//===- ProfileVerifierPass.cpp - LLVM Pass to estimate profile info -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a pass that checks profiling information for // plausibility. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "profile-verifier" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Format.h" #include "llvm/Support/Debug.h" #include <set> using namespace llvm; static cl::opt<bool,false> ProfileVerifierDisableAssertions("profile-verifier-noassert", cl::desc("Disable assertions")); namespace { template<class FType, class BType> class ProfileVerifierPassT : public FunctionPass { struct DetailedBlockInfo { const BType *BB; double BBWeight; double inWeight; int inCount; double outWeight; int outCount; }; ProfileInfoT<FType, BType> *PI; std::set<const BType*> BBisVisited; std::set<const FType*> FisVisited; bool DisableAssertions; // When debugging is enabled, the verifier prints a whole slew of debug // information, otherwise its just the assert. These are all the helper // functions. bool PrintedDebugTree; std::set<const BType*> BBisPrinted; void debugEntry(DetailedBlockInfo*); void printDebugInfo(const BType *BB); public: static char ID; // Class identification, replacement for typeinfo explicit ProfileVerifierPassT () : FunctionPass(ID) { initializeProfileVerifierPassPass(*PassRegistry::getPassRegistry()); DisableAssertions = ProfileVerifierDisableAssertions; } explicit ProfileVerifierPassT (bool da) : FunctionPass(ID), DisableAssertions(da) { initializeProfileVerifierPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<ProfileInfoT<FType, BType> >(); } const char *getPassName() const { return "Profiling information verifier"; } /// run - Verify the profile information. bool runOnFunction(FType &F); void recurseBasicBlock(const BType*); bool exitReachable(const FType*); double ReadOrAssert(typename ProfileInfoT<FType, BType>::Edge); void CheckValue(bool, const char*, DetailedBlockInfo*); }; typedef ProfileVerifierPassT<Function, BasicBlock> ProfileVerifierPass; template<class FType, class BType> void ProfileVerifierPassT<FType, BType>::printDebugInfo(const BType *BB) { if (BBisPrinted.find(BB) != BBisPrinted.end()) return; double BBWeight = PI->getExecutionCount(BB); if (BBWeight == ProfileInfoT<FType, BType>::MissingValue) { BBWeight = 0; } double inWeight = 0; int inCount = 0; std::set<const BType*> ProcessedPreds; for (const_pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB); bbi != bbe; ++bbi ) { if (ProcessedPreds.insert(*bbi).second) { typename ProfileInfoT<FType, BType>::Edge E = PI->getEdge(*bbi,BB); double EdgeWeight = PI->getEdgeWeight(E); if (EdgeWeight == ProfileInfoT<FType, BType>::MissingValue) { EdgeWeight = 0; } dbgs() << "calculated in-edge " << E << ": " << format("%20.20g",EdgeWeight) << "\n"; inWeight += EdgeWeight; inCount++; } } double outWeight = 0; int outCount = 0; std::set<const BType*> ProcessedSuccs; for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB); bbi != bbe; ++bbi ) { if (ProcessedSuccs.insert(*bbi).second) { typename ProfileInfoT<FType, BType>::Edge E = PI->getEdge(BB,*bbi); double EdgeWeight = PI->getEdgeWeight(E); if (EdgeWeight == ProfileInfoT<FType, BType>::MissingValue) { EdgeWeight = 0; } dbgs() << "calculated out-edge " << E << ": " << format("%20.20g",EdgeWeight) << "\n"; outWeight += EdgeWeight; outCount++; } } dbgs() << "Block " << BB->getName() << " in " << BB->getParent()->getName() << ":" << "BBWeight=" << format("%20.20g",BBWeight) << "," << "inWeight=" << format("%20.20g",inWeight) << "," << "inCount=" << inCount << "," << "outWeight=" << format("%20.20g",outWeight) << "," << "outCount" << outCount << "\n"; // mark as visited and recurse into subnodes BBisPrinted.insert(BB); for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB); bbi != bbe; ++bbi ) { printDebugInfo(*bbi); } } template<class FType, class BType> void ProfileVerifierPassT<FType, BType>::debugEntry (DetailedBlockInfo *DI) { dbgs() << "TROUBLE: Block " << DI->BB->getName() << " in " << DI->BB->getParent()->getName() << ":" << "BBWeight=" << format("%20.20g",DI->BBWeight) << "," << "inWeight=" << format("%20.20g",DI->inWeight) << "," << "inCount=" << DI->inCount << "," << "outWeight=" << format("%20.20g",DI->outWeight) << "," << "outCount=" << DI->outCount << "\n"; if (!PrintedDebugTree) { PrintedDebugTree = true; printDebugInfo(&(DI->BB->getParent()->getEntryBlock())); } } // This compares A and B for equality. static bool Equals(double A, double B) { return A == B; } // This checks if the function "exit" is reachable from an given function // via calls, this is necessary to check if a profile is valid despite the // counts not fitting exactly. template<class FType, class BType> bool ProfileVerifierPassT<FType, BType>::exitReachable(const FType *F) { if (!F) return false; if (FisVisited.count(F)) return false; FType *Exit = F->getParent()->getFunction("exit"); if (Exit == F) { return true; } FisVisited.insert(F); bool exits = false; for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { if (const CallInst *CI = dyn_cast<CallInst>(&*I)) { FType *F = CI->getCalledFunction(); if (F) { exits |= exitReachable(F); } else { // This is a call to a pointer, all bets are off... exits = true; } if (exits) break; } } return exits; } #define ASSERTMESSAGE(M) \ { dbgs() << "ASSERT:" << (M) << "\n"; \ if (!DisableAssertions) assert(0 && (M)); } template<class FType, class BType> double ProfileVerifierPassT<FType, BType>::ReadOrAssert(typename ProfileInfoT<FType, BType>::Edge E) { double EdgeWeight = PI->getEdgeWeight(E); if (EdgeWeight == ProfileInfoT<FType, BType>::MissingValue) { dbgs() << "Edge " << E << " in Function " << ProfileInfoT<FType, BType>::getFunction(E)->getName() << ": "; ASSERTMESSAGE("Edge has missing value"); return 0; } else { if (EdgeWeight < 0) { dbgs() << "Edge " << E << " in Function " << ProfileInfoT<FType, BType>::getFunction(E)->getName() << ": "; ASSERTMESSAGE("Edge has negative value"); } return EdgeWeight; } } template<class FType, class BType> void ProfileVerifierPassT<FType, BType>::CheckValue(bool Error, const char *Message, DetailedBlockInfo *DI) { if (Error) { DEBUG(debugEntry(DI)); dbgs() << "Block " << DI->BB->getName() << " in Function " << DI->BB->getParent()->getName() << ": "; ASSERTMESSAGE(Message); } return; } // This calculates the Information for a block and then recurses into the // successors. template<class FType, class BType> void ProfileVerifierPassT<FType, BType>::recurseBasicBlock(const BType *BB) { // Break the recursion by remembering all visited blocks. if (BBisVisited.find(BB) != BBisVisited.end()) return; // Use a data structure to store all the information, this can then be handed // to debug printers. DetailedBlockInfo DI; DI.BB = BB; DI.outCount = DI.inCount = 0; DI.inWeight = DI.outWeight = 0; // Read predecessors. std::set<const BType*> ProcessedPreds; const_pred_iterator bpi = pred_begin(BB), bpe = pred_end(BB); // If there are none, check for (0,BB) edge. if (bpi == bpe) { DI.inWeight += ReadOrAssert(PI->getEdge(0,BB)); DI.inCount++; } for (;bpi != bpe; ++bpi) { if (ProcessedPreds.insert(*bpi).second) { DI.inWeight += ReadOrAssert(PI->getEdge(*bpi,BB)); DI.inCount++; } } // Read successors. std::set<const BType*> ProcessedSuccs; succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB); // If there is an (0,BB) edge, consider it too. (This is done not only when // there are no successors, but every time; not every function contains // return blocks with no successors (think loop latch as return block)). double w = PI->getEdgeWeight(PI->getEdge(BB,0)); if (w != ProfileInfoT<FType, BType>::MissingValue) { DI.outWeight += w; DI.outCount++; } for (;bbi != bbe; ++bbi) { if (ProcessedSuccs.insert(*bbi).second) { DI.outWeight += ReadOrAssert(PI->getEdge(BB,*bbi)); DI.outCount++; } } // Read block weight. DI.BBWeight = PI->getExecutionCount(BB); CheckValue(DI.BBWeight == ProfileInfoT<FType, BType>::MissingValue, "BasicBlock has missing value", &DI); CheckValue(DI.BBWeight < 0, "BasicBlock has negative value", &DI); // Check if this block is a setjmp target. bool isSetJmpTarget = false; if (DI.outWeight > DI.inWeight) { for (typename BType::const_iterator i = BB->begin(), ie = BB->end(); i != ie; ++i) { if (const CallInst *CI = dyn_cast<CallInst>(&*i)) { FType *F = CI->getCalledFunction(); if (F && (F->getName() == "_setjmp")) { isSetJmpTarget = true; break; } } } } // Check if this block is eventually reaching exit. bool isExitReachable = false; if (DI.inWeight > DI.outWeight) { for (typename BType::const_iterator i = BB->begin(), ie = BB->end(); i != ie; ++i) { if (const CallInst *CI = dyn_cast<CallInst>(&*i)) { FType *F = CI->getCalledFunction(); if (F) { FisVisited.clear(); isExitReachable |= exitReachable(F); } else { // This is a call to a pointer, all bets are off... isExitReachable = true; } if (isExitReachable) break; } } } if (DI.inCount > 0 && DI.outCount == 0) { // If this is a block with no successors. if (!isSetJmpTarget) { CheckValue(!Equals(DI.inWeight,DI.BBWeight), "inWeight and BBWeight do not match", &DI); } } else if (DI.inCount == 0 && DI.outCount > 0) { // If this is a block with no predecessors. if (!isExitReachable) CheckValue(!Equals(DI.BBWeight,DI.outWeight), "BBWeight and outWeight do not match", &DI); } else { // If this block has successors and predecessors. if (DI.inWeight > DI.outWeight && !isExitReachable) CheckValue(!Equals(DI.inWeight,DI.outWeight), "inWeight and outWeight do not match", &DI); if (DI.inWeight < DI.outWeight && !isSetJmpTarget) CheckValue(!Equals(DI.inWeight,DI.outWeight), "inWeight and outWeight do not match", &DI); } // Mark this block as visited, rescurse into successors. BBisVisited.insert(BB); for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB); bbi != bbe; ++bbi ) { recurseBasicBlock(*bbi); } } template<class FType, class BType> bool ProfileVerifierPassT<FType, BType>::runOnFunction(FType &F) { PI = getAnalysisIfAvailable<ProfileInfoT<FType, BType> >(); if (!PI) ASSERTMESSAGE("No ProfileInfo available"); // Prepare global variables. PrintedDebugTree = false; BBisVisited.clear(); // Fetch entry block and recurse into it. const BType *entry = &F.getEntryBlock(); recurseBasicBlock(entry); if (PI->getExecutionCount(&F) != PI->getExecutionCount(entry)) ASSERTMESSAGE("Function count and entry block count do not match"); return false; } template<class FType, class BType> char ProfileVerifierPassT<FType, BType>::ID = 0; } INITIALIZE_PASS_BEGIN(ProfileVerifierPass, "profile-verifier", "Verify profiling information", false, true) INITIALIZE_AG_DEPENDENCY(ProfileInfo) INITIALIZE_PASS_END(ProfileVerifierPass, "profile-verifier", "Verify profiling information", false, true) namespace llvm { FunctionPass *createProfileVerifierPass() { return new ProfileVerifierPass(ProfileVerifierDisableAssertions); } }