//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main internal TSan header file. // // Ground rules: // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static // function-scope locals) // - All functions/classes/etc reside in namespace __tsan, except for those // declared in tsan_interface.h. // - Platform-specific files should be used instead of ifdefs (*). // - No system headers included in header files (*). // - Platform specific headres included only into platform-specific files (*). // // (*) Except when inlining is critical for performance. //===----------------------------------------------------------------------===// #ifndef TSAN_RTL_H #define TSAN_RTL_H #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_allocator64.h" #include "tsan_clock.h" #include "tsan_defs.h" #include "tsan_flags.h" #include "tsan_sync.h" #include "tsan_trace.h" #include "tsan_vector.h" #include "tsan_report.h" namespace __tsan { // Descriptor of user's memory block. struct MBlock { Mutex mtx; uptr size; u32 alloc_tid; u32 alloc_stack_id; SyncVar *head; }; #ifndef TSAN_GO #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW const uptr kAllocatorSpace = 0x7d0000000000ULL; #else const uptr kAllocatorSpace = 0x7d0000000000ULL; #endif const uptr kAllocatorSize = 0x10000000000ULL; // 1T. typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock), DefaultSizeClassMap> PrimaryAllocator; typedef SizeClassAllocatorLocalCache<PrimaryAllocator::kNumClasses, PrimaryAllocator> AllocatorCache; typedef LargeMmapAllocator SecondaryAllocator; typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator> Allocator; Allocator *allocator(); #endif void TsanPrintf(const char *format, ...); // FastState (from most significant bit): // unused : 1 // tid : kTidBits // epoch : kClkBits // unused : - // ignore_bit : 1 class FastState { public: FastState(u64 tid, u64 epoch) { x_ = tid << kTidShift; x_ |= epoch << kClkShift; DCHECK(tid == this->tid()); DCHECK(epoch == this->epoch()); } explicit FastState(u64 x) : x_(x) { } u64 raw() const { return x_; } u64 tid() const { u64 res = x_ >> kTidShift; return res; } u64 epoch() const { u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits); return res; } void IncrementEpoch() { u64 old_epoch = epoch(); x_ += 1 << kClkShift; DCHECK_EQ(old_epoch + 1, epoch()); (void)old_epoch; } void SetIgnoreBit() { x_ |= kIgnoreBit; } void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } bool GetIgnoreBit() const { return x_ & kIgnoreBit; } private: friend class Shadow; static const int kTidShift = 64 - kTidBits - 1; static const int kClkShift = kTidShift - kClkBits; static const u64 kIgnoreBit = 1ull; static const u64 kFreedBit = 1ull << 63; u64 x_; }; // Shadow (from most significant bit): // freed : 1 // tid : kTidBits // epoch : kClkBits // is_write : 1 // size_log : 2 // addr0 : 3 class Shadow : public FastState { public: explicit Shadow(u64 x) : FastState(x) { } explicit Shadow(const FastState &s) : FastState(s.x_) { } void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { DCHECK_EQ(x_ & 31, 0); DCHECK_LE(addr0, 7); DCHECK_LE(kAccessSizeLog, 3); x_ |= (kAccessSizeLog << 3) | addr0; DCHECK_EQ(kAccessSizeLog, size_log()); DCHECK_EQ(addr0, this->addr0()); } void SetWrite(unsigned kAccessIsWrite) { DCHECK_EQ(x_ & 32, 0); if (kAccessIsWrite) x_ |= 32; DCHECK_EQ(kAccessIsWrite, is_write()); } bool IsZero() const { return x_ == 0; } static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; DCHECK_EQ(shifted_xor == 0, s1.tid() == s2.tid()); return shifted_xor == 0; } static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { u64 masked_xor = (s1.x_ ^ s2.x_) & 31; return masked_xor == 0; } static inline bool TwoRangesIntersect(Shadow s1, Shadow s2, unsigned kS2AccessSize) { bool res = false; u64 diff = s1.addr0() - s2.addr0(); if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT // if (s1.addr0() + size1) > s2.addr0()) return true; if (s1.size() > -diff) res = true; } else { // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; if (kS2AccessSize > diff) res = true; } DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2)); DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1)); return res; } // The idea behind the offset is as follows. // Consider that we have 8 bool's contained within a single 8-byte block // (mapped to a single shadow "cell"). Now consider that we write to the bools // from a single thread (which we consider the common case). // W/o offsetting each access will have to scan 4 shadow values at average // to find the corresponding shadow value for the bool. // With offsetting we start scanning shadow with the offset so that // each access hits necessary shadow straight off (at least in an expected // optimistic case). // This logic works seamlessly for any layout of user data. For example, // if user data is {int, short, char, char}, then accesses to the int are // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses // from a single thread won't need to scan all 8 shadow values. unsigned ComputeSearchOffset() { return x_ & 7; } u64 addr0() const { return x_ & 7; } u64 size() const { return 1ull << size_log(); } bool is_write() const { return x_ & 32; } // The idea behind the freed bit is as follows. // When the memory is freed (or otherwise unaccessible) we write to the shadow // values with tid/epoch related to the free and the freed bit set. // During memory accesses processing the freed bit is considered // as msb of tid. So any access races with shadow with freed bit set // (it is as if write from a thread with which we never synchronized before). // This allows us to detect accesses to freed memory w/o additional // overheads in memory access processing and at the same time restore // tid/epoch of free. void MarkAsFreed() { x_ |= kFreedBit; } bool GetFreedAndReset() { bool res = x_ & kFreedBit; x_ &= ~kFreedBit; return res; } private: u64 size_log() const { return (x_ >> 3) & 3; } static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) { if (s1.addr0() == s2.addr0()) return true; if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) return true; if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) return true; return false; } }; // Freed memory. // As if 8-byte write by thread 0xff..f at epoch 0xff..f, races with everything. const u64 kShadowFreed = 0xfffffffffffffff8ull; struct SignalContext; // This struct is stored in TLS. struct ThreadState { FastState fast_state; // Synch epoch represents the threads's epoch before the last synchronization // action. It allows to reduce number of shadow state updates. // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, // if we are processing write to X from the same thread at epoch=200, // we do nothing, because both writes happen in the same 'synch epoch'. // That is, if another memory access does not race with the former write, // it does not race with the latter as well. // QUESTION: can we can squeeze this into ThreadState::Fast? // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are // taken by epoch between synchs. // This way we can save one load from tls. u64 fast_synch_epoch; // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. // We do not distinguish beteween ignoring reads and writes // for better performance. int ignore_reads_and_writes; uptr *shadow_stack_pos; u64 *racy_shadow_addr; u64 racy_state[2]; Trace trace; #ifndef TSAN_GO // C/C++ uses embed shadow stack of fixed size. uptr shadow_stack[kShadowStackSize]; #else // Go uses satellite shadow stack with dynamic size. uptr *shadow_stack; uptr *shadow_stack_end; #endif ThreadClock clock; #ifndef TSAN_GO AllocatorCache alloc_cache; #endif u64 stat[StatCnt]; const int tid; const int unique_id; int in_rtl; bool is_alive; const uptr stk_addr; const uptr stk_size; const uptr tls_addr; const uptr tls_size; DeadlockDetector deadlock_detector; bool in_signal_handler; SignalContext *signal_ctx; #ifndef TSAN_GO u32 last_sleep_stack_id; ThreadClock last_sleep_clock; #endif // Set in regions of runtime that must be signal-safe and fork-safe. // If set, malloc must not be called. int nomalloc; explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size); }; Context *CTX(); #ifndef TSAN_GO extern THREADLOCAL char cur_thread_placeholder[]; INLINE ThreadState *cur_thread() { return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); } #endif enum ThreadStatus { ThreadStatusInvalid, // Non-existent thread, data is invalid. ThreadStatusCreated, // Created but not yet running. ThreadStatusRunning, // The thread is currently running. ThreadStatusFinished, // Joinable thread is finished but not yet joined. ThreadStatusDead, // Joined, but some info (trace) is still alive. }; // An info about a thread that is hold for some time after its termination. struct ThreadDeadInfo { Trace trace; }; struct ThreadContext { const int tid; int unique_id; // Non-rolling thread id. uptr user_id; // Some opaque user thread id (e.g. pthread_t). ThreadState *thr; ThreadStatus status; bool detached; int reuse_count; SyncClock sync; // Epoch at which the thread had started. // If we see an event from the thread stamped by an older epoch, // the event is from a dead thread that shared tid with this thread. u64 epoch0; u64 epoch1; StackTrace creation_stack; ThreadDeadInfo *dead_info; ThreadContext *dead_next; // In dead thread list. explicit ThreadContext(int tid); }; struct RacyStacks { MD5Hash hash[2]; bool operator==(const RacyStacks &other) const { if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) return true; if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) return true; return false; } }; struct RacyAddress { uptr addr_min; uptr addr_max; }; struct Context { Context(); bool initialized; SyncTab synctab; Mutex report_mtx; int nreported; int nmissed_expected; Mutex thread_mtx; unsigned thread_seq; unsigned unique_thread_seq; int alive_threads; int max_alive_threads; ThreadContext *threads[kMaxTid]; int dead_list_size; ThreadContext* dead_list_head; ThreadContext* dead_list_tail; Vector<RacyStacks> racy_stacks; Vector<RacyAddress> racy_addresses; Flags flags; u64 stat[StatCnt]; u64 int_alloc_cnt[MBlockTypeCount]; u64 int_alloc_siz[MBlockTypeCount]; }; class ScopedInRtl { public: ScopedInRtl(); ~ScopedInRtl(); private: ThreadState*thr_; int in_rtl_; int errno_; }; class ScopedReport { public: explicit ScopedReport(ReportType typ); ~ScopedReport(); void AddStack(const StackTrace *stack); void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack); void AddThread(const ThreadContext *tctx); void AddMutex(const SyncVar *s); void AddLocation(uptr addr, uptr size); void AddSleep(u32 stack_id); const ReportDesc *GetReport() const; private: Context *ctx_; ReportDesc *rep_; ScopedReport(const ScopedReport&); void operator = (const ScopedReport&); }; void RestoreStack(int tid, const u64 epoch, StackTrace *stk); void StatAggregate(u64 *dst, u64 *src); void StatOutput(u64 *stat); void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { if (kCollectStats) thr->stat[typ] += n; } void InitializeShadowMemory(); void InitializeInterceptors(); void InitializeDynamicAnnotations(); void ReportRace(ThreadState *thr); bool OutputReport(const ScopedReport &srep, const ReportStack *suppress_stack = 0); bool IsExpectedReport(uptr addr, uptr size); #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 # define DPrintf TsanPrintf #else # define DPrintf(...) #endif #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 # define DPrintf2 TsanPrintf #else # define DPrintf2(...) #endif u32 CurrentStackId(ThreadState *thr, uptr pc); void PrintCurrentStack(ThreadState *thr, uptr pc); void Initialize(ThreadState *thr); int Finalize(ThreadState *thr); void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite); void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state, u64 *shadow_mem, Shadow cur); void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr); void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr); void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr); void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr); void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, bool is_write); void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); void IgnoreCtl(ThreadState *thr, bool write, bool begin); void FuncEntry(ThreadState *thr, uptr pc); void FuncExit(ThreadState *thr); int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); void ThreadStart(ThreadState *thr, int tid); void ThreadFinish(ThreadState *thr); int ThreadTid(ThreadState *thr, uptr pc, uptr uid); void ThreadJoin(ThreadState *thr, uptr pc, int tid); void ThreadDetach(ThreadState *thr, uptr pc, int tid); void ThreadFinalize(ThreadState *thr); void ThreadFinalizerGoroutine(ThreadState *thr); void MutexCreate(ThreadState *thr, uptr pc, uptr addr, bool rw, bool recursive, bool linker_init); void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); void MutexLock(ThreadState *thr, uptr pc, uptr addr); void MutexUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexReadLock(ThreadState *thr, uptr pc, uptr addr); void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); void Acquire(ThreadState *thr, uptr pc, uptr addr); void Release(ThreadState *thr, uptr pc, uptr addr); void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); void AfterSleep(ThreadState *thr, uptr pc); // The hacky call uses custom calling convention and an assembly thunk. // It is considerably faster that a normal call for the caller // if it is not executed (it is intended for slow paths from hot functions). // The trick is that the call preserves all registers and the compiler // does not treat it as a call. // If it does not work for you, use normal call. #if TSAN_DEBUG == 0 // The caller may not create the stack frame for itself at all, // so we create a reserve stack frame for it (1024b must be enough). #define HACKY_CALL(f) \ __asm__ __volatile__("sub $1024, %%rsp;" \ "/*.cfi_adjust_cfa_offset 1024;*/" \ "call " #f "_thunk;" \ "add $1024, %%rsp;" \ "/*.cfi_adjust_cfa_offset -1024;*/" \ ::: "memory", "cc"); #else #define HACKY_CALL(f) f() #endif void TraceSwitch(ThreadState *thr); extern "C" void __tsan_trace_switch(); void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, u64 epoch, EventType typ, uptr addr) { StatInc(thr, StatEvents); if (UNLIKELY((epoch % kTracePartSize) == 0)) { #ifndef TSAN_GO HACKY_CALL(__tsan_trace_switch); #else TraceSwitch(thr); #endif } Event *evp = &thr->trace.events[epoch % kTraceSize]; Event ev = (u64)addr | ((u64)typ << 61); *evp = ev; } } // namespace __tsan #endif // TSAN_RTL_H