/* ***************************************************************************** * Copyright (C) 1996-2010, International Business Machines Corporation and * * others. All Rights Reserved. * ***************************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/caniter.h" #include "unicode/normalizer2.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "unicode/usetiter.h" #include "unicode/ustring.h" #include "cmemory.h" #include "hash.h" #include "normalizer2impl.h" /** * This class allows one to iterate through all the strings that are canonically equivalent to a given * string. For example, here are some sample results: Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 1: \u0041\u030A\u0064\u0307\u0327 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 2: \u0041\u030A\u0064\u0327\u0307 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 3: \u0041\u030A\u1E0B\u0327 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 4: \u0041\u030A\u1E11\u0307 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 5: \u00C5\u0064\u0307\u0327 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 6: \u00C5\u0064\u0327\u0307 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 7: \u00C5\u1E0B\u0327 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 8: \u00C5\u1E11\u0307 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 9: \u212B\u0064\u0307\u0327 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 10: \u212B\u0064\u0327\u0307 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 11: \u212B\u1E0B\u0327 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 12: \u212B\u1E11\u0307 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, * since it has not been optimized for that situation. *@author M. Davis *@draft */ // public U_NAMESPACE_BEGIN // TODO: add boilerplate methods. UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) /** *@param source string to get results for */ CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : pieces(NULL), pieces_length(0), pieces_lengths(NULL), current(NULL), current_length(0), nfd(*Normalizer2Factory::getNFDInstance(status)), nfcImpl(*Normalizer2Factory::getNFCImpl(status)) { if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { setSource(sourceStr, status); } } CanonicalIterator::~CanonicalIterator() { cleanPieces(); } void CanonicalIterator::cleanPieces() { int32_t i = 0; if(pieces != NULL) { for(i = 0; i < pieces_length; i++) { if(pieces[i] != NULL) { delete[] pieces[i]; } } uprv_free(pieces); pieces = NULL; pieces_length = 0; } if(pieces_lengths != NULL) { uprv_free(pieces_lengths); pieces_lengths = NULL; } if(current != NULL) { uprv_free(current); current = NULL; current_length = 0; } } /** *@return gets the source: NOTE: it is the NFD form of source */ UnicodeString CanonicalIterator::getSource() { return source; } /** * Resets the iterator so that one can start again from the beginning. */ void CanonicalIterator::reset() { done = FALSE; for (int i = 0; i < current_length; ++i) { current[i] = 0; } } /** *@return the next string that is canonically equivalent. The value null is returned when * the iteration is done. */ UnicodeString CanonicalIterator::next() { int32_t i = 0; if (done) { buffer.setToBogus(); return buffer; } // delete old contents buffer.remove(); // construct return value for (i = 0; i < pieces_length; ++i) { buffer.append(pieces[i][current[i]]); } //String result = buffer.toString(); // not needed // find next value for next time for (i = current_length - 1; ; --i) { if (i < 0) { done = TRUE; break; } current[i]++; if (current[i] < pieces_lengths[i]) break; // got sequence current[i] = 0; } return buffer; } /** *@param set the source string to iterate against. This allows the same iterator to be used * while changing the source string, saving object creation. */ void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { int32_t list_length = 0; UChar32 cp = 0; int32_t start = 0; int32_t i = 0; UnicodeString *list = NULL; nfd.normalize(newSource, source, status); if(U_FAILURE(status)) { return; } done = FALSE; cleanPieces(); // catch degenerate case if (newSource.length() == 0) { pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); pieces_length = 1; current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); current_length = 1; if (pieces == NULL || pieces_lengths == NULL || current == NULL) { status = U_MEMORY_ALLOCATION_ERROR; goto CleanPartialInitialization; } current[0] = 0; pieces[0] = new UnicodeString[1]; pieces_lengths[0] = 1; if (pieces[0] == 0) { status = U_MEMORY_ALLOCATION_ERROR; goto CleanPartialInitialization; } return; } list = new UnicodeString[source.length()]; if (list == 0) { status = U_MEMORY_ALLOCATION_ERROR; goto CleanPartialInitialization; } // i should initialy be the number of code units at the // start of the string i = UTF16_CHAR_LENGTH(source.char32At(0)); //int32_t i = 1; // find the segments // This code iterates through the source string and // extracts segments that end up on a codepoint that // doesn't start any decompositions. (Analysis is done // on the NFD form - see above). for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { cp = source.char32At(i); if (nfcImpl.isCanonSegmentStarter(cp)) { source.extract(start, i-start, list[list_length++]); // add up to i start = i; } } source.extract(start, i-start, list[list_length++]); // add last one // allocate the arrays, and find the strings that are CE to each segment pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); pieces_length = list_length; pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); current_length = list_length; if (pieces == NULL || pieces_lengths == NULL || current == NULL) { status = U_MEMORY_ALLOCATION_ERROR; goto CleanPartialInitialization; } for (i = 0; i < current_length; i++) { current[i] = 0; } // for each segment, get all the combinations that can produce // it after NFD normalization for (i = 0; i < pieces_length; ++i) { //if (PROGRESS) printf("SEGMENT\n"); pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); } delete[] list; return; // Common section to cleanup all local variables and reset object variables. CleanPartialInitialization: if (list != NULL) { delete[] list; } cleanPieces(); } /** * Dumb recursive implementation of permutation. * TODO: optimize * @param source the string to find permutations for * @return the results in a set. */ void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { if(U_FAILURE(status)) { return; } //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); int32_t i = 0; // optimization: // if zero or one character, just return a set with it // we check for length < 2 to keep from counting code points all the time if (source.length() <= 2 && source.countChar32() <= 1) { UnicodeString *toPut = new UnicodeString(source); /* test for NULL */ if (toPut == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } result->put(source, toPut, status); return; } // otherwise iterate through the string, and recursively permute all the other characters UChar32 cp; Hashtable subpermute(status); if(U_FAILURE(status)) { return; } subpermute.setValueDeleter(uhash_deleteUnicodeString); for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { cp = source.char32At(i); const UHashElement *ne = NULL; int32_t el = -1; UnicodeString subPermuteString = source; // optimization: // if the character is canonical combining class zero, // don't permute it if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); continue; } subpermute.removeAll(); // see what the permutations of the characters before and after this one are //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); /* Test for buffer overflows */ if(U_FAILURE(status)) { return; } // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents // of source at this point. // prefix this character to all of them ne = subpermute.nextElement(el); while (ne != NULL) { UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); UnicodeString *chStr = new UnicodeString(cp); //test for NULL if (chStr == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); result->put(*chStr, chStr, status); ne = subpermute.nextElement(el); } } //return result; } // privates // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { Hashtable result(status); Hashtable permutations(status); Hashtable basic(status); if (U_FAILURE(status)) { return 0; } result.setValueDeleter(uhash_deleteUnicodeString); permutations.setValueDeleter(uhash_deleteUnicodeString); basic.setValueDeleter(uhash_deleteUnicodeString); UChar USeg[256]; int32_t segLen = segment.extract(USeg, 256, status); getEquivalents2(&basic, USeg, segLen, status); // now get all the permutations // add only the ones that are canonically equivalent // TODO: optimize by not permuting any class zero. const UHashElement *ne = NULL; int32_t el = -1; //Iterator it = basic.iterator(); ne = basic.nextElement(el); //while (it.hasNext()) while (ne != NULL) { //String item = (String) it.next(); UnicodeString item = *((UnicodeString *)(ne->value.pointer)); permutations.removeAll(); permute(item, CANITER_SKIP_ZEROES, &permutations, status); const UHashElement *ne2 = NULL; int32_t el2 = -1; //Iterator it2 = permutations.iterator(); ne2 = permutations.nextElement(el2); //while (it2.hasNext()) while (ne2 != NULL) { //String possible = (String) it2.next(); //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); UnicodeString attempt; nfd.normalize(possible, attempt, status); // TODO: check if operator == is semanticaly the same as attempt.equals(segment) if (attempt==segment) { //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). result.put(possible, new UnicodeString(possible), status); //add(possible); } else { //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); } ne2 = permutations.nextElement(el2); } ne = basic.nextElement(el); } /* Test for buffer overflows */ if(U_FAILURE(status)) { return 0; } // convert into a String[] to clean up storage //String[] finalResult = new String[result.size()]; UnicodeString *finalResult = NULL; int32_t resultCount; if((resultCount = result.count())) { finalResult = new UnicodeString[resultCount]; if (finalResult == 0) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } } else { status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } //result.toArray(finalResult); result_len = 0; el = -1; ne = result.nextElement(el); while(ne != NULL) { finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); ne = result.nextElement(el); } return finalResult; } Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); UnicodeString toPut(segment, segLen); fillinResult->put(toPut, new UnicodeString(toPut), status); UnicodeSet starts; // cycle through all the characters UChar32 cp; for (int32_t i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) { // see if any character is at the start of some decomposition UTF_GET_CHAR(segment, 0, i, segLen, cp); if (!nfcImpl.getCanonStartSet(cp, starts)) { continue; } // if so, see which decompositions match UnicodeSetIterator iter(starts); while (iter.next()) { UChar32 cp2 = iter.getCodepoint(); Hashtable remainder(status); remainder.setValueDeleter(uhash_deleteUnicodeString); if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { continue; } // there were some matches, so add all the possibilities to the set. UnicodeString prefix(segment, i); prefix += cp2; int32_t el = -1; const UHashElement *ne = remainder.nextElement(el); while (ne != NULL) { UnicodeString item = *((UnicodeString *)(ne->value.pointer)); UnicodeString *toAdd = new UnicodeString(prefix); /* test for NULL */ if (toAdd == 0) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } *toAdd += item; fillinResult->put(*toAdd, toAdd, status); //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); ne = remainder.nextElement(el); } } } /* Test for buffer overflows */ if(U_FAILURE(status)) { return NULL; } return fillinResult; } /** * See if the decomposition of cp2 is at segment starting at segmentPos * (with canonical rearrangment!) * If so, take the remainder, and return the equivalents */ Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); if (U_FAILURE(status)) { return NULL; } UnicodeString temp(comp); int32_t inputLen=temp.length(); UnicodeString decompString; nfd.normalize(temp, decompString, status); const UChar *decomp=decompString.getBuffer(); int32_t decompLen=decompString.length(); // See if it matches the start of segment (at segmentPos) UBool ok = FALSE; UChar32 cp; int32_t decompPos = 0; UChar32 decompCp; U16_NEXT(decomp, decompPos, decompLen, decompCp); int32_t i = segmentPos; while(i < segLen) { U16_NEXT(segment, i, segLen, cp); if (cp == decompCp) { // if equal, eat another cp from decomp //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); if (decompPos == decompLen) { // done, have all decomp characters! temp.append(segment+i, segLen-i); ok = TRUE; break; } U16_NEXT(decomp, decompPos, decompLen, decompCp); } else { //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); // brute force approach temp.append(cp); /* TODO: optimize // since we know that the classes are monotonically increasing, after zero // e.g. 0 5 7 9 0 3 // we can do an optimization // there are only a few cases that work: zero, less, same, greater // if both classes are the same, we fail // if the decomp class < the segment class, we fail segClass = getClass(cp); if (decompClass <= segClass) return null; */ } } if (!ok) return NULL; // we failed, characters left over //if (PROGRESS) printf("Matches\n"); if (inputLen == temp.length()) { fillinResult->put(UnicodeString(), new UnicodeString(), status); return fillinResult; // succeed, but no remainder } // brute force approach // check to make sure result is canonically equivalent UnicodeString trial; nfd.normalize(temp, trial, status); if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { return NULL; } return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_NORMALIZATION */