//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format ARM assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "ARMAsmPrinter.h" #include "ARM.h" #include "ARMBuildAttrs.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "InstPrinter/ARMInstPrinter.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMMCExpr.h" #include "llvm/Constants.h" #include "llvm/DebugInfo.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include <cctype> using namespace llvm; namespace { // Per section and per symbol attributes are not supported. // To implement them we would need the ability to delay this emission // until the assembly file is fully parsed/generated as only then do we // know the symbol and section numbers. class AttributeEmitter { public: virtual void MaybeSwitchVendor(StringRef Vendor) = 0; virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0; virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0; virtual void Finish() = 0; virtual ~AttributeEmitter() {} }; class AsmAttributeEmitter : public AttributeEmitter { MCStreamer &Streamer; public: AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {} void MaybeSwitchVendor(StringRef Vendor) { } void EmitAttribute(unsigned Attribute, unsigned Value) { Streamer.EmitRawText("\t.eabi_attribute " + Twine(Attribute) + ", " + Twine(Value)); } void EmitTextAttribute(unsigned Attribute, StringRef String) { switch (Attribute) { default: llvm_unreachable("Unsupported Text attribute in ASM Mode"); case ARMBuildAttrs::CPU_name: Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower()); break; /* GAS requires .fpu to be emitted regardless of EABI attribute */ case ARMBuildAttrs::Advanced_SIMD_arch: case ARMBuildAttrs::VFP_arch: Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower()); break; } } void Finish() { } }; class ObjectAttributeEmitter : public AttributeEmitter { // This structure holds all attributes, accounting for // their string/numeric value, so we can later emmit them // in declaration order, keeping all in the same vector struct AttributeItemType { enum { HiddenAttribute = 0, NumericAttribute, TextAttribute } Type; unsigned Tag; unsigned IntValue; StringRef StringValue; } AttributeItem; MCObjectStreamer &Streamer; StringRef CurrentVendor; SmallVector<AttributeItemType, 64> Contents; // Account for the ULEB/String size of each item, // not just the number of items size_t ContentsSize; // FIXME: this should be in a more generic place, but // getULEBSize() is in MCAsmInfo and will be moved to MCDwarf size_t getULEBSize(int Value) { size_t Size = 0; do { Value >>= 7; Size += sizeof(int8_t); // Is this really necessary? } while (Value); return Size; } public: ObjectAttributeEmitter(MCObjectStreamer &Streamer_) : Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { } void MaybeSwitchVendor(StringRef Vendor) { assert(!Vendor.empty() && "Vendor cannot be empty."); if (CurrentVendor.empty()) CurrentVendor = Vendor; else if (CurrentVendor == Vendor) return; else Finish(); CurrentVendor = Vendor; assert(Contents.size() == 0); } void EmitAttribute(unsigned Attribute, unsigned Value) { AttributeItemType attr = { AttributeItemType::NumericAttribute, Attribute, Value, StringRef("") }; ContentsSize += getULEBSize(Attribute); ContentsSize += getULEBSize(Value); Contents.push_back(attr); } void EmitTextAttribute(unsigned Attribute, StringRef String) { AttributeItemType attr = { AttributeItemType::TextAttribute, Attribute, 0, String }; ContentsSize += getULEBSize(Attribute); // String + \0 ContentsSize += String.size()+1; Contents.push_back(attr); } void Finish() { // Vendor size + Vendor name + '\0' const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1; // Tag + Tag Size const size_t TagHeaderSize = 1 + 4; Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4); Streamer.EmitBytes(CurrentVendor, 0); Streamer.EmitIntValue(0, 1); // '\0' Streamer.EmitIntValue(ARMBuildAttrs::File, 1); Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4); // Size should have been accounted for already, now // emit each field as its type (ULEB or String) for (unsigned int i=0; i<Contents.size(); ++i) { AttributeItemType item = Contents[i]; Streamer.EmitULEB128IntValue(item.Tag, 0); switch (item.Type) { default: llvm_unreachable("Invalid attribute type"); case AttributeItemType::NumericAttribute: Streamer.EmitULEB128IntValue(item.IntValue, 0); break; case AttributeItemType::TextAttribute: Streamer.EmitBytes(item.StringValue.upper(), 0); Streamer.EmitIntValue(0, 1); // '\0' break; } } Contents.clear(); } }; } // end of anonymous namespace MachineLocation ARMAsmPrinter:: getDebugValueLocation(const MachineInstr *MI) const { MachineLocation Location; assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!"); // Frame address. Currently handles register +- offset only. if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm()) Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); else { DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n"); } return Location; } /// EmitDwarfRegOp - Emit dwarf register operation. void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) AsmPrinter::EmitDwarfRegOp(MLoc); else { unsigned Reg = MLoc.getReg(); if (Reg >= ARM::S0 && Reg <= ARM::S31) { assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering"); // S registers are described as bit-pieces of a register // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0) // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32) unsigned SReg = Reg - ARM::S0; bool odd = SReg & 0x1; unsigned Rx = 256 + (SReg >> 1); OutStreamer.AddComment("DW_OP_regx for S register"); EmitInt8(dwarf::DW_OP_regx); OutStreamer.AddComment(Twine(SReg)); EmitULEB128(Rx); if (odd) { OutStreamer.AddComment("DW_OP_bit_piece 32 32"); EmitInt8(dwarf::DW_OP_bit_piece); EmitULEB128(32); EmitULEB128(32); } else { OutStreamer.AddComment("DW_OP_bit_piece 32 0"); EmitInt8(dwarf::DW_OP_bit_piece); EmitULEB128(32); EmitULEB128(0); } } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) { assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering"); // Q registers Q0-Q15 are described by composing two D registers together. // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1) // DW_OP_piece(8) unsigned QReg = Reg - ARM::Q0; unsigned D1 = 256 + 2 * QReg; unsigned D2 = D1 + 1; OutStreamer.AddComment("DW_OP_regx for Q register: D1"); EmitInt8(dwarf::DW_OP_regx); EmitULEB128(D1); OutStreamer.AddComment("DW_OP_piece 8"); EmitInt8(dwarf::DW_OP_piece); EmitULEB128(8); OutStreamer.AddComment("DW_OP_regx for Q register: D2"); EmitInt8(dwarf::DW_OP_regx); EmitULEB128(D2); OutStreamer.AddComment("DW_OP_piece 8"); EmitInt8(dwarf::DW_OP_piece); EmitULEB128(8); } } } void ARMAsmPrinter::EmitFunctionBodyEnd() { // Make sure to terminate any constant pools that were at the end // of the function. if (!InConstantPool) return; InConstantPool = false; OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::EmitFunctionEntryLabel() { if (AFI->isThumbFunction()) { OutStreamer.EmitAssemblerFlag(MCAF_Code16); OutStreamer.EmitThumbFunc(CurrentFnSym); } OutStreamer.EmitLabel(CurrentFnSym); } void ARMAsmPrinter::EmitXXStructor(const Constant *CV) { uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); assert(Size && "C++ constructor pointer had zero size!"); const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); assert(GV && "C++ constructor pointer was not a GlobalValue!"); const MCExpr *E = MCSymbolRefExpr::Create(Mang->getSymbol(GV), (Subtarget->isTargetDarwin() ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_ARM_TARGET1), OutContext); OutStreamer.EmitValue(E, Size); } /// runOnMachineFunction - This uses the EmitInstruction() /// method to print assembly for each instruction. /// bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { AFI = MF.getInfo<ARMFunctionInfo>(); MCP = MF.getConstantPool(); return AsmPrinter::runOnMachineFunction(MF); } void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNum); unsigned TF = MO.getTargetFlags(); switch (MO.getType()) { default: llvm_unreachable("<unknown operand type>"); case MachineOperand::MO_Register: { unsigned Reg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); assert(!MO.getSubReg() && "Subregs should be eliminated!"); O << ARMInstPrinter::getRegisterName(Reg); break; } case MachineOperand::MO_Immediate: { int64_t Imm = MO.getImm(); O << '#'; if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF == ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF == ARMII::MO_HI16)) O << ":upper16:"; O << Imm; break; } case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; case MachineOperand::MO_GlobalAddress: { const GlobalValue *GV = MO.getGlobal(); if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << *Mang->getSymbol(GV); printOffset(MO.getOffset(), O); if (TF == ARMII::MO_PLT) O << "(PLT)"; break; } case MachineOperand::MO_ExternalSymbol: { O << *GetExternalSymbolSymbol(MO.getSymbolName()); if (TF == ARMII::MO_PLT) O << "(PLT)"; break; } case MachineOperand::MO_ConstantPoolIndex: O << *GetCPISymbol(MO.getIndex()); break; case MachineOperand::MO_JumpTableIndex: O << *GetJTISymbol(MO.getIndex()); break; } } //===--------------------------------------------------------------------===// MCSymbol *ARMAsmPrinter:: GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2, const MachineBasicBlock *MBB) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << '_' << uid2 << "_set_" << MBB->getNumber(); return OutContext.GetOrCreateSymbol(Name.str()); } MCSymbol *ARMAsmPrinter:: GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '_' << uid2; return OutContext.GetOrCreateSymbol(Name.str()); } MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH" << getFunctionNumber(); return OutContext.GetOrCreateSymbol(Name.str()); } bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); case 'a': // Print as a memory address. if (MI->getOperand(OpNum).isReg()) { O << "[" << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) << "]"; return false; } // Fallthrough case 'c': // Don't print "#" before an immediate operand. if (!MI->getOperand(OpNum).isImm()) return true; O << MI->getOperand(OpNum).getImm(); return false; case 'P': // Print a VFP double precision register. case 'q': // Print a NEON quad precision register. printOperand(MI, OpNum, O); return false; case 'y': // Print a VFP single precision register as indexed double. if (MI->getOperand(OpNum).isReg()) { unsigned Reg = MI->getOperand(OpNum).getReg(); const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); // Find the 'd' register that has this 's' register as a sub-register, // and determine the lane number. for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { if (!ARM::DPRRegClass.contains(*SR)) continue; bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); return false; } } return true; case 'B': // Bitwise inverse of integer or symbol without a preceding #. if (!MI->getOperand(OpNum).isImm()) return true; O << ~(MI->getOperand(OpNum).getImm()); return false; case 'L': // The low 16 bits of an immediate constant. if (!MI->getOperand(OpNum).isImm()) return true; O << (MI->getOperand(OpNum).getImm() & 0xffff); return false; case 'M': { // A register range suitable for LDM/STM. if (!MI->getOperand(OpNum).isReg()) return true; const MachineOperand &MO = MI->getOperand(OpNum); unsigned RegBegin = MO.getReg(); // This takes advantage of the 2 operand-ness of ldm/stm and that we've // already got the operands in registers that are operands to the // inline asm statement. O << "{" << ARMInstPrinter::getRegisterName(RegBegin); // FIXME: The register allocator not only may not have given us the // registers in sequence, but may not be in ascending registers. This // will require changes in the register allocator that'll need to be // propagated down here if the operands change. unsigned RegOps = OpNum + 1; while (MI->getOperand(RegOps).isReg()) { O << ", " << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); RegOps++; } O << "}"; return false; } case 'R': // The most significant register of a pair. case 'Q': { // The least significant register of a pair. if (OpNum == 0) return true; const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); if (!FlagsOP.isImm()) return true; unsigned Flags = FlagsOP.getImm(); unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); if (NumVals != 2) return true; unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; if (RegOp >= MI->getNumOperands()) return true; const MachineOperand &MO = MI->getOperand(RegOp); if (!MO.isReg()) return true; unsigned Reg = MO.getReg(); O << ARMInstPrinter::getRegisterName(Reg); return false; } case 'e': // The low doubleword register of a NEON quad register. case 'f': { // The high doubleword register of a NEON quad register. if (!MI->getOperand(OpNum).isReg()) return true; unsigned Reg = MI->getOperand(OpNum).getReg(); if (!ARM::QPRRegClass.contains(Reg)) return true; const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); O << ARMInstPrinter::getRegisterName(SubReg); return false; } // This modifier is not yet supported. case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. return true; case 'H': { // The highest-numbered register of a pair. const MachineOperand &MO = MI->getOperand(OpNum); if (!MO.isReg()) return true; const TargetRegisterClass &RC = ARM::GPRRegClass; const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); unsigned RegIdx = TRI->getEncodingValue(MO.getReg()); RegIdx |= 1; //The odd register is also the higher-numbered one of a pair. unsigned Reg = RC.getRegister(RegIdx); O << ARMInstPrinter::getRegisterName(Reg); return false; } } } printOperand(MI, OpNum, O); return false; } bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'A': // A memory operand for a VLD1/VST1 instruction. default: return true; // Unknown modifier. case 'm': // The base register of a memory operand. if (!MI->getOperand(OpNum).isReg()) return true; O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); return false; } } const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline asm memory operand"); O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; return false; } void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { Reloc::Model RelocM = TM.getRelocationModel(); if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { // Declare all the text sections up front (before the DWARF sections // emitted by AsmPrinter::doInitialization) so the assembler will keep // them together at the beginning of the object file. This helps // avoid out-of-range branches that are due a fundamental limitation of // the way symbol offsets are encoded with the current Darwin ARM // relocations. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast<const TargetLoweringObjectFileMachO &>( getObjFileLowering()); OutStreamer.SwitchSection(TLOFMacho.getTextSection()); OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection()); OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection()); if (RelocM == Reloc::DynamicNoPIC) { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__symbol_stub4", MCSectionMachO::S_SYMBOL_STUBS, 12, SectionKind::getText()); OutStreamer.SwitchSection(sect); } else { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__picsymbolstub4", MCSectionMachO::S_SYMBOL_STUBS, 16, SectionKind::getText()); OutStreamer.SwitchSection(sect); } const MCSection *StaticInitSect = OutContext.getMachOSection("__TEXT", "__StaticInit", MCSectionMachO::S_REGULAR | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, SectionKind::getText()); OutStreamer.SwitchSection(StaticInitSect); } } // Use unified assembler syntax. OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified); // Emit ARM Build Attributes if (Subtarget->isTargetELF()) emitAttributes(); } void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { // All darwin targets use mach-o. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo<MachineModuleInfoMachO>(); // Output non-lazy-pointers for external and common global variables. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .indirect_symbol _foo MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), OutContext), 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } Stubs = MMIMacho.GetHiddenGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .long _foo OutStreamer.EmitValue(MCSymbolRefExpr:: Create(Stubs[i].second.getPointer(), OutContext), 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); } } //===----------------------------------------------------------------------===// // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() // FIXME: // The following seem like one-off assembler flags, but they actually need // to appear in the .ARM.attributes section in ELF. // Instead of subclassing the MCELFStreamer, we do the work here. void ARMAsmPrinter::emitAttributes() { emitARMAttributeSection(); /* GAS expect .fpu to be emitted, regardless of VFP build attribute */ bool emitFPU = false; AttributeEmitter *AttrEmitter; if (OutStreamer.hasRawTextSupport()) { AttrEmitter = new AsmAttributeEmitter(OutStreamer); emitFPU = true; } else { MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer); AttrEmitter = new ObjectAttributeEmitter(O); } AttrEmitter->MaybeSwitchVendor("aeabi"); std::string CPUString = Subtarget->getCPUString(); if (CPUString == "cortex-a8" || Subtarget->isCortexA8()) { AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8"); AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7); AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::ApplicationProfile); AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use, ARMBuildAttrs::Allowed); AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::AllowThumb32); // Fixme: figure out when this is emitted. //AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch, // ARMBuildAttrs::AllowWMMXv1); // /// ADD additional Else-cases here! } else if (CPUString == "xscale") { AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ); AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use, ARMBuildAttrs::Allowed); AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); } else if (CPUString == "generic") { // FIXME: Why these defaults? AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T); AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use, ARMBuildAttrs::Allowed); AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); } if (Subtarget->hasNEON() && emitFPU) { /* NEON is not exactly a VFP architecture, but GAS emit one of * neon/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ if (Subtarget->hasVFP4()) AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon-vfpv4"); else AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon"); /* If emitted for NEON, omit from VFP below, since you can have both * NEON and VFP in build attributes but only one .fpu */ emitFPU = false; } /* VFPv4 + .fpu */ if (Subtarget->hasVFP4()) { AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch, ARMBuildAttrs::AllowFPv4A); if (emitFPU) AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv4"); /* VFPv3 + .fpu */ } else if (Subtarget->hasVFP3()) { AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch, ARMBuildAttrs::AllowFPv3A); if (emitFPU) AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3"); /* VFPv2 + .fpu */ } else if (Subtarget->hasVFP2()) { AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch, ARMBuildAttrs::AllowFPv2); if (emitFPU) AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2"); } /* TODO: ARMBuildAttrs::Allowed is not completely accurate, * since NEON can have 1 (allowed) or 2 (MAC operations) */ if (Subtarget->hasNEON()) { AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::Allowed); } // Signal various FP modes. if (!TM.Options.UnsafeFPMath) { AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed); AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); } if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::Allowed); else AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::AllowIEE754); // FIXME: add more flags to ARMBuildAttrs.h // 8-bytes alignment stuff. AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1); AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1); // Hard float. Use both S and D registers and conform to AAPCS-VFP. if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) { AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3); AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1); } // FIXME: Should we signal R9 usage? if (Subtarget->hasDivide()) AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1); AttrEmitter->Finish(); delete AttrEmitter; } void ARMAsmPrinter::emitARMAttributeSection() { // <format-version> // [ <section-length> "vendor-name" // [ <file-tag> <size> <attribute>* // | <section-tag> <size> <section-number>* 0 <attribute>* // | <symbol-tag> <size> <symbol-number>* 0 <attribute>* // ]+ // ]* if (OutStreamer.hasRawTextSupport()) return; const ARMElfTargetObjectFile &TLOFELF = static_cast<const ARMElfTargetObjectFile &> (getObjFileLowering()); OutStreamer.SwitchSection(TLOFELF.getAttributesSection()); // Format version OutStreamer.EmitIntValue(0x41, 1); } //===----------------------------------------------------------------------===// static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx) { MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix) + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); return Label; } static MCSymbolRefExpr::VariantKind getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { switch (Modifier) { case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD; case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF; case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF; case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT; case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF; } llvm_unreachable("Invalid ARMCPModifier!"); } MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) { bool isIndirect = Subtarget->isTargetDarwin() && Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); if (!isIndirect) return Mang->getSymbol(GV); // FIXME: Remove this when Darwin transition to @GOT like syntax. MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoMachO &MMIMachO = MMI->getObjFileInfo<MachineModuleInfoMachO>(); MachineModuleInfoImpl::StubValueTy &StubSym = GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) : MMIMachO.getGVStubEntry(MCSym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage()); return MCSym; } void ARMAsmPrinter:: EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { int Size = TM.getTargetData()->getTypeAllocSize(MCPV->getType()); ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); MCSymbol *MCSym; if (ACPV->isLSDA()) { SmallString<128> Str; raw_svector_ostream OS(Str); OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); MCSym = OutContext.GetOrCreateSymbol(OS.str()); } else if (ACPV->isBlockAddress()) { const BlockAddress *BA = cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); MCSym = GetBlockAddressSymbol(BA); } else if (ACPV->isGlobalValue()) { const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); MCSym = GetARMGVSymbol(GV); } else if (ACPV->isMachineBasicBlock()) { const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); MCSym = MBB->getSymbol(); } else { assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); MCSym = GetExternalSymbolSymbol(Sym); } // Create an MCSymbol for the reference. const MCExpr *Expr = MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()), OutContext); if (ACPV->getPCAdjustment()) { MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), ACPV->getLabelId(), OutContext); const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext); PCRelExpr = MCBinaryExpr::CreateAdd(PCRelExpr, MCConstantExpr::Create(ACPV->getPCAdjustment(), OutContext), OutContext); if (ACPV->mustAddCurrentAddress()) { // We want "(<expr> - .)", but MC doesn't have a concept of the '.' // label, so just emit a local label end reference that instead. MCSymbol *DotSym = OutContext.CreateTempSymbol(); OutStreamer.EmitLabel(DotSym); const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext); } Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext); } OutStreamer.EmitValue(Expr, Size); } void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = 1; if (Opcode == ARM::BR_JTadd) OpNum = 2; else if (Opcode == ARM::BR_JTm) OpNum = 3; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; // Construct an MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) // // For example, a table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .word (LBB0 - LJTI_0_0) // .word (LBB1 - LJTI_0_0) const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); if (TM.getRelocationModel() == Reloc::PIC_) Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); // If we're generating a table of Thumb addresses in static relocation // model, we need to add one to keep interworking correctly. else if (AFI->isThumbFunction()) Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext), OutContext); OutStreamer.EmitValue(Expr, 4); } // Mark the end of jump table data-in-code region. OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; unsigned OffsetWidth = 4; if (MI->getOpcode() == ARM::t2TBB_JT) { OffsetWidth = 1; // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT8); } else if (MI->getOpcode() == ARM::t2TBH_JT) { OffsetWidth = 2; // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT16); } for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); // If this isn't a TBB or TBH, the entries are direct branch instructions. if (OffsetWidth == 4) { MCInst BrInst; BrInst.setOpcode(ARM::t2B); BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr)); BrInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); BrInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(BrInst); continue; } // Otherwise it's an offset from the dispatch instruction. Construct an // MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) / 2 // // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .byte (LBB0 - LJTI_0_0) / 2 // .byte (LBB1 - LJTI_0_0) / 2 const MCExpr *Expr = MCBinaryExpr::CreateSub(MBBSymbolExpr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext), OutContext); OutStreamer.EmitValue(Expr, OffsetWidth); } // Mark the end of jump table data-in-code region. 32-bit offsets use // actual branch instructions here, so we don't mark those as a data-region // at all. if (OffsetWidth != 4) OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS) { unsigned NOps = MI->getNumOperands(); assert(NOps==4); OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: "; // cast away const; DIetc do not take const operands for some reason. DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata())); OS << V.getName(); OS << " <- "; // Frame address. Currently handles register +- offset only. assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm()); OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS); OS << ']'; OS << "+"; printOperand(MI, NOps-2, OS); } static void populateADROperands(MCInst &Inst, unsigned Dest, const MCSymbol *Label, unsigned pred, unsigned ccreg, MCContext &Ctx) { const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, Ctx); Inst.addOperand(MCOperand::CreateReg(Dest)); Inst.addOperand(MCOperand::CreateExpr(SymbolExpr)); // Add predicate operands. Inst.addOperand(MCOperand::CreateImm(pred)); Inst.addOperand(MCOperand::CreateReg(ccreg)); } void ARMAsmPrinter::EmitPatchedInstruction(const MachineInstr *MI, unsigned Opcode) { MCInst TmpInst; // Emit the instruction as usual, just patch the opcode. LowerARMMachineInstrToMCInst(MI, TmpInst, *this); TmpInst.setOpcode(Opcode); OutStreamer.EmitInstruction(TmpInst); } void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { assert(MI->getFlag(MachineInstr::FrameSetup) && "Only instruction which are involved into frame setup code are allowed"); const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned Opc = MI->getOpcode(); unsigned SrcReg, DstReg; if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { // Two special cases: // 1) tPUSH does not have src/dst regs. // 2) for Thumb1 code we sometimes materialize the constant via constpool // load. Yes, this is pretty fragile, but for now I don't see better // way... :( SrcReg = DstReg = ARM::SP; } else { SrcReg = MI->getOperand(1).getReg(); DstReg = MI->getOperand(0).getReg(); } // Try to figure out the unwinding opcode out of src / dst regs. if (MI->mayStore()) { // Register saves. assert(DstReg == ARM::SP && "Only stack pointer as a destination reg is supported"); SmallVector<unsigned, 4> RegList; // Skip src & dst reg, and pred ops. unsigned StartOp = 2 + 2; // Use all the operands. unsigned NumOffset = 0; switch (Opc) { default: MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::tPUSH: // Special case here: no src & dst reg, but two extra imp ops. StartOp = 2; NumOffset = 2; case ARM::STMDB_UPD: case ARM::t2STMDB_UPD: case ARM::VSTMDDB_UPD: assert(SrcReg == ARM::SP && "Only stack pointer as a source reg is supported"); for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; i != NumOps; ++i) { const MachineOperand &MO = MI->getOperand(i); // Actually, there should never be any impdef stuff here. Skip it // temporary to workaround PR11902. if (MO.isImplicit()) continue; RegList.push_back(MO.getReg()); } break; case ARM::STR_PRE_IMM: case ARM::STR_PRE_REG: case ARM::t2STR_PRE: assert(MI->getOperand(2).getReg() == ARM::SP && "Only stack pointer as a source reg is supported"); RegList.push_back(SrcReg); break; } OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); } else { // Changes of stack / frame pointer. if (SrcReg == ARM::SP) { int64_t Offset = 0; switch (Opc) { default: MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::MOVr: case ARM::tMOVr: Offset = 0; break; case ARM::ADDri: Offset = -MI->getOperand(2).getImm(); break; case ARM::SUBri: case ARM::t2SUBri: Offset = MI->getOperand(2).getImm(); break; case ARM::tSUBspi: Offset = MI->getOperand(2).getImm()*4; break; case ARM::tADDspi: case ARM::tADDrSPi: Offset = -MI->getOperand(2).getImm()*4; break; case ARM::tLDRpci: { // Grab the constpool index and check, whether it corresponds to // original or cloned constpool entry. unsigned CPI = MI->getOperand(1).getIndex(); const MachineConstantPool *MCP = MF.getConstantPool(); if (CPI >= MCP->getConstants().size()) CPI = AFI.getOriginalCPIdx(CPI); assert(CPI != -1U && "Invalid constpool index"); // Derive the actual offset. const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); // FIXME: Check for user, it should be "add" instruction! Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); break; } } if (DstReg == FramePtr && FramePtr != ARM::SP) // Set-up of the frame pointer. Positive values correspond to "add" // instruction. OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset); else if (DstReg == ARM::SP) { // Change of SP by an offset. Positive values correspond to "sub" // instruction. OutStreamer.EmitPad(Offset); } else { MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); } } else if (DstReg == ARM::SP) { // FIXME: .movsp goes here MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); } else { MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); } } } extern cl::opt<bool> EnableARMEHABI; // Simple pseudo-instructions have their lowering (with expansion to real // instructions) auto-generated. #include "ARMGenMCPseudoLowering.inc" void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { // If we just ended a constant pool, mark it as such. if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); InConstantPool = false; } // Emit unwinding stuff for frame-related instructions if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup)) EmitUnwindingInstruction(MI); // Do any auto-generated pseudo lowerings. if (emitPseudoExpansionLowering(OutStreamer, MI)) return; assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && "Pseudo flag setting opcode should be expanded early"); // Check for manual lowerings. unsigned Opc = MI->getOpcode(); switch (Opc) { case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); case ARM::DBG_VALUE: { if (isVerbose() && OutStreamer.hasRawTextSupport()) { SmallString<128> TmpStr; raw_svector_ostream OS(TmpStr); PrintDebugValueComment(MI, OS); OutStreamer.EmitRawText(StringRef(OS.str())); } return; } case ARM::LEApcrel: case ARM::tLEApcrel: case ARM::t2LEApcrel: { // FIXME: Need to also handle globals and externals MCInst TmpInst; TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR : ARM::ADR)); populateADROperands(TmpInst, MI->getOperand(0).getReg(), GetCPISymbol(MI->getOperand(1).getIndex()), MI->getOperand(2).getImm(), MI->getOperand(3).getReg(), OutContext); OutStreamer.EmitInstruction(TmpInst); return; } case ARM::LEApcrelJT: case ARM::tLEApcrelJT: case ARM::t2LEApcrelJT: { MCInst TmpInst; TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR : ARM::ADR)); populateADROperands(TmpInst, MI->getOperand(0).getReg(), GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(), MI->getOperand(2).getImm()), MI->getOperand(3).getImm(), MI->getOperand(4).getReg(), OutContext); OutStreamer.EmitInstruction(TmpInst); return; } // Darwin call instructions are just normal call instructions with different // clobber semantics (they clobber R9). case ARM::BX_CALL: { { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::LR)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::BX); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::tBX_CALL: { { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::LR)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tBX); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::BMOVPCRX_CALL: { { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::LR)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::BMOVPCB_CALL: { { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::LR)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::Bcc); const GlobalValue *GV = MI->getOperand(0).getGlobal(); MCSymbol *GVSym = Mang->getSymbol(GV); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); TmpInst.addOperand(MCOperand::CreateExpr(GVSymExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::t2BMOVPCB_CALL: { { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::LR)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::t2B); const GlobalValue *GV = MI->getOperand(0).getGlobal(); MCSymbol *GVSym = Mang->getSymbol(GV); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); TmpInst.addOperand(MCOperand::CreateExpr(GVSymExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::MOVi16_ga_pcrel: case ARM::t2MOVi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); unsigned TF = MI->getOperand(1).getTargetFlags(); bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC; const GlobalValue *GV = MI->getOperand(1).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); if (isPIC) { MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr, MCBinaryExpr::CreateAdd(LabelSymExpr, MCConstantExpr::Create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); } else { const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext); TmpInst.addOperand(MCOperand::CreateExpr(RefExpr)); } // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); return; } case ARM::MOVTi16_ga_pcrel: case ARM::t2MOVTi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel ? ARM::MOVTi16 : ARM::t2MOVTi16); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); unsigned TF = MI->getOperand(2).getTargetFlags(); bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC; const GlobalValue *GV = MI->getOperand(2).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); if (isPIC) { MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(3).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr, MCBinaryExpr::CreateAdd(LabelSymExpr, MCConstantExpr::Create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); } else { const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext); TmpInst.addOperand(MCOperand::CreateExpr(RefExpr)); } // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); return; } case ARM::tPICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. MCInst AddInst; AddInst.setOpcode(ARM::tADDhirr); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); AddInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(AddInst); return; } case ARM::PICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc, r0 // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. MCInst AddInst; AddInst.setOpcode(ARM::ADDrr); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(ARM::PC)); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); // Add predicate operands. AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm())); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg())); // Add 's' bit operand (always reg0 for this) AddInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(AddInst); return; } case ARM::PICSTR: case ARM::PICSTRB: case ARM::PICSTRH: case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICLDRH: case ARM::PICLDRSB: case ARM::PICLDRSH: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // OP r0, [pc, r0] // The LCP0 label is referenced by a constant pool entry in order to get // a PC-relative address at the ldr instruction. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the load unsigned Opcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case ARM::PICSTR: Opcode = ARM::STRrs; break; case ARM::PICSTRB: Opcode = ARM::STRBrs; break; case ARM::PICSTRH: Opcode = ARM::STRH; break; case ARM::PICLDR: Opcode = ARM::LDRrs; break; case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; case ARM::PICLDRH: Opcode = ARM::LDRH; break; case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; } MCInst LdStInst; LdStInst.setOpcode(Opcode); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); LdStInst.addOperand(MCOperand::CreateReg(ARM::PC)); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); LdStInst.addOperand(MCOperand::CreateImm(0)); // Add predicate operands. LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm())); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg())); OutStreamer.EmitInstruction(LdStInst); return; } case ARM::CONSTPOOL_ENTRY: { /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool /// in the function. The first operand is the ID# for this instruction, the /// second is the index into the MachineConstantPool that this is, the third /// is the size in bytes of this constant pool entry. /// The required alignment is specified on the basic block holding this MI. unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); // If this is the first entry of the pool, mark it. if (!InConstantPool) { OutStreamer.EmitDataRegion(MCDR_DataRegion); InConstantPool = true; } OutStreamer.EmitLabel(GetCPISymbol(LabelId)); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else EmitGlobalConstant(MCPE.Val.ConstVal); return; } case ARM::t2BR_JT: { // Lower and emit the instruction itself, then the jump table following it. MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Output the data for the jump table itself EmitJump2Table(MI); return; } case ARM::t2TBB_JT: { // Lower and emit the instruction itself, then the jump table following it. MCInst TmpInst; TmpInst.setOpcode(ARM::t2TBB); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Output the data for the jump table itself EmitJump2Table(MI); // Make sure the next instruction is 2-byte aligned. EmitAlignment(1); return; } case ARM::t2TBH_JT: { // Lower and emit the instruction itself, then the jump table following it. MCInst TmpInst; TmpInst.setOpcode(ARM::t2TBH); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Output the data for the jump table itself EmitJump2Table(MI); return; } case ARM::tBR_JTr: case ARM::BR_JTr: { // Lower and emit the instruction itself, then the jump table following it. // mov pc, target MCInst TmpInst; unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? ARM::MOVr : ARM::tMOVr; TmpInst.setOpcode(Opc); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) if (Opc == ARM::MOVr) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Make sure the Thumb jump table is 4-byte aligned. if (Opc == ARM::tMOVr) EmitAlignment(2); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::BR_JTm: { // Lower and emit the instruction itself, then the jump table following it. // ldr pc, target MCInst TmpInst; if (MI->getOperand(1).getReg() == 0) { // literal offset TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); } else { TmpInst.setOpcode(ARM::LDRrs); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); TmpInst.addOperand(MCOperand::CreateImm(0)); } // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::BR_JTadd: { // Lower and emit the instruction itself, then the jump table following it. // add pc, target, idx MCInst TmpInst; TmpInst.setOpcode(ARM::ADDrr); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::TRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetDarwin()) { //.long 0xe7ffdefe @ trap uint32_t Val = 0xe7ffdefeUL; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 4); return; } break; } case ARM::tTRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetDarwin()) { //.short 57086 @ trap uint16_t Val = 0xdefe; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 2); return; } break; } case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // mov $val, pc // adds $val, #7 // str $val, [$src, #4] // movs r0, #0 // b 1f // movs r0, #1 // 1: unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); MCSymbol *Label = GetARMSJLJEHLabel(); { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVr); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp begin"); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tADDi3); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); // 's' bit operand TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateImm(7)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tSTRi); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); // The offset immediate is #4. The operand value is scaled by 4 for the // tSTR instruction. TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVi8); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext); MCInst TmpInst; TmpInst.setOpcode(ARM::tB); TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr)); TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVi8); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp end"); OutStreamer.EmitInstruction(TmpInst); } OutStreamer.EmitLabel(Label); return; } case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::Int_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // add $val, pc, #8 // str $val, [$src, #+4] // mov r0, #0 // add pc, pc, #0 // mov r0, #1 unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); { MCInst TmpInst; TmpInst.setOpcode(ARM::ADDri); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateImm(8)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp begin"); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::STRi12); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(4)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::ADDri); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp end"); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::Int_eh_sjlj_longjmp: { // ldr sp, [$src, #8] // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ScratchReg = MI->getOperand(1).getReg(); { MCInst TmpInst; TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::CreateReg(ARM::SP)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(8)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(4)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::CreateReg(ARM::R7)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::BX); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::tInt_eh_sjlj_longjmp: { // ldr $scratch, [$src, #8] // mov sp, $scratch // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ScratchReg = MI->getOperand(1).getReg(); { MCInst TmpInst; TmpInst.setOpcode(ARM::tLDRi); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); // The offset immediate is #8. The operand value is scaled by 4 for the // tLDR instruction. TmpInst.addOperand(MCOperand::CreateImm(2)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVr); TmpInst.addOperand(MCOperand::CreateReg(ARM::SP)); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tLDRi); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tLDRi); TmpInst.addOperand(MCOperand::CreateReg(ARM::R7)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tBX); TmpInst.addOperand(MCOperand::CreateReg(ScratchReg)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } return; } } MCInst TmpInst; LowerARMMachineInstrToMCInst(MI, TmpInst, *this); OutStreamer.EmitInstruction(TmpInst); } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// // Force static initialization. extern "C" void LLVMInitializeARMAsmPrinter() { RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget); RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget); }