/* ******************************************************************************* * * Copyright (C) 2001-2011, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: unormcmp.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2004sep13 * created by: Markus W. Scherer * * unorm_compare() function moved here from unorm.cpp for better modularization. * Depends on both normalization and case folding. * Allows unorm.cpp to not depend on any character properties code. */ #include "unicode/utypes.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/unorm.h" #include "unicode/ustring.h" #include "cmemory.h" #include "normalizer2impl.h" #include "ucase.h" #include "uprops.h" #include "ustr_imp.h" U_NAMESPACE_USE #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) /* compare canonically equivalent ------------------------------------------- */ /* * Compare two strings for canonical equivalence. * Further options include case-insensitive comparison and * code point order (as opposed to code unit order). * * In this function, canonical equivalence is optional as well. * If canonical equivalence is tested, then both strings must fulfill * the FCD check. * * Semantically, this is equivalent to * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) * where code point order, NFD and foldCase are all optional. * * String comparisons almost always yield results before processing both strings * completely. * They are generally more efficient working incrementally instead of * performing the sub-processing (strlen, normalization, case-folding) * on the entire strings first. * * It is also unnecessary to not normalize identical characters. * * This function works in principle as follows: * * loop { * get one code unit c1 from s1 (-1 if end of source) * get one code unit c2 from s2 (-1 if end of source) * * if(either string finished) { * return result; * } * if(c1==c2) { * continue; * } * * // c1!=c2 * try to decompose/case-fold c1/c2, and continue if one does; * * // still c1!=c2 and neither decomposes/case-folds, return result * return c1-c2; * } * * When a character decomposes, then the pointer for that source changes to * the decomposition, pushing the previous pointer onto a stack. * When the end of the decomposition is reached, then the code unit reader * pops the previous source from the stack. * (Same for case-folding.) * * This is complicated further by operating on variable-width UTF-16. * The top part of the loop works on code units, while lookups for decomposition * and case-folding need code points. * Code points are assembled after the equality/end-of-source part. * The source pointer is only advanced beyond all code units when the code point * actually decomposes/case-folds. * * If we were on a trail surrogate unit when assembling a code point, * and the code point decomposes/case-folds, then the decomposition/folding * result must be compared with the part of the other string that corresponds to * this string's lead surrogate. * Since we only assemble a code point when hitting a trail unit when the * preceding lead units were identical, we back up the other string by one unit * in such a case. * * The optional code point order comparison at the end works with * the same fix-up as the other code point order comparison functions. * See ustring.c and the comment near the end of this function. * * Assumption: A decomposition or case-folding result string never contains * a single surrogate. This is a safe assumption in the Unicode Standard. * Therefore, we do not need to check for surrogate pairs across * decomposition/case-folding boundaries. * * Further assumptions (see verifications tstnorm.cpp): * The API function checks for FCD first, while the core function * first case-folds and then decomposes. This requires that case-folding does not * un-FCD any strings. * * The API function may also NFD the input and turn off decomposition. * This requires that case-folding does not un-NFD strings either. * * TODO If any of the above two assumptions is violated, * then this entire code must be re-thought. * If this happens, then a simple solution is to case-fold both strings up front * and to turn off UNORM_INPUT_IS_FCD. * We already do this when not both strings are in FCD because makeFCD * would be a partial NFD before the case folding, which does not work. * Note that all of this is only a problem when case-folding _and_ * canonical equivalence come together. * (Comments in unorm_compare() are more up to date than this TODO.) */ /* stack element for previous-level source/decomposition pointers */ struct CmpEquivLevel { const UChar *start, *s, *limit; }; typedef struct CmpEquivLevel CmpEquivLevel; /** * Internal option for unorm_cmpEquivFold() for decomposing. * If not set, just do strcasecmp(). */ #define _COMPARE_EQUIV 0x80000 /* internal function */ static int32_t unorm_cmpEquivFold(const UChar *s1, int32_t length1, const UChar *s2, int32_t length2, uint32_t options, UErrorCode *pErrorCode) { const Normalizer2Impl *nfcImpl; const UCaseProps *csp; /* current-level start/limit - s1/s2 as current */ const UChar *start1, *start2, *limit1, *limit2; /* decomposition and case folding variables */ const UChar *p; int32_t length; /* stacks of previous-level start/current/limit */ CmpEquivLevel stack1[2], stack2[2]; /* buffers for algorithmic decompositions */ UChar decomp1[4], decomp2[4]; /* case folding buffers, only use current-level start/limit */ UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; /* track which is the current level per string */ int32_t level1, level2; /* current code units, and code points for lookups */ UChar32 c1, c2, cp1, cp2; /* no argument error checking because this itself is not an API */ /* * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set * otherwise this function must behave exactly as uprv_strCompare() * not checking for that here makes testing this function easier */ /* normalization/properties data loaded? */ if((options&_COMPARE_EQUIV)!=0) { nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode); } else { nfcImpl=NULL; } if((options&U_COMPARE_IGNORE_CASE)!=0) { csp=ucase_getSingleton(); } else { csp=NULL; } if(U_FAILURE(*pErrorCode)) { return 0; } /* initialize */ start1=s1; if(length1==-1) { limit1=NULL; } else { limit1=s1+length1; } start2=s2; if(length2==-1) { limit2=NULL; } else { limit2=s2+length2; } level1=level2=0; c1=c2=-1; /* comparison loop */ for(;;) { /* * here a code unit value of -1 means "get another code unit" * below it will mean "this source is finished" */ if(c1<0) { /* get next code unit from string 1, post-increment */ for(;;) { if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { if(level1==0) { c1=-1; break; } } else { ++s1; break; } /* reached end of level buffer, pop one level */ do { --level1; start1=stack1[level1].start; } while(start1==NULL); s1=stack1[level1].s; limit1=stack1[level1].limit; } } if(c2<0) { /* get next code unit from string 2, post-increment */ for(;;) { if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { if(level2==0) { c2=-1; break; } } else { ++s2; break; } /* reached end of level buffer, pop one level */ do { --level2; start2=stack2[level2].start; } while(start2==NULL); s2=stack2[level2].s; limit2=stack2[level2].limit; } } /* * compare c1 and c2 * either variable c1, c2 is -1 only if the corresponding string is finished */ if(c1==c2) { if(c1<0) { return 0; /* c1==c2==-1 indicating end of strings */ } c1=c2=-1; /* make us fetch new code units */ continue; } else if(c1<0) { return -1; /* string 1 ends before string 2 */ } else if(c2<0) { return 1; /* string 2 ends before string 1 */ } /* c1!=c2 && c1>=0 && c2>=0 */ /* get complete code points for c1, c2 for lookups if either is a surrogate */ cp1=c1; if(U_IS_SURROGATE(c1)) { UChar c; if(U_IS_SURROGATE_LEAD(c1)) { if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) { /* advance ++s1; only below if cp1 decomposes/case-folds */ cp1=U16_GET_SUPPLEMENTARY(c1, c); } } else /* isTrail(c1) */ { if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) { cp1=U16_GET_SUPPLEMENTARY(c, c1); } } } cp2=c2; if(U_IS_SURROGATE(c2)) { UChar c; if(U_IS_SURROGATE_LEAD(c2)) { if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) { /* advance ++s2; only below if cp2 decomposes/case-folds */ cp2=U16_GET_SUPPLEMENTARY(c2, c); } } else /* isTrail(c2) */ { if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) { cp2=U16_GET_SUPPLEMENTARY(c, c2); } } } /* * go down one level for each string * continue with the main loop as soon as there is a real change */ if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && (length=ucase_toFullFolding(csp, (UChar32)cp1, &p, options))>=0 ) { /* cp1 case-folds to the code point "length" or to p[length] */ if(U_IS_SURROGATE(c1)) { if(U_IS_SURROGATE_LEAD(c1)) { /* advance beyond source surrogate pair if it case-folds */ ++s1; } else /* isTrail(c1) */ { /* * we got a supplementary code point when hitting its trail surrogate, * therefore the lead surrogate must have been the same as in the other string; * compare this decomposition with the lead surrogate in the other string * remember that this simulates bulk text replacement: * the decomposition would replace the entire code point */ --s2; c2=*(s2-1); } } /* push current level pointers */ stack1[0].start=start1; stack1[0].s=s1; stack1[0].limit=limit1; ++level1; /* copy the folding result to fold1[] */ if(length<=UCASE_MAX_STRING_LENGTH) { u_memcpy(fold1, p, length); } else { int32_t i=0; U16_APPEND_UNSAFE(fold1, i, length); length=i; } /* set next level pointers to case folding */ start1=s1=fold1; limit1=fold1+length; /* get ready to read from decomposition, continue with loop */ c1=-1; continue; } if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && (length=ucase_toFullFolding(csp, (UChar32)cp2, &p, options))>=0 ) { /* cp2 case-folds to the code point "length" or to p[length] */ if(U_IS_SURROGATE(c2)) { if(U_IS_SURROGATE_LEAD(c2)) { /* advance beyond source surrogate pair if it case-folds */ ++s2; } else /* isTrail(c2) */ { /* * we got a supplementary code point when hitting its trail surrogate, * therefore the lead surrogate must have been the same as in the other string; * compare this decomposition with the lead surrogate in the other string * remember that this simulates bulk text replacement: * the decomposition would replace the entire code point */ --s1; c1=*(s1-1); } } /* push current level pointers */ stack2[0].start=start2; stack2[0].s=s2; stack2[0].limit=limit2; ++level2; /* copy the folding result to fold2[] */ if(length<=UCASE_MAX_STRING_LENGTH) { u_memcpy(fold2, p, length); } else { int32_t i=0; U16_APPEND_UNSAFE(fold2, i, length); length=i; } /* set next level pointers to case folding */ start2=s2=fold2; limit2=fold2+length; /* get ready to read from decomposition, continue with loop */ c2=-1; continue; } if( level1<2 && (options&_COMPARE_EQUIV) && 0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length)) ) { /* cp1 decomposes into p[length] */ if(U_IS_SURROGATE(c1)) { if(U_IS_SURROGATE_LEAD(c1)) { /* advance beyond source surrogate pair if it decomposes */ ++s1; } else /* isTrail(c1) */ { /* * we got a supplementary code point when hitting its trail surrogate, * therefore the lead surrogate must have been the same as in the other string; * compare this decomposition with the lead surrogate in the other string * remember that this simulates bulk text replacement: * the decomposition would replace the entire code point */ --s2; c2=*(s2-1); } } /* push current level pointers */ stack1[level1].start=start1; stack1[level1].s=s1; stack1[level1].limit=limit1; ++level1; /* set empty intermediate level if skipped */ if(level1<2) { stack1[level1++].start=NULL; } /* set next level pointers to decomposition */ start1=s1=p; limit1=p+length; /* get ready to read from decomposition, continue with loop */ c1=-1; continue; } if( level2<2 && (options&_COMPARE_EQUIV) && 0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length)) ) { /* cp2 decomposes into p[length] */ if(U_IS_SURROGATE(c2)) { if(U_IS_SURROGATE_LEAD(c2)) { /* advance beyond source surrogate pair if it decomposes */ ++s2; } else /* isTrail(c2) */ { /* * we got a supplementary code point when hitting its trail surrogate, * therefore the lead surrogate must have been the same as in the other string; * compare this decomposition with the lead surrogate in the other string * remember that this simulates bulk text replacement: * the decomposition would replace the entire code point */ --s1; c1=*(s1-1); } } /* push current level pointers */ stack2[level2].start=start2; stack2[level2].s=s2; stack2[level2].limit=limit2; ++level2; /* set empty intermediate level if skipped */ if(level2<2) { stack2[level2++].start=NULL; } /* set next level pointers to decomposition */ start2=s2=p; limit2=p+length; /* get ready to read from decomposition, continue with loop */ c2=-1; continue; } /* * no decomposition/case folding, max level for both sides: * return difference result * * code point order comparison must not just return cp1-cp2 * because when single surrogates are present then the surrogate pairs * that formed cp1 and cp2 may be from different string indexes * * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units * c1=d800 cp1=10001 c2=dc00 cp2=10000 * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } * * therefore, use same fix-up as in ustring.c/uprv_strCompare() * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ * so we have slightly different pointer/start/limit comparisons here */ if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ if( (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) || (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2))) ) { /* part of a surrogate pair, leave >=d800 */ } else { /* BMP code point - may be surrogate code point - make <d800 */ c1-=0x2800; } if( (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) || (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2))) ) { /* part of a surrogate pair, leave >=d800 */ } else { /* BMP code point - may be surrogate code point - make <d800 */ c2-=0x2800; } } return c1-c2; } } U_CAPI int32_t U_EXPORT2 unorm_compare(const UChar *s1, int32_t length1, const UChar *s2, int32_t length2, uint32_t options, UErrorCode *pErrorCode) { /* argument checking */ if(U_FAILURE(*pErrorCode)) { return 0; } if(s1==0 || length1<-1 || s2==0 || length2<-1) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString fcd1, fcd2; int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT); options|=_COMPARE_EQUIV; /* * UAX #21 Case Mappings, as fixed for Unicode version 4 * (see Jitterbug 2021), defines a canonical caseless match as * * A string X is a canonical caseless match * for a string Y if and only if * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) * * For better performance, we check for FCD (or let the caller tell us that * both strings are in FCD) for the inner normalization. * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that * case-folding preserves the FCD-ness of a string. * The outer normalization is then only performed by unorm_cmpEquivFold() * when there is a difference. * * Exception: When using the Turkic case-folding option, we do perform * full NFD first. This is because in the Turkic case precomposed characters * with 0049 capital I or 0069 small i fold differently whether they * are first decomposed or not, so an FCD check - a check only for * canonical order - is not sufficient. */ if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) { const Normalizer2 *n2; if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { n2=Normalizer2Factory::getNFDInstance(*pErrorCode); } else { n2=Normalizer2Factory::getFCDInstance(*pErrorCode); } if (U_FAILURE(*pErrorCode)) { return 0; } // check if s1 and/or s2 fulfill the FCD conditions const UnicodeSet *uni32; if(normOptions&UNORM_UNICODE_3_2) { uni32=uniset_getUnicode32Instance(*pErrorCode); } else { uni32=NULL; // unused } if(U_FAILURE(*pErrorCode)) { return 0; } FilteredNormalizer2 fn2(*n2, *uni32); if(normOptions&UNORM_UNICODE_3_2) { n2=&fn2; } UnicodeString str1(length1<0, s1, length1); UnicodeString str2(length2<0, s2, length2); int32_t spanQCYes1=n2->spanQuickCheckYes(str1, *pErrorCode); int32_t spanQCYes2=n2->spanQuickCheckYes(str2, *pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } /* * ICU 2.4 had a further optimization: * If both strings were not in FCD, then they were both NFD'ed, * and the _COMPARE_EQUIV option was turned off. * It is not entirely clear that this is valid with the current * definition of the canonical caseless match. * Therefore, ICU 2.6 removes that optimization. */ if(spanQCYes1<str1.length()) { UnicodeString unnormalized=str1.tempSubString(spanQCYes1); fcd1.setTo(FALSE, str1.getBuffer(), spanQCYes1); n2->normalizeSecondAndAppend(fcd1, unnormalized, *pErrorCode); s1=fcd1.getBuffer(); length1=fcd1.length(); } if(spanQCYes2<str2.length()) { UnicodeString unnormalized=str2.tempSubString(spanQCYes2); fcd2.setTo(FALSE, str2.getBuffer(), spanQCYes2); n2->normalizeSecondAndAppend(fcd2, unnormalized, *pErrorCode); s2=fcd2.getBuffer(); length2=fcd2.length(); } } if(U_SUCCESS(*pErrorCode)) { return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); } else { return 0; } } #endif /* #if !UCONFIG_NO_NORMALIZATION */