupUnconditionalBr(ImmBranch &Br); bool undoLRSpillRestore(); bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; bool optimizeThumb2Instructions(); bool optimizeThumb2Branches(); bool reorderThumb2JumpTables(); bool optimizeThumb2JumpTables(); MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB); void computeBlockSize(MachineBasicBlock *MBB); unsigned getOffsetOf(MachineInstr *MI) const; unsigned getUserOffset(CPUser&) const; void dumpBBs(); void verify(); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, bool NegativeOK, bool IsSoImm = false); bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, const CPUser &U) { return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk, U.IsSoImm); } }; char ARMConstantIslands::ID = 0; } /// verify - check BBOffsets, BBSizes, alignment of islands void ARMConstantIslands::verify() { #ifndef NDEBUG for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; unsigned MBBId = MBB->getNumber(); assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); } DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { CPUser &U = CPUsers[i]; unsigned UserOffset = getUserOffset(U); // Verify offset using the real max displacement without the safety // adjustment. if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, /* DoDump = */ true)) { DEBUG(dbgs() << "OK\n"); continue; } DEBUG(dbgs() << "Out of range.\n"); dumpBBs(); DEBUG(MF->dump()); llvm_unreachable("Constant pool entry out of range!"); } #endif } /// print block size and offset information - debugging void ARMConstantIslands::dumpBBs() { DEBUG({ for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { const BasicBlockInfo &BBI = BBInfo[J]; dbgs() << format("%08x BB#%u\t", BBI.Offset, J) << " kb=" << unsigned(BBI.KnownBits) << " ua=" << unsigned(BBI.Unalign) << " pa=" << unsigned(BBI.PostAlign) << format(" size=%#x\n", BBInfo[J].Size); } }); } /// createARMConstantIslandPass - returns an instance of the constpool /// island pass. FunctionPass *llvm::createARMConstantIslandPass() { return new ARMConstantIslands(); } bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MCP = mf.getConstantPool(); DEBUG(dbgs() << "***** ARMConstantIslands: " << MCP->getConstants().size() << " CP entries, aligned to " << MCP->getConstantPoolAlignment() << " bytes *****\n"); TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo(); AFI = MF->getInfo<ARMFunctionInfo>(); STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); isThumb = AFI->isThumbFunction(); isThumb1 = AFI->isThumb1OnlyFunction(); isThumb2 = AFI->isThumb2Function(); HasFarJump = false; // This pass invalidates liveness information when it splits basic blocks. MF->getRegInfo().invalidateLiveness(); // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. MF->RenumberBlocks(); // Try to reorder and otherwise adjust the block layout to make good use // of the TB[BH] instructions. bool MadeChange = false; if (isThumb2 && AdjustJumpTableBlocks) { scanFunctionJumpTables(); MadeChange |= reorderThumb2JumpTables(); // Data is out of date, so clear it. It'll be re-computed later. T2JumpTables.clear(); // Blocks may have shifted around. Keep the numbering up to date. MF->RenumberBlocks(); } // Thumb1 functions containing constant pools get 4-byte alignment. // This is so we can keep exact track of where the alignment padding goes. // ARM and Thumb2 functions need to be 4-byte aligned. if (!isThumb1) MF->ensureAlignment(2); // 2 = log2(4) // Perform the initial placement of the constant pool entries. To start with, // we put them all at the end of the function. std::vector<MachineInstr*> CPEMIs; if (!MCP->isEmpty()) doInitialPlacement(CPEMIs); /// The next UID to take is the first unused one. AFI->initPICLabelUId(CPEMIs.size()); // Do the initial scan of the function, building up information about the // sizes of each block, the location of all the water, and finding all of the // constant pool users. initializeFunctionInfo(CPEMIs); CPEMIs.clear(); DEBUG(dumpBBs()); /// Remove dead constant pool entries. MadeChange |= removeUnusedCPEntries(); // Iteratively place constant pool entries and fix up branches until there // is no change. unsigned NoCPIters = 0, NoBRIters = 0; while (true) { DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); bool CPChange = false; for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) CPChange |= handleConstantPoolUser(i); if (CPChange && ++NoCPIters > 30) report_fatal_error("Constant Island pass failed to converge!"); DEBUG(dumpBBs()); // Clear NewWaterList now. If we split a block for branches, it should // appear as "new water" for the next iteration of constant pool placement. NewWaterList.clear(); DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); bool BRChange = false; for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) BRChange |= fixupImmediateBr(ImmBranches[i]); if (BRChange && ++NoBRIters > 30) report_fatal_error("Branch Fix Up pass failed to converge!"); DEBUG(dumpBBs()); if (!CPChange && !BRChange) break; MadeChange = true; } // Shrink 32-bit Thumb2 branch, load, and store instructions. if (isThumb2 && !STI->prefers32BitThumb()) MadeChange |= optimizeThumb2Instructions(); // After a while, this might be made debug-only, but it is not expensive. verify(); // If LR has been forced spilled and no far jump (i.e. BL) has been issued, // undo the spill / restore of LR if possible. if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) MadeChange |= undoLRSpillRestore(); // Save the mapping between original and cloned constpool entries. for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { const CPEntry & CPE = CPEntries[i][j]; AFI->recordCPEClone(i, CPE.CPI); } } DEBUG(dbgs() << '\n'; dumpBBs()); BBInfo.clear(); WaterList.clear(); CPUsers.clear(); CPEntries.clear(); ImmBranches.clear(); PushPopMIs.clear(); T2JumpTables.clear(); return MadeChange; } /// doInitialPlacement - Perform the initial placement of the constant pool /// entries. To start with, we put them all at the end of the function. void ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { // Create the basic block to hold the CPE's. MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); MF->push_back(BB); // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); // Mark the basic block as required by the const-pool. // If AlignConstantIslands isn't set, use 4-byte alignment for everything. BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); // The function needs to be as aligned as the basic blocks. The linker may // move functions around based on their alignment. MF->ensureAlignment(BB->getAlignment()); // Order the entries in BB by descending alignment. That ensures correct // alignment of all entries as long as BB is sufficiently aligned. Keep // track of the insertion point for each alignment. We are going to bucket // sort the entries as they are created. SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); // Add all of the constants from the constant pool to the end block, use an // identity mapping of CPI's to CPE's. const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); const TargetData &TD = *MF->getTarget().getTargetData(); for (unsigned i = 0, e = CPs.size(); i != e; ++i) { unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); assert(Size >= 4 && "Too small constant pool entry"); unsigned Align = CPs[i].getAlignment(); assert(isPowerOf2_32(Align) && "Invalid alignment"); // Verify that all constant pool entries are a multiple of their alignment. // If not, we would have to pad them out so that instructions stay aligned. assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. unsigned LogAlign = Log2_32(Align); MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; MachineInstr *CPEMI = BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(i).addConstantPoolIndex(i).addImm(Size); CPEMIs.push_back(CPEMI); // Ensure that future entries with higher alignment get inserted before // CPEMI. This is bucket sort with iterators. for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) if (InsPoint[a] == InsAt) InsPoint[a] = CPEMI; // Add a new CPEntry, but no corresponding CPUser yet. std::vector<CPEntry> CPEs; CPEs.push_back(CPEntry(CPEMI, i)); CPEntries.push_back(CPEs); ++NumCPEs; DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " << Size << ", align = " << Align <<'\n'); } DEBUG(BB->dump()); } /// BBHasFallthrough - Return true if the specified basic block can fallthrough /// into the block immediately after it. static bool BBHasFallthrough(MachineBasicBlock *MBB) { // Get the next machine basic block in the function. MachineFunction::iterator MBBI = MBB; // Can't fall off end of function. if (llvm::next(MBBI) == MBB->getParent()->end()) return false; MachineBasicBlock *NextBB = llvm::next(MBBI); for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I == NextBB) return true; return false; } /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, /// look up the corresponding CPEntry. ARMConstantIslands::CPEntry *ARMConstantIslands::findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI) { std::vector<CPEntry> &CPEs = CPEntries[CPI]; // Number of entries per constpool index should be small, just do a // linear search. for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { if (CPEs[i].CPEMI == CPEMI) return &CPEs[i]; } return NULL; } /// getCPELogAlign - Returns the required alignment of the constant pool entry /// represented by CPEMI. Alignment is measured in log2(bytes) units. unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); // Everything is 4-byte aligned unless AlignConstantIslands is set. if (!AlignConstantIslands) return 2; unsigned CPI = CPEMI->getOperand(1).getIndex(); assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); unsigned Align = MCP->getConstants()[CPI].getAlignment(); assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); return Log2_32(Align); } /// scanFunctionJumpTables - Do a scan of the function, building up /// information about the sizes of each block and the locations of all /// the jump tables. void ARMConstantIslands::scanFunctionJumpTables() { for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) T2JumpTables.push_back(I); } } /// initializeFunctionInfo - Do the initial scan of the function, building up /// information about the sizes of each block, the location of all the water, /// and finding all of the constant pool users. void ARMConstantIslands:: initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { BBInfo.clear(); BBInfo.resize(MF->getNumBlockIDs()); // First thing, compute the size of all basic blocks, and see if the function // has any inline assembly in it. If so, we have to be conservative about // alignment assumptions, as we don't know for sure the size of any // instructions in the inline assembly. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) computeBlockSize(I); // The known bits of the entry block offset are determined by the function // alignment. BBInfo.front().KnownBits = MF->getAlignment(); // Compute block offsets and known bits. adjustBBOffsetsAfter(MF->begin()); // Now go back through the instructions and build up our data structures. for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock &MBB = *MBBI; // If this block doesn't fall through into the next MBB, then this is // 'water' that a constant pool island could be placed. if (!BBHasFallthrough(&MBB)) WaterList.push_back(&MBB); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { if (I->isDebugValue()) continue; int Opc = I->getOpcode(); if (I->isBranch()) { bool isCond = false; unsigned Bits = 0; unsigned Scale = 1; int UOpc = Opc; switch (Opc) { default: continue; // Ignore other JT branches case ARM::t2BR_JT: T2JumpTables.push_back(I); continue; // Does not get an entry in ImmBranches case ARM::Bcc: isCond = true; UOpc = ARM::B; // Fallthrough case ARM::B: Bits = 24; Scale = 4; break; case ARM::tBcc: isCond = true; UOpc = ARM::tB; Bits = 8; Scale = 2; break; case ARM::tB: Bits = 11; Scale = 2; break; case ARM::t2Bcc: isCond = true; UOpc = ARM::t2B; Bits = 20; Scale = 2; break; case ARM::t2B: Bits = 24; Scale = 2; break; } // Record this immediate branch. unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); } if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) PushPopMIs.push_back(I); if (Opc == ARM::CONSTPOOL_ENTRY) continue; // Scan the instructions for constant pool operands. for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (I->getOperand(op).isCPI()) { // We found one. The addressing mode tells us the max displacement // from the PC that this instruction permits. // Basic size info comes from the TSFlags field. unsigned Bits = 0; unsigned Scale = 1; bool NegOk = false; bool IsSoImm = false; switch (Opc) { default: llvm_unreachable("Unknown addressing mode for CP reference!"); // Taking the address of a CP entry. case ARM::LEApcrel: // This takes a SoImm, which is 8 bit immediate rotated. We'll // pretend the maximum offset is 255 * 4. Since each instruction // 4 byte wide, this is always correct. We'll check for other // displacements that fits in a SoImm as well. Bits = 8; Scale = 4; NegOk = true; IsSoImm = true; break; case ARM::t2LEApcrel: Bits = 12; NegOk = true; break; case ARM::tLEApcrel: Bits = 8; Scale = 4; break; case ARM::LDRi12: case ARM::LDRcp: case ARM::t2LDRpci: Bits = 12; // +-offset_12 NegOk = true; break; case ARM::tLDRpci: Bits = 8; Scale = 4; // +(offset_8*4) break; case ARM::VLDRD: case ARM::VLDRS: Bits = 8; Scale = 4; // +-(offset_8*4) NegOk = true; break; } // Remember that this is a user of a CP entry. unsigned CPI = I->getOperand(op).getIndex(); MachineInstr *CPEMI = CPEMIs[CPI]; unsigned MaxOffs = ((1 << Bits)-1) * Scale; CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); // Increment corresponding CPEntry reference count. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Cannot find a corresponding CPEntry!"); CPE->RefCount++; // Instructions can only use one CP entry, don't bother scanning the // rest of the operands. break; } } } } /// computeBlockSize - Compute the size and some alignment information for MBB. /// This function updates BBInfo directly. void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; BBI.Size = 0; BBI.Unalign = 0; BBI.PostAlign = 0; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { BBI.Size += TII->GetInstSizeInBytes(I); // For inline asm, GetInstSizeInBytes returns a conservative estimate. // The actual size may be smaller, but still a multiple of the instr size. if (I->isInlineAsm()) BBI.Unalign = isThumb ? 1 : 2; // Also consider instructions that may be shrunk later. else if (isThumb && mayOptimizeThumb2Instruction(I)) BBI.Unalign = 1; } // tBR_JTr contains a .align 2 directive. if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { BBI.PostAlign = 2; MBB->getParent()->ensureAlignment(2); } } /// getOffsetOf - Return the current offset of the specified machine instruction /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = BBInfo[MBB->getNumber()].Offset; // Sum instructions before MI in MBB. for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); Offset += TII->GetInstSizeInBytes(I); } return Offset; } /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB /// ID. static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { return LHS->getNumber() < RHS->getNumber(); } /// updateForInsertedWaterBlock - When a block is newly inserted into the /// machine function, it upsets all of the block numbers. Renumber the blocks /// and update the arrays that parallel this numbering. void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { // Renumber the MBB's to keep them consecutive. NewBB->getParent()->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add NewMBB as having // available water after it. water_iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, CompareMBBNumbers); WaterList.insert(IP, NewBB); } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update data structures and renumber blocks to /// account for this change and returns the newly created block. MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { MachineBasicBlock *OrigBB = MI->getParent(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); MachineFunction::iterator MBBI = OrigBB; ++MBBI; MF->insert(MBBI, NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond to anything in the source. unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; if (!isThumb) BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); else BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) .addImm(ARMCC::AL).addReg(0); ++NumSplit; // Update the CFG. All succs of OrigBB are now succs of NewBB. NewBB->transferSuccessors(OrigBB); // OrigBB branches to NewBB. OrigBB->addSuccessor(NewBB); // Update internal data structures to account for the newly inserted MBB. // This is almost the same as updateForInsertedWaterBlock, except that // the Water goes after OrigBB, not NewBB. MF->RenumberBlocks(NewBB); // Insert an entry into BBInfo to align it properly with the (newly // renumbered) block numbers. BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); // Next, update WaterList. Specifically, we need to add OrigMBB as having // available water after it (but not if it's already there, which happens // when splitting before a conditional branch that is followed by an // unconditional branch - in that case we want to insert NewBB). water_iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, CompareMBBNumbers); MachineBasicBlock* WaterBB = *IP; if (WaterBB == OrigBB) WaterList.insert(llvm::next(IP), NewBB); else WaterList.insert(IP, OrigBB); NewWaterList.insert(OrigBB); // Figure out how large the OrigBB is. As the first half of the original // block, it cannot contain a tablejump. The size includes // the new jump we added. (It should be possible to do this without // recounting everything, but it's very confusing, and this is rarely // executed.) computeBlockSize(OrigBB); // Figure out how large the NewMBB is. As the second half of the original // block, it may contain a tablejump. computeBlockSize(NewBB); // All BBOffsets following these blocks must be modified. adjustBBOffsetsAfter(OrigBB); return NewBB; } /// getUserOffset - Compute the offset of U.MI as seen by the hardware /// displacement computation. Update U.KnownAlignment to match its current /// basic block location. unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { unsigned UserOffset = getOffsetOf(U.MI); const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; unsigned KnownBits = BBI.internalKnownBits(); // The value read from PC is offset from the actual instruction address. UserOffset += (isThumb ? 4 : 8); // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. // Make sure U.getMaxDisp() returns a constrained range. U.KnownAlignment = (KnownBits >= 2); // On Thumb, offsets==2 mod 4 are rounded down by the hardware for // purposes of the displacement computation; compensate for that here. // For unknown alignments, getMaxDisp() constrains the range instead. if (isThumb && U.KnownAlignment) UserOffset &= ~3u; return UserOffset; } /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool /// reference) is within MaxDisp of TrialOffset (a proposed location of a /// constant pool entry). /// UserOffset is computed by getUserOffset above to include PC adjustments. If /// the mod 4 alignment of UserOffset is not known, the uncertainty must be /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK, bool IsSoImm) { if (UserOffset <= TrialOffset) { // User before the Trial. if (TrialOffset - UserOffset <= MaxDisp) return true; // FIXME: Make use full range of soimm values. } else if (NegativeOK) { if (UserOffset - TrialOffset <= MaxDisp) return true; // FIXME: Make use full range of soimm values. } return false; } /// isWaterInRange - Returns true if a CPE placed after the specified /// Water (a basic block) will be in range for the specific MI. /// /// Compute how much the function will grow by inserting a CPE after Water. bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, MachineBasicBlock* Water, CPUser &U, unsigned &Growth) { unsigned CPELogAlign = getCPELogAlign(U.CPEMI); unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); unsigned NextBlockOffset, NextBlockAlignment; MachineFunction::const_iterator NextBlock = Water; if (++NextBlock == MF->end()) { NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); NextBlockAlignment = 0; } else { NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; NextBlockAlignment = NextBlock->getAlignment(); } unsigned Size = U.CPEMI->getOperand(2).getImm(); unsigned CPEEnd = CPEOffset + Size; // The CPE may be able to hide in the alignment padding before the next // block. It may also cause more padding to be required if it is more aligned // that the next block. if (CPEEnd > NextBlockOffset) { Growth = CPEEnd - NextBlockOffset; // Compute the padding that would go at the end of the CPE to align the next // block. Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); // If the CPE is to be inserted before the instruction, that will raise // the offset of the instruction. Also account for unknown alignment padding // in blocks between CPE and the user. if (CPEOffset < UserOffset) UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); } else // CPE fits in existing padding. Growth = 0; return isOffsetInRange(UserOffset, CPEOffset, U); } /// isCPEntryInRange - Returns true if the distance between specific MI and /// specific ConstPool entry instruction can fit in MI's displacement field. bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, MachineInstr *CPEMI, unsigned MaxDisp, bool NegOk, bool DoDump) { unsigned CPEOffset = getOffsetOf(CPEMI); if (DoDump) { DEBUG({ unsigned Block = MI->getParent()->getNumber(); const BasicBlockInfo &BBI = BBInfo[Block]; dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() << " max delta=" << MaxDisp << format(" insn address=%#x", UserOffset) << " in BB#" << Block << ": " << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI << format("CPE address=%#x offset=%+d: ", CPEOffset, int(CPEOffset-UserOffset)); }); } return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); } #ifndef NDEBUG /// BBIsJumpedOver - Return true of the specified basic block's only predecessor /// unconditionally branches to its only successor. static bool BBIsJumpedOver(MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; MachineBasicBlock *Succ = *MBB->succ_begin(); MachineBasicBlock *Pred = *MBB->pred_begin(); MachineInstr *PredMI = &Pred->back(); if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB || PredMI->getOpcode() == ARM::t2B) return PredMI->getOperand(0).getMBB() == Succ; return false; } #endif // NDEBUG void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { unsigned BBNum = BB->getNumber(); for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { // Get the offset and known bits at the end of the layout predecessor. // Include the alignment of the current block. unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); // This is where block i begins. Stop if the offset is already correct, // and we have updated 2 blocks. This is the maximum number of blocks // changed before calling this function. if (i > BBNum + 2 && BBInfo[i].Offset == Offset && BBInfo[i].KnownBits == KnownBits) break; BBInfo[i].Offset = Offset; BBInfo[i].KnownBits = KnownBits; } } /// decrementCPEReferenceCount - find the constant pool entry with index CPI /// and instruction CPEMI, and decrement its refcount. If the refcount /// becomes 0 remove the entry and instruction. Returns true if we removed /// the entry, false if we didn't. bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI) { // Find the old entry. Eliminate it if it is no longer used. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Unexpected!"); if (--CPE->RefCount == 0) { removeDeadCPEMI(CPEMI); CPE->CPEMI = NULL; --NumCPEs; return true; } return false; } /// LookForCPEntryInRange - see if the currently referenced CPE is in range; /// if not, see if an in-range clone of the CPE is in range, and if so, /// change the data structures so the user references the clone. Returns: /// 0 = no existing entry found /// 1 = entry found, and there were no code insertions or deletions /// 2 = entry found, and there were code insertions or deletions int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, true)) { DEBUG(dbgs() << "In range\n"); return 1; } // No. Look for previously created clones of the CPE that are in range. unsigned CPI = CPEMI->getOperand(1).getIndex(); std::vector<CPEntry> &CPEs = CPEntries[CPI]; for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { // We already tried this one if (CPEs[i].CPEMI == CPEMI) continue; // Removing CPEs can leave empty entries, skip if (CPEs[i].CPEMI == NULL) continue; if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), U.NegOk)) { DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n"); // Point the CPUser node to the replacement U.CPEMI = CPEs[i].CPEMI; // Change the CPI in the instruction operand to refer to the clone. for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) if (UserMI->getOperand(j).isCPI()) { UserMI->getOperand(j).setIndex(CPEs[i].CPI); break; } // Adjust the refcount of the clone... CPEs[i].RefCount++; // ...and the original. If we didn't remove the old entry, none of the // addresses changed, so we don't need another pass. return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; } } return 0; } /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in /// the specific unconditional branch instruction. static inline unsigned getUnconditionalBrDisp(int Opc) { switch (Opc) { case ARM::tB: return ((1<<10)-1)*2; case ARM::t2B: return ((1<<23)-1)*2; default: break; } return ((1<<23)-1)*4; } /// findAvailableWater - Look for an existing entry in the WaterList in which /// we can place the CPE referenced from U so it's within range of U's MI. /// Returns true if found, false if not. If it returns true, WaterIter /// is set to the WaterList entry. For Thumb, prefer water that will not /// introduce padding to water that will. To ensure that this pass /// terminates, the CPE location for a particular CPUser is only allowed to /// move to a lower address, so search backward from the end of the list and /// prefer the first water that is in range. bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, water_iterator &WaterIter) { if (WaterList.empty()) return false; unsigned BestGrowth = ~0u; for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; --IP) { MachineBasicBlock* WaterBB = *IP; // Check if water is in range and is either at a lower address than the // current "high water mark" or a new water block that was created since // the previous iteration by inserting an unconditional branch. In the // latter case, we want to allow resetting the high water mark back to // this new water since we haven't seen it before. Inserting branches // should be relatively uncommon and when it does happen, we want to be // sure to take advantage of it for all the CPEs near that block, so that // we don't insert more branches than necessary. unsigned Growth; if (isWaterInRange(UserOffset, WaterBB, U, Growth) && (WaterBB->getNumber() < U.HighWaterMark->getNumber() || NewWaterList.count(WaterBB)) && Growth < BestGrowth) { // This is the least amount of required padding seen so far. BestGrowth = Growth; WaterIter = IP; DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() << " Growth=" << Growth << '\n'); // Keep looking unless it is perfect. if (BestGrowth == 0) return true; } if (IP == B) break; } return BestGrowth != ~0u; } /// createNewWater - No existing WaterList entry will work for /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the /// block is used if in range, and the conditional branch munged so control /// flow is correct. Otherwise the block is split to create a hole with an /// unconditional branch around it. In either case NewMBB is set to a /// block following which the new island can be inserted (the WaterList /// is not adjusted). void ARMConstantIslands::createNewWater(unsigned CPUserIndex, unsigned UserOffset, MachineBasicBlock *&NewMBB) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPELogAlign = getCPELogAlign(CPEMI); MachineBasicBlock *UserMBB = UserMI->getParent(); const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; // If the block does not end in an unconditional branch already, and if the // end of the block is within range, make new water there. (The addition // below is for the unconditional branch we will be adding: 4 bytes on ARM + // Thumb2, 2 on Thumb1. if (BBHasFallthrough(UserMBB)) { // Size of branch to insert. unsigned Delta = isThumb1 ? 2 : 4; // Compute the offset where the CPE will begin. unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; if (isOffsetInRange(UserOffset, CPEOffset, U)) { DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() << format(", expected CPE offset %#x\n", CPEOffset)); NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); // Add an unconditional branch from UserMBB to fallthrough block. Record // it for branch lengthening; this new branch will not get out of range, // but if the preceding conditional branch is out of range, the targets // will be exchanged, and the altered branch may be out of range, so the // machinery has to know about it. int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; if (!isThumb) BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); else BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) .addImm(ARMCC::AL).addReg(0); unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); ImmBranches.push_back(ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); BBInfo[UserMBB->getNumber()].Size += Delta; adjustBBOffsetsAfter(UserMBB); return; } } // What a big block. Find a place within the block to split it. This is a // little tricky on Thumb1 since instructions are 2 bytes and constant pool // entries are 4 bytes: if instruction I references island CPE, and // instruction I+1 references CPE', it will not work well to put CPE as far // forward as possible, since then CPE' cannot immediately follow it (that // location is 2 bytes farther away from I+1 than CPE was from I) and we'd // need to create a new island. So, we make a first guess, then walk through // the instructions between the one currently being looked at and the // possible insertion point, and make sure any other instructions that // reference CPEs will be able to use the same island area; if not, we back // up the insertion point. // Try to split the block so it's fully aligned. Compute the latest split // point where we can add a 4-byte branch instruction, and then align to // LogAlign which is the largest possible alignment in the function. unsigned LogAlign = MF->getAlignment(); assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); unsigned KnownBits = UserBBI.internalKnownBits(); unsigned UPad = UnknownPadding(LogAlign, KnownBits); unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; DEBUG(dbgs() << format("Split in middle of big block before %#x", BaseInsertOffset)); // The 4 in the following is for the unconditional branch we'll be inserting // (allows for long branch on Thumb1). Alignment of the island is handled // inside isOffsetInRange. BaseInsertOffset -= 4; DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) << " la=" << LogAlign << " kb=" << KnownBits << " up=" << UPad << '\n'); // This could point off the end of the block if we've already got constant // pool entries following this block; only the last one is in the water list. // Back past any possible branches (allow for a conditional and a maximally // long unconditional). if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { BaseInsertOffset = UserBBI.postOffset() - UPad - 8; DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); } unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + CPEMI->getOperand(2).getImm(); MachineBasicBlock::iterator MI = UserMI; ++MI; unsigned CPUIndex = CPUserIndex+1; unsigned NumCPUsers = CPUsers.size(); MachineInstr *LastIT = 0; for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); Offset < BaseInsertOffset; Offset += TII->GetInstSizeInBytes(MI), MI = llvm::next(MI)) { assert(MI != UserMBB->end() && "Fell off end of block"); if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { CPUser &U = CPUsers[CPUIndex]; if (!isOffsetInRange(Offset, EndInsertOffset, U)) { // Shift intertion point by one unit of alignment so it is within reach. BaseInsertOffset -= 1u << LogAlign; EndInsertOffset -= 1u << LogAlign; } // This is overly conservative, as we don't account for CPEMIs being // reused within the block, but it doesn't matter much. Also assume CPEs // are added in order with alignment padding. We may eventually be able // to pack the aligned CPEs better. EndInsertOffset += U.CPEMI->getOperand(2).getImm(); CPUIndex++; } // Remember the last IT instruction. if (MI->getOpcode() == ARM::t2IT) LastIT = MI; } --MI; // Avoid splitting an IT block. if (LastIT) { unsigned PredReg = 0; ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); if (CC != ARMCC::AL) MI = LastIT; } NewMBB = splitBlockBeforeInstr(MI); } /// handleConstantPoolUser - Analyze the specified user, checking to see if it /// is out-of-range. If so, pick up the constant pool value and move it some /// place in-range. Return true if we changed any addresses (thus must run /// another pass of branch lengthening), false otherwise. bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { CPUser &U = CPUsers[CPUserIndex]; MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; unsigned CPI = CPEMI->getOperand(1).getIndex(); unsigned Size = CPEMI->getOperand(2).getImm(); // Compute this only once, it's expensive. unsigned UserOffset = getUserOffset(U); // See if the current entry is within range, or there is a clone of it // in range. int result = findInRangeCPEntry(U, UserOffset); if (result==1) return false; else if (result==2) return true; // No existing clone of this CPE is within range. // We will be generating a new clone. Get a UID for it. unsigned ID = AFI->createPICLabelUId(); // Look for water where we can place this CPE. MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); MachineBasicBlock *NewMBB; water_iterator IP; if (findAvailableWater(U, UserOffset, IP)) { DEBUG(dbgs() << "Found water in range\n"); MachineBasicBlock *WaterBB = *IP; // If the original WaterList entry was "new water" on this iteration, // propagate that to the new island. This is just keeping NewWaterList // updated to match the WaterList, which will be updated below. if (NewWaterList.erase(WaterBB)) NewWaterList.insert(NewIsland); // The new CPE goes before the following block (NewMBB). NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); } else { // No water found. DEBUG(dbgs() << "No water found\n"); createNewWater(CPUserIndex, UserOffset, NewMBB); // splitBlockBeforeInstr adds to WaterList, which is important when it is // called while handling branches so that the water will be seen on the // next iteration for constant pools, but in this context, we don't want // it. Check for this so it will be removed from the WaterList. // Also remove any entry from NewWaterList. MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); if (IP != WaterList.end()) NewWaterList.erase(WaterBB); // We are adding new water. Update NewWaterList. NewWaterList.insert(NewIsland); } // Remove the original WaterList entry; we want subsequent insertions in // this vicinity to go after the one we're about to insert. This // considerably reduces the number of times we have to move the same CPE // more than once and is also important to ensure the algorithm terminates. if (IP != WaterList.end()) WaterList.erase(IP); // Okay, we know we can put an island before NewMBB now, do it! MF->insert(NewMBB, NewIsland); // Update internal data structures to account for the newly inserted MBB. updateForInsertedWaterBlock(NewIsland); // Decrement the old entry, and remove it if refcount becomes 0. decrementCPEReferenceCount(CPI, CPEMI); // Now that we have an island to add the CPE to, clone the original CPE and // add it to the island. U.HighWaterMark = NewIsland; U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); ++NumCPEs; // Mark the basic block as aligned as required by the const-pool entry. NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); // Increase the size of the island block to account for the new entry. BBInfo[NewIsland->getNumber()].Size += Size; adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); // Finally, change the CPI in the instruction operand to be ID. for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) if (UserMI->getOperand(i).isCPI()) { UserMI->getOperand(i).setIndex(ID); break; } DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); return true; } /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update /// sizes and offsets of impacted basic blocks. void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { MachineBasicBlock *CPEBB = CPEMI->getParent(); unsigned Size = CPEMI->getOperand(2).getImm(); CPEMI->eraseFromParent(); BBInfo[CPEBB->getNumber()].Size -= Size; // All succeeding offsets have the current size value added in, fix this. if (CPEBB->empty()) { BBInfo[CPEBB->getNumber()].Size = 0; // This block no longer needs to be aligned. <rdar://problem/10534709>. CPEBB->setAlignment(0); } else // Entries are sorted by descending alignment, so realign from the front. CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); adjustBBOffsetsAfter(CPEBB); // An island has only one predecessor BB and one successor BB. Check if // this BB's predecessor jumps directly to this BB's successor. This // shouldn't happen currently. assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); // FIXME: remove the empty blocks after all the work is done? } /// removeUnusedCPEntries - Remove constant pool entries whose refcounts /// are zero. bool ARMConstantIslands::removeUnusedCPEntries() { unsigned MadeChange = false; for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { std::vector<CPEntry> &CPEs = CPEntries[i]; for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { removeDeadCPEMI(CPEs[j].CPEMI); CPEs[j].CPEMI = NULL; MadeChange = true; } } } return MadeChange; } /// isBBInRange - Returns true if the distance between specific MI and /// specific BB can fit in MI's displacement field. bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { unsigned PCAdj = isThumb ? 4 : 8; unsigned BrOffset = getOffsetOf(MI) + PCAdj; unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() << " from BB#" << MI->getParent()->getNumber() << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) << " to " << DestOffset << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); if (BrOffset <= DestOffset) { // Branch before the Dest. if (DestOffset-BrOffset <= MaxDisp) return true; } else { if (BrOffset-DestOffset <= MaxDisp) return true; } return false; } /// fixupImmediateBr - Fix up an immediate branch whose destination is too far /// away to fit in its displacement field. bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); // Check to see if the DestBB is already in-range. if (isBBInRange(MI, DestBB, Br.MaxDisp)) return false; if (!Br.isCond) return fixupUnconditionalBr(Br); return fixupConditionalBr(Br); } /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is /// too far away to fit in its displacement field. If the LR register has been /// spilled in the epilogue, then we can use BL to implement a far jump. /// Otherwise, add an intermediate branch instruction to a branch. bool ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *MBB = MI->getParent(); if (!isThumb1) llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); // Use BL to implement far jump. Br.MaxDisp = (1 << 21) * 2; MI->setDesc(TII->get(ARM::tBfar)); BBInfo[MBB->getNumber()].Size += 2; adjustBBOffsetsAfter(MBB); HasFarJump = true; ++NumUBrFixed; DEBUG(dbgs() << " Changed B to long jump " << *MI); return true; } /// fixupConditionalBr - Fix up a conditional branch whose destination is too /// far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); // Add an unconditional branch to the destination and invert the branch // condition to jump over it: // blt L1 // => // bge L2 // b L1 // L2: ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); CC = ARMCC::getOppositeCondition(CC); unsigned CCReg = MI->getOperand(2).getReg(); // If the branch is at the end of its MBB and that has a fall-through block, // direct the updated conditional branch to the fall-through block. Otherwise, // split the MBB before the next instruction. MachineBasicBlock *MBB = MI->getParent(); MachineInstr *BMI = &MBB->back(); bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); ++NumCBrFixed; if (BMI != MI) { if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && BMI->getOpcode() == Br.UncondBr) { // Last MI in the BB is an unconditional branch. Can we simply invert the // condition and swap destinations: // beq L1 // b L2 // => // bne L2 // b L1 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); if (isBBInRange(MI, NewDest, Br.MaxDisp)) { DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " << *BMI); BMI->getOperand(0).setMBB(DestBB); MI->getOperand(0).setMBB(NewDest); MI->getOperand(1).setImm(CC); return true; } } } if (NeedSplit) { splitBlockBeforeInstr(MI); // No need for the branch to the next block. We're adding an unconditional // branch to the destination. int delta = TII->GetInstSizeInBytes(&MBB->back()); BBInfo[MBB->getNumber()].Size -= delta; MBB->back().eraseFromParent(); // BBInfo[SplitBB].Offset is wrong temporarily, fixed below } MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() << " also invert condition and change dest. to BB#" << NextBB->getNumber() << "\n"); // Insert a new conditional branch and a new unconditional branch. // Also update the ImmBranch as well as adding a new entry for the new branch. BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) .addMBB(NextBB).addImm(CC).addReg(CCReg); Br.MI = &MBB->back(); BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); if (isThumb) BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) .addImm(ARMCC::AL).addReg(0); else BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); // Remove the old conditional branch. It may or may not still be in MBB. BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); MI->eraseFromParent(); adjustBBOffsetsAfter(MBB); return true; } /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills /// LR / restores LR to pc. FIXME: This is done here because it's only possible /// to do this if tBfar is not used. bool ARMConstantIslands::undoLRSpillRestore() { bool MadeChange = false; for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { MachineInstr *MI = PushPopMIs[i]; // First two operands are predicates. if (MI->getOpcode() == ARM::tPOP_RET && MI->getOperand(2).getReg() == ARM::PC && MI->getNumExplicitOperands() == 3) { // Create the new insn and copy the predicate from the old. BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)); MI->eraseFromParent(); MadeChange = true; } } return MadeChange; } // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions // below may shrink MI. bool ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { switch(MI->getOpcode()) { // optimizeThumb2Instructions. case ARM::t2LEApcrel: case ARM::t2LDRpci: // optimizeThumb2Branches. case ARM::t2B: case ARM::t2Bcc: case ARM::tBcc: // optimizeThumb2JumpTables. case ARM::t2BR_JT: return true; } return false; } bool ARMConstantIslands::optimizeThumb2Instructions() { bool MadeChange = false; // Shrink ADR and LDR from constantpool. for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { CPUser &U = CPUsers[i]; unsigned Opcode = U.MI->getOpcode(); unsigned NewOpc = 0; unsigned Scale = 1; unsigned Bits = 0; switch (Opcode) { default: break; case ARM::t2LEApcrel: if (isARMLowRegister(U.MI->getOperand(0).getReg())) { NewOpc = ARM::tLEApcrel; Bits = 8; Scale = 4; } break; case ARM::t2LDRpci: if (isARMLowRegister(U.MI->getOperand(0).getReg())) { NewOpc = ARM::tLDRpci; Bits = 8; Scale = 4; } break; } if (!NewOpc) continue; unsigned UserOffset = getUserOffset(U); unsigned MaxOffs = ((1 << Bits) - 1) * Scale; // Be conservative with inline asm. if (!U.KnownAlignment) MaxOffs -= 2; // FIXME: Check if offset is multiple of scale if scale is not 4. if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { DEBUG(dbgs() << "Shrink: " << *U.MI); U.MI->setDesc(TII->get(NewOpc)); MachineBasicBlock *MBB = U.MI->getParent(); BBInfo[MBB->getNumber()].Size -= 2; adjustBBOffsetsAfter(MBB); ++NumT2CPShrunk; MadeChange = true; } } MadeChange |= optimizeThumb2Branches(); MadeChange |= optimizeThumb2JumpTables(); return MadeChange; } bool ARMConstantIslands::optimizeThumb2Branches() { bool MadeChange = false; for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { ImmBranch &Br = ImmBranches[i]; unsigned Opcode = Br.MI->getOpcode(); unsigned NewOpc = 0; unsigned Scale = 1; unsigned Bits = 0; switch (Opcode) { default: break; case ARM::t2B: NewOpc = ARM::tB; Bits = 11; Scale = 2; break; case ARM::t2Bcc: { NewOpc = ARM::tBcc; Bits = 8; Scale = 2; break; } } if (NewOpc) { unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); if (isBBInRange(Br.MI, DestBB, MaxOffs)) { DEBUG(dbgs() << "Shrink branch: " << *Br.MI); Br.MI->setDesc(TII->get(NewOpc)); MachineBasicBlock *MBB = Br.MI->getParent(); BBInfo[MBB->getNumber()].Size -= 2; adjustBBOffsetsAfter(MBB); ++NumT2BrShrunk; MadeChange = true; } } Opcode = Br.MI->getOpcode(); if (Opcode != ARM::tBcc) continue; // If the conditional branch doesn't kill CPSR, then CPSR can be liveout // so this transformation is not safe. if (!Br.MI->killsRegister(ARM::CPSR)) continue; NewOpc = 0; unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); if (Pred == ARMCC::EQ) NewOpc = ARM::tCBZ; else if (Pred == ARMCC::NE) NewOpc = ARM::tCBNZ; if (!NewOpc) continue; MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); // Check if the distance is within 126. Subtract starting offset by 2 // because the cmp will be eliminated. unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { MachineBasicBlock::iterator CmpMI = Br.MI; if (CmpMI != Br.MI->getParent()->begin()) { --CmpMI; if (CmpMI->getOpcode() == ARM::tCMPi8) { unsigned Reg = CmpMI->getOperand(0).getReg(); Pred = getInstrPredicate(CmpMI, PredReg); if (Pred == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && isARMLowRegister(Reg)) { MachineBasicBlock *MBB = Br.MI->getParent(); DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); MachineInstr *NewBR = BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); CmpMI->eraseFromParent(); Br.MI->eraseFromParent(); Br.MI = NewBR; BBInfo[MBB->getNumber()].Size -= 2; adjustBBOffsetsAfter(MBB); ++NumCBZ; MadeChange = true; } } } } } return MadeChange; } /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller /// jumptables when it's possible. bool ARMConstantIslands::optimizeThumb2JumpTables() { bool MadeChange = false; // FIXME: After the tables are shrunk, can we get rid some of the // constantpool tables? MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); if (MJTI == 0) return false; const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { MachineInstr *MI = T2JumpTables[i]; const MCInstrDesc &MCID = MI->getDesc(); unsigned NumOps = MCID.getNumOperands(); unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); MachineOperand JTOP = MI->getOperand(JTOpIdx); unsigned JTI = JTOP.getIndex(); assert(JTI < JT.size()); bool ByteOk = true; bool HalfWordOk = true; unsigned JTOffset = getOffsetOf(MI) + 4; const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { MachineBasicBlock *MBB = JTBBs[j]; unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; // Negative offset is not ok. FIXME: We should change BB layout to make // sure all the branches are forward. if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) ByteOk = false; unsigned TBHLimit = ((1<<16)-1)*2; if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) HalfWordOk = false; if (!ByteOk && !HalfWordOk) break; } if (ByteOk || HalfWordOk) { MachineBasicBlock *MBB = MI->getParent(); unsigned BaseReg = MI->getOperand(0).getReg(); bool BaseRegKill = MI->getOperand(0).isKill(); if (!BaseRegKill) continue; unsigned IdxReg = MI->getOperand(1).getReg(); bool IdxRegKill = MI->getOperand(1).isKill(); // Scan backwards to find the instruction that defines the base // register. Due to post-RA scheduling, we can't count on it // immediately preceding the branch instruction. MachineBasicBlock::iterator PrevI = MI; MachineBasicBlock::iterator B = MBB->begin(); while (PrevI != B && !PrevI->definesRegister(BaseReg)) --PrevI; // If for some reason we didn't find it, we can't do anything, so // just skip this one. if (!PrevI->definesRegister(BaseReg)) continue; MachineInstr *AddrMI = PrevI; bool OptOk = true; // Examine the instruction that calculates the jumptable entry address. // Make sure it only defines the base register and kills any uses // other than the index register. for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { const MachineOperand &MO = AddrMI->getOperand(k); if (!MO.isReg() || !MO.getReg()) continue; if (MO.isDef() && MO.getReg() != BaseReg) { OptOk = false; break; } if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { OptOk = false; break; } } if (!OptOk) continue; // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction // that gave us the initial base register definition. for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) ; // The instruction should be a tLEApcrel or t2LEApcrelJT; we want // to delete it as well. MachineInstr *LeaMI = PrevI; if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && LeaMI->getOpcode() != ARM::t2LEApcrelJT) || LeaMI->getOperand(0).getReg() != BaseReg) OptOk = false; if (!OptOk) continue; DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI << " lea: " << *LeaMI); unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) .addReg(IdxReg, getKillRegState(IdxRegKill)) .addJumpTableIndex(JTI, JTOP.getTargetFlags()) .addImm(MI->getOperand(JTOpIdx+1).getImm()); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); // FIXME: Insert an "ALIGN" instruction to ensure the next instruction // is 2-byte aligned. For now, asm printer will fix it up. unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); OrigSize += TII->GetInstSizeInBytes(LeaMI); OrigSize += TII->GetInstSizeInBytes(MI); AddrMI->eraseFromParent(); LeaMI->eraseFromParent(); MI->eraseFromParent(); int delta = OrigSize - NewSize; BBInfo[MBB->getNumber()].Size -= delta; adjustBBOffsetsAfter(MBB); ++NumTBs; MadeChange = true; } } return MadeChange; } /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that /// jump tables always branch forwards, since that's what tbb and tbh need. bool ARMConstantIslands::reorderThumb2JumpTables() { bool MadeChange = false; MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); if (MJTI == 0) return false; const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { MachineInstr *MI = T2JumpTables[i]; const MCInstrDesc &MCID = MI->getDesc(); unsigned NumOps = MCID.getNumOperands(); unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); MachineOperand JTOP = MI->getOperand(JTOpIdx); unsigned JTI = JTOP.getIndex(); assert(JTI < JT.size()); // We prefer if target blocks for the jump table come after the jump // instruction so we can use TB[BH]. Loop through the target blocks // and try to adjust them such that that's true. int JTNumber = MI->getParent()->getNumber(); const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { MachineBasicBlock *MBB = JTBBs[j]; int DTNumber = MBB->getNumber(); if (DTNumber < JTNumber) { // The destination precedes the switch. Try to move the block forward // so we have a positive offset. MachineBasicBlock *NewBB = adjustJTTargetBlockForward(MBB, MI->getParent()); if (NewBB) MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); MadeChange = true; } } } return MadeChange; } MachineBasicBlock *ARMConstantIslands:: adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { // If the destination block is terminated by an unconditional branch, // try to move it; otherwise, create a new block following the jump // table that branches back to the actual target. This is a very simple // heuristic. FIXME: We can definitely improve it. MachineBasicBlock *TBB = 0, *FBB = 0; SmallVector<MachineOperand, 4> Cond; SmallVector<MachineOperand, 4> CondPrior; MachineFunction::iterator BBi = BB; MachineFunction::iterator OldPrior = prior(BBi); // If the block terminator isn't analyzable, don't try to move the block bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); // If the block ends in an unconditional branch, move it. The prior block // has to have an analyzable terminator for us to move this one. Be paranoid // and make sure we're not trying to move the entry block of the function. if (!B && Cond.empty() && BB != MF->begin() && !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { BB->moveAfter(JTBB); OldPrior->updateTerminator(); BB->updateTerminator(); // Update numbering to account for the block being moved. MF->RenumberBlocks(); ++NumJTMoved; return NULL; } // Create a new MBB for the code after the jump BB. MachineBasicBlock *NewBB = MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); MachineFunction::iterator MBBI = JTBB; ++MBBI; MF->insert(MBBI, NewBB); // Add an unconditional branch from NewBB to BB. // There doesn't seem to be meaningful DebugInfo available; this doesn't // correspond directly to anything in the source. assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) .addImm(ARMCC::AL).addReg(0); // Update internal data structures to account for the newly inserted MBB. MF->RenumberBlocks(NewBB); // Update the CFG. NewBB->addSuccessor(BB); JTBB->removeSuccessor(BB); JTBB->addSuccessor(NewBB); ++NumJTInserted; return NewBB; }