//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TargetInstrInfoImpl class, it just provides default // implementations of various methods. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt<bool> DisableHazardRecognizer( "disable-sched-hazard", cl::Hidden, cl::init(false), cl::desc("Disable hazard detection during preRA scheduling")); /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything /// after it, replacing it with an unconditional branch to NewDest. void TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const { MachineBasicBlock *MBB = Tail->getParent(); // Remove all the old successors of MBB from the CFG. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_begin()); // Remove all the dead instructions from the end of MBB. MBB->erase(Tail, MBB->end()); // If MBB isn't immediately before MBB, insert a branch to it. if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), Tail->getDebugLoc()); MBB->addSuccessor(NewDest); } // commuteInstruction - The default implementation of this method just exchanges // the two operands returned by findCommutedOpIndices. MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, bool NewMI) const { const MCInstrDesc &MCID = MI->getDesc(); bool HasDef = MCID.getNumDefs(); if (HasDef && !MI->getOperand(0).isReg()) // No idea how to commute this instruction. Target should implement its own. return 0; unsigned Idx1, Idx2; if (!findCommutedOpIndices(MI, Idx1, Idx2)) { std::string msg; raw_string_ostream Msg(msg); Msg << "Don't know how to commute: " << *MI; report_fatal_error(Msg.str()); } assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && "This only knows how to commute register operands so far"); unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; unsigned Reg1 = MI->getOperand(Idx1).getReg(); unsigned Reg2 = MI->getOperand(Idx2).getReg(); unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); bool Reg1IsKill = MI->getOperand(Idx1).isKill(); bool Reg2IsKill = MI->getOperand(Idx2).isKill(); // If destination is tied to either of the commuted source register, then // it must be updated. if (HasDef && Reg0 == Reg1 && MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { Reg2IsKill = false; Reg0 = Reg2; SubReg0 = SubReg2; } else if (HasDef && Reg0 == Reg2 && MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { Reg1IsKill = false; Reg0 = Reg1; SubReg0 = SubReg1; } if (NewMI) { // Create a new instruction. MachineFunction &MF = *MI->getParent()->getParent(); MI = MF.CloneMachineInstr(MI); } if (HasDef) { MI->getOperand(0).setReg(Reg0); MI->getOperand(0).setSubReg(SubReg0); } MI->getOperand(Idx2).setReg(Reg1); MI->getOperand(Idx1).setReg(Reg2); MI->getOperand(Idx2).setSubReg(SubReg1); MI->getOperand(Idx1).setSubReg(SubReg2); MI->getOperand(Idx2).setIsKill(Reg1IsKill); MI->getOperand(Idx1).setIsKill(Reg2IsKill); return MI; } /// findCommutedOpIndices - If specified MI is commutable, return the two /// operand indices that would swap value. Return true if the instruction /// is not in a form which this routine understands. bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { assert(!MI->isBundle() && "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles"); const MCInstrDesc &MCID = MI->getDesc(); if (!MCID.isCommutable()) return false; // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this // is not true, then the target must implement this. SrcOpIdx1 = MCID.getNumDefs(); SrcOpIdx2 = SrcOpIdx1 + 1; if (!MI->getOperand(SrcOpIdx1).isReg() || !MI->getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } bool TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const { if (!MI->isTerminator()) return false; // Conditional branch is a special case. if (MI->isBranch() && !MI->isBarrier()) return true; if (!MI->isPredicable()) return true; return !isPredicated(MI); } bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, const SmallVectorImpl<MachineOperand> &Pred) const { bool MadeChange = false; assert(!MI->isBundle() && "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles"); const MCInstrDesc &MCID = MI->getDesc(); if (!MI->isPredicable()) return false; for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { if (MCID.OpInfo[i].isPredicate()) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg()) { MO.setReg(Pred[j].getReg()); MadeChange = true; } else if (MO.isImm()) { MO.setImm(Pred[j].getImm()); MadeChange = true; } else if (MO.isMBB()) { MO.setMBB(Pred[j].getMBB()); MadeChange = true; } ++j; } } return MadeChange; } bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), oe = MI->memoperands_end(); o != oe; ++o) { if ((*o)->isLoad() && (*o)->getValue()) if (const FixedStackPseudoSourceValue *Value = dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { FrameIndex = Value->getFrameIndex(); MMO = *o; return true; } } return false; } bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), oe = MI->memoperands_end(); o != oe; ++o) { if ((*o)->isStore() && (*o)->getValue()) if (const FixedStackPseudoSourceValue *Value = dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { FrameIndex = Value->getFrameIndex(); MMO = *o; return true; } } return false; } void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); MBB.insert(I, MI); } bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI) const { return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); } MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig, MachineFunction &MF) const { assert(!Orig->isNotDuplicable() && "Instruction cannot be duplicated"); return MF.CloneMachineInstr(Orig); } // If the COPY instruction in MI can be folded to a stack operation, return // the register class to use. static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, unsigned FoldIdx) { assert(MI->isCopy() && "MI must be a COPY instruction"); if (MI->getNumOperands() != 2) return 0; assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); const MachineOperand &FoldOp = MI->getOperand(FoldIdx); const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); if (FoldOp.getSubReg() || LiveOp.getSubReg()) return 0; unsigned FoldReg = FoldOp.getReg(); unsigned LiveReg = LiveOp.getReg(); assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && "Cannot fold physregs"); const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) return RC->contains(LiveOp.getReg()) ? RC : 0; if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) return RC; // FIXME: Allow folding when register classes are memory compatible. return 0; } bool TargetInstrInfoImpl:: canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl<unsigned> &Ops) const { return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. The client is responsible for /// removing the old instruction and adding the new one in the instruction /// stream. MachineInstr* TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl<unsigned> &Ops, int FI) const { unsigned Flags = 0; for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (MI->getOperand(Ops[i]).isDef()) Flags |= MachineMemOperand::MOStore; else Flags |= MachineMemOperand::MOLoad; MachineBasicBlock *MBB = MI->getParent(); assert(MBB && "foldMemoryOperand needs an inserted instruction"); MachineFunction &MF = *MBB->getParent(); // Ask the target to do the actual folding. if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { // Add a memory operand, foldMemoryOperandImpl doesn't do that. assert((!(Flags & MachineMemOperand::MOStore) || NewMI->mayStore()) && "Folded a def to a non-store!"); assert((!(Flags & MachineMemOperand::MOLoad) || NewMI->mayLoad()) && "Folded a use to a non-load!"); const MachineFrameInfo &MFI = *MF.getFrameInfo(); assert(MFI.getObjectOffset(FI) != -1); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flags, MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); NewMI->addMemOperand(MF, MMO); // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. return MBB->insert(MI, NewMI); } // Straight COPY may fold as load/store. if (!MI->isCopy() || Ops.size() != 1) return 0; const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); if (!RC) return 0; const MachineOperand &MO = MI->getOperand(1-Ops[0]); MachineBasicBlock::iterator Pos = MI; const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); if (Flags == MachineMemOperand::MOStore) storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); else loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); return --Pos; } /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. MachineInstr* TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl<unsigned> &Ops, MachineInstr* LoadMI) const { assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); #ifndef NDEBUG for (unsigned i = 0, e = Ops.size(); i != e; ++i) assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); #endif MachineBasicBlock &MBB = *MI->getParent(); MachineFunction &MF = *MBB.getParent(); // Ask the target to do the actual folding. MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); if (!NewMI) return 0; NewMI = MBB.insert(MI, NewMI); // Copy the memoperands from the load to the folded instruction. NewMI->setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end()); return NewMI; } bool TargetInstrInfo:: isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, AliasAnalysis *AA) const { const MachineFunction &MF = *MI->getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetMachine &TM = MF.getTarget(); const TargetInstrInfo &TII = *TM.getInstrInfo(); // Remat clients assume operand 0 is the defined register. if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) return false; unsigned DefReg = MI->getOperand(0).getReg(); // A sub-register definition can only be rematerialized if the instruction // doesn't read the other parts of the register. Otherwise it is really a // read-modify-write operation on the full virtual register which cannot be // moved safely. if (TargetRegisterInfo::isVirtualRegister(DefReg) && MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) return false; // A load from a fixed stack slot can be rematerialized. This may be // redundant with subsequent checks, but it's target-independent, // simple, and a common case. int FrameIdx = 0; if (TII.isLoadFromStackSlot(MI, FrameIdx) && MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) return true; // Avoid instructions obviously unsafe for remat. if (MI->isNotDuplicable() || MI->mayStore() || MI->hasUnmodeledSideEffects()) return false; // Don't remat inline asm. We have no idea how expensive it is // even if it's side effect free. if (MI->isInlineAsm()) return false; // Avoid instructions which load from potentially varying memory. if (MI->mayLoad() && !MI->isInvariantLoad(AA)) return false; // If any of the registers accessed are non-constant, conservatively assume // the instruction is not rematerializable. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Check for a well-behaved physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI.isConstantPhysReg(Reg, MF)) return false; } else { // A physreg def. We can't remat it. return false; } continue; } // Only allow one virtual-register def. There may be multiple defs of the // same virtual register, though. if (MO.isDef() && Reg != DefReg) return false; // Don't allow any virtual-register uses. Rematting an instruction with // virtual register uses would length the live ranges of the uses, which // is not necessarily a good idea, certainly not "trivial". if (MO.isUse()) return false; } // Everything checked out. return true; } /// isSchedulingBoundary - Test if the given instruction should be /// considered a scheduling boundary. This primarily includes labels /// and terminators. bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const{ // Terminators and labels can't be scheduled around. if (MI->isTerminator() || MI->isLabel()) return true; // Don't attempt to schedule around any instruction that defines // a stack-oriented pointer, as it's unlikely to be profitable. This // saves compile time, because it doesn't require every single // stack slot reference to depend on the instruction that does the // modification. const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore())) return true; return false; } // Provide a global flag for disabling the PreRA hazard recognizer that targets // may choose to honor. bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const { return !DisableHazardRecognizer; } // Default implementation of CreateTargetRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfoImpl:: CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const { // Dummy hazard recognizer allows all instructions to issue. return new ScheduleHazardRecognizer(); } // Default implementation of CreateTargetMIHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfoImpl:: CreateTargetMIHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return (ScheduleHazardRecognizer *) new ScoreboardHazardRecognizer(II, DAG, "misched"); } // Default implementation of CreateTargetPostRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfoImpl:: CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return (ScheduleHazardRecognizer *) new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); } //===----------------------------------------------------------------------===// // SelectionDAG latency interface. //===----------------------------------------------------------------------===// int TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const { if (!ItinData || ItinData->isEmpty()) return -1; if (!DefNode->isMachineOpcode()) return -1; unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); if (!UseNode->isMachineOpcode()) return ItinData->getOperandCycle(DefClass, DefIdx); unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData, SDNode *N) const { if (!ItinData || ItinData->isEmpty()) return 1; if (!N->isMachineOpcode()) return 1; return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); } //===----------------------------------------------------------------------===// // MachineInstr latency interface. //===----------------------------------------------------------------------===// unsigned TargetInstrInfoImpl::getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const { if (!ItinData || ItinData->isEmpty()) return 1; unsigned Class = MI->getDesc().getSchedClass(); int UOps = ItinData->Itineraries[Class].NumMicroOps; if (UOps >= 0) return UOps; // The # of u-ops is dynamically determined. The specific target should // override this function to return the right number. return 1; } /// Return the default expected latency for a def based on it's opcode. unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel, const MachineInstr *DefMI) const { if (DefMI->mayLoad()) return SchedModel->LoadLatency; if (isHighLatencyDef(DefMI->getOpcode())) return SchedModel->HighLatency; return 1; } unsigned TargetInstrInfoImpl:: getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost) const { // Default to one cycle for no itinerary. However, an "empty" itinerary may // still have a MinLatency property, which getStageLatency checks. if (!ItinData) return MI->mayLoad() ? 2 : 1; return ItinData->getStageLatency(MI->getDesc().getSchedClass()); } bool TargetInstrInfoImpl::hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const { if (!ItinData || ItinData->isEmpty()) return false; unsigned DefClass = DefMI->getDesc().getSchedClass(); int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); return (DefCycle != -1 && DefCycle <= 1); } /// Both DefMI and UseMI must be valid. By default, call directly to the /// itinerary. This may be overriden by the target. int TargetInstrInfoImpl:: getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { unsigned DefClass = DefMI->getDesc().getSchedClass(); unsigned UseClass = UseMI->getDesc().getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } /// If we can determine the operand latency from the def only, without itinerary /// lookup, do so. Otherwise return -1. static int computeDefOperandLatency( const TargetInstrInfo *TII, const InstrItineraryData *ItinData, const MachineInstr *DefMI, bool FindMin) { // Let the target hook getInstrLatency handle missing itineraries. if (!ItinData) return TII->getInstrLatency(ItinData, DefMI); // Return a latency based on the itinerary properties and defining instruction // if possible. Some common subtargets don't require per-operand latency, // especially for minimum latencies. if (FindMin) { // If MinLatency is valid, call getInstrLatency. This uses Stage latency if // it exists before defaulting to MinLatency. if (ItinData->SchedModel->MinLatency >= 0) return TII->getInstrLatency(ItinData, DefMI); // If MinLatency is invalid, OperandLatency is interpreted as MinLatency. // For empty itineraries, short-cirtuit the check and default to one cycle. if (ItinData->isEmpty()) return 1; } else if(ItinData->isEmpty()) return TII->defaultDefLatency(ItinData->SchedModel, DefMI); // ...operand lookup required return -1; } /// computeOperandLatency - Compute and return the latency of the given data /// dependent def and use when the operand indices are already known. UseMI may /// be NULL for an unknown use. /// /// FindMin may be set to get the minimum vs. expected latency. Minimum /// latency is used for scheduling groups, while expected latency is for /// instruction cost and critical path. /// /// Depending on the subtarget's itinerary properties, this may or may not need /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or /// UseIdx to compute min latency. unsigned TargetInstrInfo:: computeOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx, bool FindMin) const { int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin); if (DefLatency >= 0) return DefLatency; assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); int OperLatency = 0; if (UseMI) OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); else { unsigned DefClass = DefMI->getDesc().getSchedClass(); OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); } if (OperLatency >= 0) return OperLatency; // No operand latency was found. unsigned InstrLatency = getInstrLatency(ItinData, DefMI); // Expected latency is the max of the stage latency and itinerary props. if (!FindMin) InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData->SchedModel, DefMI)); return InstrLatency; }