//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Base ARM implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef ARMBASEINSTRUCTIONINFO_H #define ARMBASEINSTRUCTIONINFO_H #include "ARM.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #define GET_INSTRINFO_HEADER #include "ARMGenInstrInfo.inc" namespace llvm { class ARMSubtarget; class ARMBaseRegisterInfo; class ARMBaseInstrInfo : public ARMGenInstrInfo { const ARMSubtarget &Subtarget; protected: // Can be only subclassed. explicit ARMBaseInstrInfo(const ARMSubtarget &STI); public: // Return whether the target has an explicit NOP encoding. bool hasNOP() const; // Return the non-pre/post incrementing version of 'Opc'. Return 0 // if there is not such an opcode. virtual unsigned getUnindexedOpcode(unsigned Opc) const =0; virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const; virtual const ARMBaseRegisterInfo &getRegisterInfo() const =0; const ARMSubtarget &getSubtarget() const { return Subtarget; } ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const; ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const; // Branch analysis. virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify = false) const; virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const; virtual bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; // Predication support. bool isPredicated(const MachineInstr *MI) const; ARMCC::CondCodes getPredicate(const MachineInstr *MI) const { int PIdx = MI->findFirstPredOperandIdx(); return PIdx != -1 ? (ARMCC::CondCodes)MI->getOperand(PIdx).getImm() : ARMCC::AL; } virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl<MachineOperand> &Pred) const; virtual bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, const SmallVectorImpl<MachineOperand> &Pred2) const; virtual bool DefinesPredicate(MachineInstr *MI, std::vector<MachineOperand> &Pred) const; virtual bool isPredicable(MachineInstr *MI) const; /// GetInstSize - Returns the size of the specified MachineInstr. /// virtual unsigned GetInstSizeInBytes(const MachineInstr* MI) const; virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; virtual unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const; virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const; virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const; virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const; virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const; virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const; virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const; virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const; MachineInstr *duplicate(MachineInstr *Orig, MachineFunction &MF) const; MachineInstr *commuteInstruction(MachineInstr*, bool=false) const; virtual bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI) const; /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to /// determine if two loads are loading from the same base address. It should /// only return true if the base pointers are the same and the only /// differences between the two addresses is the offset. It also returns the /// offsets by reference. virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2)const; /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads /// should be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const; virtual bool isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const; virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const; virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT, unsigned ExtraT, MachineBasicBlock &FMBB, unsigned NumF, unsigned ExtraF, const BranchProbability &Probability) const; virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, const BranchProbability &Probability) const { return NumCycles == 1; } /// analyzeCompare - For a comparison instruction, return the source registers /// in SrcReg and SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const; /// optimizeCompareInstr - Convert the instruction to set the zero flag so /// that we can remove a "comparison with zero"; Remove a redundant CMP /// instruction if the flags can be updated in the same way by an earlier /// instruction such as SUB. virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const; virtual bool analyzeSelect(const MachineInstr *MI, SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const; virtual MachineInstr *optimizeSelect(MachineInstr *MI, bool) const; /// FoldImmediate - 'Reg' is known to be defined by a move immediate /// instruction, try to fold the immediate into the use instruction. virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const; virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const; virtual int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const; virtual unsigned getOutputLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *DepMI) const; /// VFP/NEON execution domains. std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr *MI) const; void setExecutionDomain(MachineInstr *MI, unsigned Domain) const; private: unsigned getInstBundleLength(const MachineInstr *MI) const; int getVLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getVSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getOperandLatency(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, unsigned UseIdx, unsigned UseAlign) const; unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost = 0) const; int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const; bool hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; bool hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const; /// verifyInstruction - Perform target specific instruction verification. bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const; private: /// Modeling special VFP / NEON fp MLA / MLS hazards. /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal /// MLx table. DenseMap<unsigned, unsigned> MLxEntryMap; /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause /// stalls when scheduled together with fp MLA / MLS opcodes. SmallSet<unsigned, 16> MLxHazardOpcodes; public: /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS /// instruction. bool isFpMLxInstruction(unsigned Opcode) const { return MLxEntryMap.count(Opcode); } /// isFpMLxInstruction - This version also returns the multiply opcode and the /// addition / subtraction opcode to expand to. Return true for 'HasLane' for /// the MLX instructions with an extra lane operand. bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, unsigned &AddSubOpc, bool &NegAcc, bool &HasLane) const; /// canCauseFpMLxStall - Return true if an instruction of the specified opcode /// will cause stalls when scheduled after (within 4-cycle window) a fp /// MLA / MLS instruction. bool canCauseFpMLxStall(unsigned Opcode) const { return MLxHazardOpcodes.count(Opcode); } }; static inline const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) { return MIB.addImm((int64_t)ARMCC::AL).addReg(0); } static inline const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) { return MIB.addReg(0); } static inline const MachineInstrBuilder &AddDefaultT1CC(const MachineInstrBuilder &MIB, bool isDead = false) { return MIB.addReg(ARM::CPSR, getDefRegState(true) | getDeadRegState(isDead)); } static inline const MachineInstrBuilder &AddNoT1CC(const MachineInstrBuilder &MIB) { return MIB.addReg(0); } static inline bool isUncondBranchOpcode(int Opc) { return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B; } static inline bool isCondBranchOpcode(int Opc) { return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc; } static inline bool isJumpTableBranchOpcode(int Opc) { return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT; } static inline bool isIndirectBranchOpcode(int Opc) { return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND; } /// getInstrPredicate - If instruction is predicated, returns its predicate /// condition, otherwise returns AL. It also returns the condition code /// register by reference. ARMCC::CondCodes getInstrPredicate(const MachineInstr *MI, unsigned &PredReg); int getMatchingCondBranchOpcode(int Opc); /// Determine if MI can be folded into an ARM MOVCC instruction, and return the /// opcode of the SSA instruction representing the conditional MI. unsigned canFoldARMInstrIntoMOVCC(unsigned Reg, MachineInstr *&MI, const MachineRegisterInfo &MRI); /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether /// the instruction is encoded with an 'S' bit is determined by the optional /// CPSR def operand. unsigned convertAddSubFlagsOpcode(unsigned OldOpc); /// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of /// instructions to materializea destreg = basereg + immediate in ARM / Thumb2 /// code. void emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags = 0); void emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags = 0); void emitThumbRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, const TargetInstrInfo &TII, const ARMBaseRegisterInfo& MRI, unsigned MIFlags = 0); /// rewriteARMFrameIndex / rewriteT2FrameIndex - /// Rewrite MI to access 'Offset' bytes from the FP. Return false if the /// offset could not be handled directly in MI, and return the left-over /// portion by reference. bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII); bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int &Offset, const ARMBaseInstrInfo &TII); } // End llvm namespace #endif