//===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of RTTI descriptors. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CGCXXABI.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/Type.h" #include "clang/Frontend/CodeGenOptions.h" #include "CGObjCRuntime.h" using namespace clang; using namespace CodeGen; namespace { class RTTIBuilder { CodeGenModule &CGM; // Per-module state. llvm::LLVMContext &VMContext; /// Fields - The fields of the RTTI descriptor currently being built. SmallVector<llvm::Constant *, 16> Fields; /// GetAddrOfTypeName - Returns the mangled type name of the given type. llvm::GlobalVariable * GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI /// descriptor of the given type. llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); /// BuildVTablePointer - Build the vtable pointer for the given type. void BuildVTablePointer(const Type *Ty); /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. void BuildSIClassTypeInfo(const CXXRecordDecl *RD); /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used /// for pointer types. void BuildPointerTypeInfo(QualType PointeeTy); /// BuildObjCObjectTypeInfo - Build the appropriate kind of /// type_info for an object type. void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); public: RTTIBuilder(CodeGenModule &CGM) : CGM(CGM), VMContext(CGM.getModule().getContext()) { } // Pointer type info flags. enum { /// PTI_Const - Type has const qualifier. PTI_Const = 0x1, /// PTI_Volatile - Type has volatile qualifier. PTI_Volatile = 0x2, /// PTI_Restrict - Type has restrict qualifier. PTI_Restrict = 0x4, /// PTI_Incomplete - Type is incomplete. PTI_Incomplete = 0x8, /// PTI_ContainingClassIncomplete - Containing class is incomplete. /// (in pointer to member). PTI_ContainingClassIncomplete = 0x10 }; // VMI type info flags. enum { /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. VMI_NonDiamondRepeat = 0x1, /// VMI_DiamondShaped - Class is diamond shaped. VMI_DiamondShaped = 0x2 }; // Base class type info flags. enum { /// BCTI_Virtual - Base class is virtual. BCTI_Virtual = 0x1, /// BCTI_Public - Base class is public. BCTI_Public = 0x2 }; /// BuildTypeInfo - Build the RTTI type info struct for the given type. /// /// \param Force - true to force the creation of this RTTI value llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false); }; } llvm::GlobalVariable * RTTIBuilder::GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); Out.flush(); StringRef Name = OutName.str(); // We know that the mangled name of the type starts at index 4 of the // mangled name of the typename, so we can just index into it in order to // get the mangled name of the type. llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, Name.substr(4)); llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage); GV->setInitializer(Init); return GV; } llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { // Mangle the RTTI name. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); Out.flush(); StringRef Name = OutName.str(); // Look for an existing global. llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); if (!GV) { // Create a new global variable. GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, /*Constant=*/true, llvm::GlobalValue::ExternalLinkage, 0, Name); } return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); } /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type /// info for that type is defined in the standard library. static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { // Itanium C++ ABI 2.9.2: // Basic type information (e.g. for "int", "bool", etc.) will be kept in // the run-time support library. Specifically, the run-time support // library should contain type_info objects for the types X, X* and // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, // unsigned char, signed char, short, unsigned short, int, unsigned int, // long, unsigned long, long long, unsigned long long, float, double, // long double, char16_t, char32_t, and the IEEE 754r decimal and // half-precision floating point types. switch (Ty->getKind()) { case BuiltinType::Void: case BuiltinType::NullPtr: case BuiltinType::Bool: case BuiltinType::WChar_S: case BuiltinType::WChar_U: case BuiltinType::Char_U: case BuiltinType::Char_S: case BuiltinType::UChar: case BuiltinType::SChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: case BuiltinType::Long: case BuiltinType::ULong: case BuiltinType::LongLong: case BuiltinType::ULongLong: case BuiltinType::Half: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::Int128: case BuiltinType::UInt128: return true; case BuiltinType::Dependent: #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" llvm_unreachable("asking for RRTI for a placeholder type!"); case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: llvm_unreachable("FIXME: Objective-C types are unsupported!"); } llvm_unreachable("Invalid BuiltinType Kind!"); } static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { QualType PointeeTy = PointerTy->getPointeeType(); const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); if (!BuiltinTy) return false; // Check the qualifiers. Qualifiers Quals = PointeeTy.getQualifiers(); Quals.removeConst(); if (!Quals.empty()) return false; return TypeInfoIsInStandardLibrary(BuiltinTy); } /// IsStandardLibraryRTTIDescriptor - Returns whether the type /// information for the given type exists in the standard library. static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { // Type info for builtin types is defined in the standard library. if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) return TypeInfoIsInStandardLibrary(BuiltinTy); // Type info for some pointer types to builtin types is defined in the // standard library. if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) return TypeInfoIsInStandardLibrary(PointerTy); return false; } /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for /// the given type exists somewhere else, and that we should not emit the type /// information in this translation unit. Assumes that it is not a /// standard-library type. static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) { ASTContext &Context = CGM.getContext(); // If RTTI is disabled, don't consider key functions. if (!Context.getLangOpts().RTTI) return false; if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); if (!RD->hasDefinition()) return false; if (!RD->isDynamicClass()) return false; return !CGM.getVTables().ShouldEmitVTableInThisTU(RD); } return false; } /// IsIncompleteClassType - Returns whether the given record type is incomplete. static bool IsIncompleteClassType(const RecordType *RecordTy) { return !RecordTy->getDecl()->isCompleteDefinition(); } /// ContainsIncompleteClassType - Returns whether the given type contains an /// incomplete class type. This is true if /// /// * The given type is an incomplete class type. /// * The given type is a pointer type whose pointee type contains an /// incomplete class type. /// * The given type is a member pointer type whose class is an incomplete /// class type. /// * The given type is a member pointer type whoise pointee type contains an /// incomplete class type. /// is an indirect or direct pointer to an incomplete class type. static bool ContainsIncompleteClassType(QualType Ty) { if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { if (IsIncompleteClassType(RecordTy)) return true; } if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) return ContainsIncompleteClassType(PointerTy->getPointeeType()); if (const MemberPointerType *MemberPointerTy = dyn_cast<MemberPointerType>(Ty)) { // Check if the class type is incomplete. const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass()); if (IsIncompleteClassType(ClassType)) return true; return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); } return false; } /// getTypeInfoLinkage - Return the linkage that the type info and type info /// name constants should have for the given type. static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) { // Itanium C++ ABI 2.9.5p7: // In addition, it and all of the intermediate abi::__pointer_type_info // structs in the chain down to the abi::__class_type_info for the // incomplete class type must be prevented from resolving to the // corresponding type_info structs for the complete class type, possibly // by making them local static objects. Finally, a dummy class RTTI is // generated for the incomplete type that will not resolve to the final // complete class RTTI (because the latter need not exist), possibly by // making it a local static object. if (ContainsIncompleteClassType(Ty)) return llvm::GlobalValue::InternalLinkage; switch (Ty->getLinkage()) { case NoLinkage: case InternalLinkage: case UniqueExternalLinkage: return llvm::GlobalValue::InternalLinkage; case ExternalLinkage: if (!CGM.getLangOpts().RTTI) { // RTTI is not enabled, which means that this type info struct is going // to be used for exception handling. Give it linkonce_odr linkage. return llvm::GlobalValue::LinkOnceODRLinkage; } if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); if (RD->hasAttr<WeakAttr>()) return llvm::GlobalValue::WeakODRLinkage; if (RD->isDynamicClass()) return CGM.getVTableLinkage(RD); } return llvm::GlobalValue::LinkOnceODRLinkage; } llvm_unreachable("Invalid linkage!"); } // CanUseSingleInheritance - Return whether the given record decl has a "single, // public, non-virtual base at offset zero (i.e. the derived class is dynamic // iff the base is)", according to Itanium C++ ABI, 2.95p6b. static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { // Check the number of bases. if (RD->getNumBases() != 1) return false; // Get the base. CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); // Check that the base is not virtual. if (Base->isVirtual()) return false; // Check that the base is public. if (Base->getAccessSpecifier() != AS_public) return false; // Check that the class is dynamic iff the base is. const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); if (!BaseDecl->isEmpty() && BaseDecl->isDynamicClass() != RD->isDynamicClass()) return false; return true; } void RTTIBuilder::BuildVTablePointer(const Type *Ty) { // abi::__class_type_info. static const char * const ClassTypeInfo = "_ZTVN10__cxxabiv117__class_type_infoE"; // abi::__si_class_type_info. static const char * const SIClassTypeInfo = "_ZTVN10__cxxabiv120__si_class_type_infoE"; // abi::__vmi_class_type_info. static const char * const VMIClassTypeInfo = "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; const char *VTableName = 0; switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" llvm_unreachable("Non-canonical and dependent types shouldn't get here"); case Type::LValueReference: case Type::RValueReference: llvm_unreachable("References shouldn't get here"); case Type::Builtin: // GCC treats vector and complex types as fundamental types. case Type::Vector: case Type::ExtVector: case Type::Complex: case Type::Atomic: // FIXME: GCC treats block pointers as fundamental types?! case Type::BlockPointer: // abi::__fundamental_type_info. VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; break; case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: // abi::__array_type_info. VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; break; case Type::FunctionNoProto: case Type::FunctionProto: // abi::__function_type_info. VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; break; case Type::Enum: // abi::__enum_type_info. VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; break; case Type::Record: { const CXXRecordDecl *RD = cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { VTableName = ClassTypeInfo; } else if (CanUseSingleInheritance(RD)) { VTableName = SIClassTypeInfo; } else { VTableName = VMIClassTypeInfo; } break; } case Type::ObjCObject: // Ignore protocol qualifiers. Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); // Handle id and Class. if (isa<BuiltinType>(Ty)) { VTableName = ClassTypeInfo; break; } assert(isa<ObjCInterfaceType>(Ty)); // Fall through. case Type::ObjCInterface: if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { VTableName = SIClassTypeInfo; } else { VTableName = ClassTypeInfo; } break; case Type::ObjCObjectPointer: case Type::Pointer: // abi::__pointer_type_info. VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; break; case Type::MemberPointer: // abi::__pointer_to_member_type_info. VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; break; } llvm::Constant *VTable = CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy); llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); // The vtable address point is 2. llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two); VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy); Fields.push_back(VTable); } // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures // from available_externally to the correct linkage if necessary. An example of // this is: // // struct A { // virtual void f(); // }; // // const std::type_info &g() { // return typeid(A); // } // // void A::f() { } // // When we're generating the typeid(A) expression, we do not yet know that // A's key function is defined in this translation unit, so we will give the // typeinfo and typename structures available_externally linkage. When A::f // forces the vtable to be generated, we need to change the linkage of the // typeinfo and typename structs, otherwise we'll end up with undefined // externals when linking. static void maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV, QualType Ty) { // We're only interested in globals with available_externally linkage. if (!GV->hasAvailableExternallyLinkage()) return; // Get the real linkage for the type. llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); // If variable is supposed to have available_externally linkage, we don't // need to do anything. if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) return; // Update the typeinfo linkage. GV->setLinkage(Linkage); // Get the typename global. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); Out.flush(); StringRef Name = OutName.str(); llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name); assert(TypeNameGV->hasAvailableExternallyLinkage() && "Type name has different linkage from type info!"); // And update its linkage. TypeNameGV->setLinkage(Linkage); } llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) { // We want to operate on the canonical type. Ty = CGM.getContext().getCanonicalType(Ty); // Check if we've already emitted an RTTI descriptor for this type. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); Out.flush(); StringRef Name = OutName.str(); llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); if (OldGV && !OldGV->isDeclaration()) { maybeUpdateRTTILinkage(CGM, OldGV, Ty); return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy); } // Check if there is already an external RTTI descriptor for this type. bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty); if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty))) return GetAddrOfExternalRTTIDescriptor(Ty); // Emit the standard library with external linkage. llvm::GlobalVariable::LinkageTypes Linkage; if (IsStdLib) Linkage = llvm::GlobalValue::ExternalLinkage; else Linkage = getTypeInfoLinkage(CGM, Ty); // Add the vtable pointer. BuildVTablePointer(cast<Type>(Ty)); // And the name. llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy)); switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" llvm_unreachable("Non-canonical and dependent types shouldn't get here"); // GCC treats vector types as fundamental types. case Type::Builtin: case Type::Vector: case Type::ExtVector: case Type::Complex: case Type::BlockPointer: // Itanium C++ ABI 2.9.5p4: // abi::__fundamental_type_info adds no data members to std::type_info. break; case Type::LValueReference: case Type::RValueReference: llvm_unreachable("References shouldn't get here"); case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: // Itanium C++ ABI 2.9.5p5: // abi::__array_type_info adds no data members to std::type_info. break; case Type::FunctionNoProto: case Type::FunctionProto: // Itanium C++ ABI 2.9.5p5: // abi::__function_type_info adds no data members to std::type_info. break; case Type::Enum: // Itanium C++ ABI 2.9.5p5: // abi::__enum_type_info adds no data members to std::type_info. break; case Type::Record: { const CXXRecordDecl *RD = cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { // We don't need to emit any fields. break; } if (CanUseSingleInheritance(RD)) BuildSIClassTypeInfo(RD); else BuildVMIClassTypeInfo(RD); break; } case Type::ObjCObject: case Type::ObjCInterface: BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); break; case Type::ObjCObjectPointer: BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); break; case Type::Pointer: BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); break; case Type::MemberPointer: BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); break; case Type::Atomic: // No fields, at least for the moment. break; } llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), /*Constant=*/true, Linkage, Init, Name); // If there's already an old global variable, replace it with the new one. if (OldGV) { GV->takeName(OldGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtr); OldGV->eraseFromParent(); } // GCC only relies on the uniqueness of the type names, not the // type_infos themselves, so we can emit these as hidden symbols. // But don't do this if we're worried about strict visibility // compatibility. if (const RecordType *RT = dyn_cast<RecordType>(Ty)) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI); CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName); } else { Visibility TypeInfoVisibility = DefaultVisibility; if (CGM.getCodeGenOpts().HiddenWeakVTables && Linkage == llvm::GlobalValue::LinkOnceODRLinkage) TypeInfoVisibility = HiddenVisibility; // The type name should have the same visibility as the type itself. Visibility ExplicitVisibility = Ty->getVisibility(); TypeName->setVisibility(CodeGenModule:: GetLLVMVisibility(ExplicitVisibility)); TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility()); GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility)); } GV->setUnnamedAddr(true); return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); } /// ComputeQualifierFlags - Compute the pointer type info flags from the /// given qualifier. static unsigned ComputeQualifierFlags(Qualifiers Quals) { unsigned Flags = 0; if (Quals.hasConst()) Flags |= RTTIBuilder::PTI_Const; if (Quals.hasVolatile()) Flags |= RTTIBuilder::PTI_Volatile; if (Quals.hasRestrict()) Flags |= RTTIBuilder::PTI_Restrict; return Flags; } /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info /// for the given Objective-C object type. void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { // Drop qualifiers. const Type *T = OT->getBaseType().getTypePtr(); assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); // The builtin types are abi::__class_type_infos and don't require // extra fields. if (isa<BuiltinType>(T)) return; ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); ObjCInterfaceDecl *Super = Class->getSuperClass(); // Root classes are also __class_type_info. if (!Super) return; QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); // Everything else is single inheritance. llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy); Fields.push_back(BaseTypeInfo); } /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.95p6b. void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { // Itanium C++ ABI 2.9.5p6b: // It adds to abi::__class_type_info a single member pointing to the // type_info structure for the base type, llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType()); Fields.push_back(BaseTypeInfo); } namespace { /// SeenBases - Contains virtual and non-virtual bases seen when traversing /// a class hierarchy. struct SeenBases { llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; }; } /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in /// abi::__vmi_class_type_info. /// static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, SeenBases &Bases) { unsigned Flags = 0; const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); if (Base->isVirtual()) { // Mark the virtual base as seen. if (!Bases.VirtualBases.insert(BaseDecl)) { // If this virtual base has been seen before, then the class is diamond // shaped. Flags |= RTTIBuilder::VMI_DiamondShaped; } else { if (Bases.NonVirtualBases.count(BaseDecl)) Flags |= RTTIBuilder::VMI_NonDiamondRepeat; } } else { // Mark the non-virtual base as seen. if (!Bases.NonVirtualBases.insert(BaseDecl)) { // If this non-virtual base has been seen before, then the class has non- // diamond shaped repeated inheritance. Flags |= RTTIBuilder::VMI_NonDiamondRepeat; } else { if (Bases.VirtualBases.count(BaseDecl)) Flags |= RTTIBuilder::VMI_NonDiamondRepeat; } } // Walk all bases. for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(), E = BaseDecl->bases_end(); I != E; ++I) Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); return Flags; } static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { unsigned Flags = 0; SeenBases Bases; // Walk all bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) Flags |= ComputeVMIClassTypeInfoFlags(I, Bases); return Flags; } /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); // Itanium C++ ABI 2.9.5p6c: // __flags is a word with flags describing details about the class // structure, which may be referenced by using the __flags_masks // enumeration. These flags refer to both direct and indirect bases. unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p6c: // __base_count is a word with the number of direct proper base class // descriptions that follow. Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); if (!RD->getNumBases()) return; llvm::Type *LongLTy = CGM.getTypes().ConvertType(CGM.getContext().LongTy); // Now add the base class descriptions. // Itanium C++ ABI 2.9.5p6c: // __base_info[] is an array of base class descriptions -- one for every // direct proper base. Each description is of the type: // // struct abi::__base_class_type_info { // public: // const __class_type_info *__base_type; // long __offset_flags; // // enum __offset_flags_masks { // __virtual_mask = 0x1, // __public_mask = 0x2, // __offset_shift = 8 // }; // }; for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { const CXXBaseSpecifier *Base = I; // The __base_type member points to the RTTI for the base type. Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType())); const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); int64_t OffsetFlags = 0; // All but the lower 8 bits of __offset_flags are a signed offset. // For a non-virtual base, this is the offset in the object of the base // subobject. For a virtual base, this is the offset in the virtual table of // the virtual base offset for the virtual base referenced (negative). CharUnits Offset; if (Base->isVirtual()) Offset = CGM.getVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); else { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); Offset = Layout.getBaseClassOffset(BaseDecl); }; OffsetFlags = uint64_t(Offset.getQuantity()) << 8; // The low-order byte of __offset_flags contains flags, as given by the // masks from the enumeration __offset_flags_masks. if (Base->isVirtual()) OffsetFlags |= BCTI_Virtual; if (Base->getAccessSpecifier() == AS_public) OffsetFlags |= BCTI_Public; Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags)); } } /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, /// used for pointer types. void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { Qualifiers Quals; QualType UnqualifiedPointeeTy = CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals); // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to unsigned Flags = ComputeQualifierFlags(Quals); // Itanium C++ ABI 2.9.5p7: // When the abi::__pbase_type_info is for a direct or indirect pointer to an // incomplete class type, the incomplete target type flag is set. if (ContainsIncompleteClassType(UnqualifiedPointeeTy)) Flags |= PTI_Incomplete; llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy); Fields.push_back(PointeeTypeInfo); } /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { QualType PointeeTy = Ty->getPointeeType(); Qualifiers Quals; QualType UnqualifiedPointeeTy = CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals); // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to. unsigned Flags = ComputeQualifierFlags(Quals); const RecordType *ClassType = cast<RecordType>(Ty->getClass()); // Itanium C++ ABI 2.9.5p7: // When the abi::__pbase_type_info is for a direct or indirect pointer to an // incomplete class type, the incomplete target type flag is set. if (ContainsIncompleteClassType(UnqualifiedPointeeTy)) Flags |= PTI_Incomplete; if (IsIncompleteClassType(ClassType)) Flags |= PTI_ContainingClassIncomplete; llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy); Fields.push_back(PointeeTypeInfo); // Itanium C++ ABI 2.9.5p9: // __context is a pointer to an abi::__class_type_info corresponding to the // class type containing the member pointed to // (e.g., the "A" in "int A::*"). Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0))); } llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, bool ForEH) { // Return a bogus pointer if RTTI is disabled, unless it's for EH. // FIXME: should we even be calling this method if RTTI is disabled // and it's not for EH? if (!ForEH && !getContext().getLangOpts().RTTI) return llvm::Constant::getNullValue(Int8PtrTy); if (ForEH && Ty->isObjCObjectPointerType() && LangOpts.ObjCRuntime.isGNUFamily()) return ObjCRuntime->GetEHType(Ty); return RTTIBuilder(*this).BuildTypeInfo(Ty); } void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) { QualType PointerType = Context.getPointerType(Type); QualType PointerTypeConst = Context.getPointerType(Type.withConst()); RTTIBuilder(*this).BuildTypeInfo(Type, true); RTTIBuilder(*this).BuildTypeInfo(PointerType, true); RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true); } void CodeGenModule::EmitFundamentalRTTIDescriptors() { QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy, Context.BoolTy, Context.WCharTy, Context.CharTy, Context.UnsignedCharTy, Context.SignedCharTy, Context.ShortTy, Context.UnsignedShortTy, Context.IntTy, Context.UnsignedIntTy, Context.LongTy, Context.UnsignedLongTy, Context.LongLongTy, Context.UnsignedLongLongTy, Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy, Context.Char16Ty, Context.Char32Ty }; for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i) EmitFundamentalRTTIDescriptor(FundamentalTypes[i]); }