// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file tests some commonly used argument matchers. #include "gmock/gmock-matchers.h" #include <string.h> #include <functional> #include <iostream> #include <list> #include <map> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "gtest/gtest-spi.h" namespace testing { namespace internal { string JoinAsTuple(const Strings& fields); } // namespace internal namespace gmock_matchers_test { using std::list; using std::make_pair; using std::map; using std::multimap; using std::multiset; using std::ostream; using std::pair; using std::set; using std::stringstream; using std::tr1::get; using std::tr1::make_tuple; using std::tr1::tuple; using std::vector; using testing::A; using testing::AllArgs; using testing::AllOf; using testing::An; using testing::AnyOf; using testing::ByRef; using testing::ContainsRegex; using testing::DoubleEq; using testing::EndsWith; using testing::Eq; using testing::ExplainMatchResult; using testing::Field; using testing::FloatEq; using testing::Ge; using testing::Gt; using testing::HasSubstr; using testing::IsNull; using testing::Key; using testing::Le; using testing::Lt; using testing::MakeMatcher; using testing::MakePolymorphicMatcher; using testing::MatchResultListener; using testing::Matcher; using testing::MatcherCast; using testing::MatcherInterface; using testing::Matches; using testing::MatchesRegex; using testing::NanSensitiveDoubleEq; using testing::NanSensitiveFloatEq; using testing::Ne; using testing::Not; using testing::NotNull; using testing::Pair; using testing::Pointee; using testing::Pointwise; using testing::PolymorphicMatcher; using testing::Property; using testing::Ref; using testing::ResultOf; using testing::StartsWith; using testing::StrCaseEq; using testing::StrCaseNe; using testing::StrEq; using testing::StrNe; using testing::Truly; using testing::TypedEq; using testing::Value; using testing::_; using testing::internal::DummyMatchResultListener; using testing::internal::ExplainMatchFailureTupleTo; using testing::internal::FloatingEqMatcher; using testing::internal::FormatMatcherDescription; using testing::internal::IsReadableTypeName; using testing::internal::JoinAsTuple; using testing::internal::RE; using testing::internal::StreamMatchResultListener; using testing::internal::String; using testing::internal::StringMatchResultListener; using testing::internal::Strings; using testing::internal::linked_ptr; using testing::internal::scoped_ptr; using testing::internal::string; // For testing ExplainMatchResultTo(). class GreaterThanMatcher : public MatcherInterface<int> { public: explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} virtual void DescribeTo(ostream* os) const { *os << "is > " << rhs_; } virtual bool MatchAndExplain(int lhs, MatchResultListener* listener) const { const int diff = lhs - rhs_; if (diff > 0) { *listener << "which is " << diff << " more than " << rhs_; } else if (diff == 0) { *listener << "which is the same as " << rhs_; } else { *listener << "which is " << -diff << " less than " << rhs_; } return lhs > rhs_; } private: int rhs_; }; Matcher<int> GreaterThan(int n) { return MakeMatcher(new GreaterThanMatcher(n)); } string OfType(const string& type_name) { #if GTEST_HAS_RTTI return " (of type " + type_name + ")"; #else return ""; #endif } // Returns the description of the given matcher. template <typename T> string Describe(const Matcher<T>& m) { stringstream ss; m.DescribeTo(&ss); return ss.str(); } // Returns the description of the negation of the given matcher. template <typename T> string DescribeNegation(const Matcher<T>& m) { stringstream ss; m.DescribeNegationTo(&ss); return ss.str(); } // Returns the reason why x matches, or doesn't match, m. template <typename MatcherType, typename Value> string Explain(const MatcherType& m, const Value& x) { StringMatchResultListener listener; ExplainMatchResult(m, x, &listener); return listener.str(); } TEST(MatchResultListenerTest, StreamingWorks) { StringMatchResultListener listener; listener << "hi" << 5; EXPECT_EQ("hi5", listener.str()); // Streaming shouldn't crash when the underlying ostream is NULL. DummyMatchResultListener dummy; dummy << "hi" << 5; } TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { EXPECT_TRUE(DummyMatchResultListener().stream() == NULL); EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL); EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); } TEST(MatchResultListenerTest, IsInterestedWorks) { EXPECT_TRUE(StringMatchResultListener().IsInterested()); EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); EXPECT_FALSE(DummyMatchResultListener().IsInterested()); EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested()); } // Makes sure that the MatcherInterface<T> interface doesn't // change. class EvenMatcherImpl : public MatcherInterface<int> { public: virtual bool MatchAndExplain(int x, MatchResultListener* /* listener */) const { return x % 2 == 0; } virtual void DescribeTo(ostream* os) const { *os << "is an even number"; } // We deliberately don't define DescribeNegationTo() and // ExplainMatchResultTo() here, to make sure the definition of these // two methods is optional. }; // Makes sure that the MatcherInterface API doesn't change. TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { EvenMatcherImpl m; } // Tests implementing a monomorphic matcher using MatchAndExplain(). class NewEvenMatcherImpl : public MatcherInterface<int> { public: virtual bool MatchAndExplain(int x, MatchResultListener* listener) const { const bool match = x % 2 == 0; // Verifies that we can stream to a listener directly. *listener << "value % " << 2; if (listener->stream() != NULL) { // Verifies that we can stream to a listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return match; } virtual void DescribeTo(ostream* os) const { *os << "is an even number"; } }; TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(3)); EXPECT_EQ("value % 2 == 0", Explain(m, 2)); EXPECT_EQ("value % 2 == 1", Explain(m, 3)); } // Tests default-constructing a matcher. TEST(MatcherTest, CanBeDefaultConstructed) { Matcher<double> m; } // Tests that Matcher<T> can be constructed from a MatcherInterface<T>*. TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { const MatcherInterface<int>* impl = new EvenMatcherImpl; Matcher<int> m(impl); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(5)); } // Tests that value can be used in place of Eq(value). TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { Matcher<int> m1 = 5; EXPECT_TRUE(m1.Matches(5)); EXPECT_FALSE(m1.Matches(6)); } // Tests that NULL can be used in place of Eq(NULL). TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { Matcher<int*> m1 = NULL; EXPECT_TRUE(m1.Matches(NULL)); int n = 0; EXPECT_FALSE(m1.Matches(&n)); } // Tests that matchers are copyable. TEST(MatcherTest, IsCopyable) { // Tests the copy constructor. Matcher<bool> m1 = Eq(false); EXPECT_TRUE(m1.Matches(false)); EXPECT_FALSE(m1.Matches(true)); // Tests the assignment operator. m1 = Eq(true); EXPECT_TRUE(m1.Matches(true)); EXPECT_FALSE(m1.Matches(false)); } // Tests that Matcher<T>::DescribeTo() calls // MatcherInterface<T>::DescribeTo(). TEST(MatcherTest, CanDescribeItself) { EXPECT_EQ("is an even number", Describe(Matcher<int>(new EvenMatcherImpl))); } // Tests Matcher<T>::MatchAndExplain(). TEST(MatcherTest, MatchAndExplain) { Matcher<int> m = GreaterThan(0); StringMatchResultListener listener1; EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); EXPECT_EQ("which is 42 more than 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); EXPECT_EQ("which is 9 less than 0", listener2.str()); } // Tests that a C-string literal can be implicitly converted to a // Matcher<string> or Matcher<const string&>. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher<string> m1 = "hi"; EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher<const string&> m2 = "hi"; EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } // Tests that a string object can be implicitly converted to a // Matcher<string> or Matcher<const string&>. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher<string> m1 = string("hi"); EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher<const string&> m2 = string("hi"); EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } // Tests that MakeMatcher() constructs a Matcher<T> from a // MatcherInterface* without requiring the user to explicitly // write the type. TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { const MatcherInterface<int>* dummy_impl = NULL; Matcher<int> m = MakeMatcher(dummy_impl); } // Tests that MakePolymorphicMatcher() can construct a polymorphic // matcher from its implementation using the old API. const int g_bar = 1; class ReferencesBarOrIsZeroImpl { public: template <typename T> bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const { const void* p = &x; return p == &g_bar || x == 0; } void DescribeTo(ostream* os) const { *os << "g_bar or zero"; } void DescribeNegationTo(ostream* os) const { *os << "doesn't reference g_bar and is not zero"; } }; // This function verifies that MakePolymorphicMatcher() returns a // PolymorphicMatcher<T> where T is the argument's type. PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() { return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { // Using a polymorphic matcher to match a reference type. Matcher<const int&> m1 = ReferencesBarOrIsZero(); EXPECT_TRUE(m1.Matches(0)); // Verifies that the identity of a by-reference argument is preserved. EXPECT_TRUE(m1.Matches(g_bar)); EXPECT_FALSE(m1.Matches(1)); EXPECT_EQ("g_bar or zero", Describe(m1)); // Using a polymorphic matcher to match a value type. Matcher<double> m2 = ReferencesBarOrIsZero(); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_FALSE(m2.Matches(0.1)); EXPECT_EQ("g_bar or zero", Describe(m2)); } // Tests implementing a polymorphic matcher using MatchAndExplain(). class PolymorphicIsEvenImpl { public: void DescribeTo(ostream* os) const { *os << "is even"; } void DescribeNegationTo(ostream* os) const { *os << "is odd"; } template <typename T> bool MatchAndExplain(const T& x, MatchResultListener* listener) const { // Verifies that we can stream to the listener directly. *listener << "% " << 2; if (listener->stream() != NULL) { // Verifies that we can stream to the listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return (x % 2) == 0; } }; PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() { return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { // Using PolymorphicIsEven() as a Matcher<int>. const Matcher<int> m1 = PolymorphicIsEven(); EXPECT_TRUE(m1.Matches(42)); EXPECT_FALSE(m1.Matches(43)); EXPECT_EQ("is even", Describe(m1)); const Matcher<int> not_m1 = Not(m1); EXPECT_EQ("is odd", Describe(not_m1)); EXPECT_EQ("% 2 == 0", Explain(m1, 42)); // Using PolymorphicIsEven() as a Matcher<char>. const Matcher<char> m2 = PolymorphicIsEven(); EXPECT_TRUE(m2.Matches('\x42')); EXPECT_FALSE(m2.Matches('\x43')); EXPECT_EQ("is even", Describe(m2)); const Matcher<char> not_m2 = Not(m2); EXPECT_EQ("is odd", Describe(not_m2)); EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); } // Tests that MatcherCast<T>(m) works when m is a polymorphic matcher. TEST(MatcherCastTest, FromPolymorphicMatcher) { Matcher<int> m = MatcherCast<int>(Eq(5)); EXPECT_TRUE(m.Matches(5)); EXPECT_FALSE(m.Matches(6)); } // For testing casting matchers between compatible types. class IntValue { public: // An int can be statically (although not implicitly) cast to a // IntValue. explicit IntValue(int a_value) : value_(a_value) {} int value() const { return value_; } private: int value_; }; // For testing casting matchers between compatible types. bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; } // Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T // can be statically converted to U. TEST(MatcherCastTest, FromCompatibleType) { Matcher<double> m1 = Eq(2.0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(2)); EXPECT_FALSE(m2.Matches(3)); Matcher<IntValue> m3 = Truly(IsPositiveIntValue); Matcher<int> m4 = MatcherCast<int>(m3); // In the following, the arguments 1 and 0 are statically converted // to IntValue objects, and then tested by the IsPositiveIntValue() // predicate. EXPECT_TRUE(m4.Matches(1)); EXPECT_FALSE(m4.Matches(0)); } // Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>. TEST(MatcherCastTest, FromConstReferenceToNonReference) { Matcher<const int&> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast<T>(m) works when m is a Matcher<T&>. TEST(MatcherCastTest, FromReferenceToNonReference) { Matcher<int&> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. TEST(MatcherCastTest, FromNonReferenceToConstReference) { Matcher<int> m1 = Eq(0); Matcher<const int&> m2 = MatcherCast<const int&>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast<T&>(m) works when m is a Matcher<T>. TEST(MatcherCastTest, FromNonReferenceToReference) { Matcher<int> m1 = Eq(0); Matcher<int&> m2 = MatcherCast<int&>(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that MatcherCast<T>(m) works when m is a Matcher<T>. TEST(MatcherCastTest, FromSameType) { Matcher<int> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } class Base {}; class Derived : public Base {}; // Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher. TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { Matcher<char> m2 = SafeMatcherCast<char>(Eq(32)); EXPECT_TRUE(m2.Matches(' ')); EXPECT_FALSE(m2.Matches('\n')); } // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where // T and U are arithmetic types and T can be losslessly converted to // U. TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { Matcher<double> m1 = DoubleEq(1.0); Matcher<float> m2 = SafeMatcherCast<float>(m1); EXPECT_TRUE(m2.Matches(1.0f)); EXPECT_FALSE(m2.Matches(2.0f)); Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a')); EXPECT_TRUE(m3.Matches('a')); EXPECT_FALSE(m3.Matches('b')); } // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U // are pointers or references to a derived and a base class, correspondingly. TEST(SafeMatcherCastTest, FromBaseClass) { Derived d, d2; Matcher<Base*> m1 = Eq(&d); Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1); EXPECT_TRUE(m2.Matches(&d)); EXPECT_FALSE(m2.Matches(&d2)); Matcher<Base&> m3 = Ref(d); Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3); EXPECT_TRUE(m4.Matches(d)); EXPECT_FALSE(m4.Matches(d2)); } // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>. TEST(SafeMatcherCastTest, FromConstReferenceToReference) { int n = 0; Matcher<const int&> m1 = Ref(n); Matcher<int&> m2 = SafeMatcherCast<int&>(m1); int n1 = 0; EXPECT_TRUE(m2.Matches(n)); EXPECT_FALSE(m2.Matches(n1)); } // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { Matcher<int> m1 = Eq(0); Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>. TEST(SafeMatcherCastTest, FromNonReferenceToReference) { Matcher<int> m1 = Eq(0); Matcher<int&> m2 = SafeMatcherCast<int&>(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>. TEST(SafeMatcherCastTest, FromSameType) { Matcher<int> m1 = Eq(0); Matcher<int> m2 = SafeMatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that A<T>() matches any value of type T. TEST(ATest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher<double> m1 = A<double>(); EXPECT_TRUE(m1.Matches(91.43)); EXPECT_TRUE(m1.Matches(-15.32)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher<int&> m2 = A<int&>(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that A<T>() describes itself properly. TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A<bool>())); } // Tests that An<T>() matches any value of type T. TEST(AnTest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher<int> m1 = An<int>(); EXPECT_TRUE(m1.Matches(9143)); EXPECT_TRUE(m1.Matches(-1532)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher<int&> m2 = An<int&>(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that An<T>() describes itself properly. TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An<int>())); } // Tests that _ can be used as a matcher for any type and matches any // value of that type. TEST(UnderscoreTest, MatchesAnyValue) { // Uses _ as a matcher for a value type. Matcher<int> m1 = _; EXPECT_TRUE(m1.Matches(123)); EXPECT_TRUE(m1.Matches(-242)); // Uses _ as a matcher for a reference type. bool a = false; const bool b = true; Matcher<const bool&> m2 = _; EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that _ describes itself properly. TEST(UnderscoreTest, CanDescribeSelf) { Matcher<int> m = _; EXPECT_EQ("is anything", Describe(m)); } // Tests that Eq(x) matches any value equal to x. TEST(EqTest, MatchesEqualValue) { // 2 C-strings with same content but different addresses. const char a1[] = "hi"; const char a2[] = "hi"; Matcher<const char*> m1 = Eq(a1); EXPECT_TRUE(m1.Matches(a1)); EXPECT_FALSE(m1.Matches(a2)); } // Tests that Eq(v) describes itself properly. class Unprintable { public: Unprintable() : c_('a') {} bool operator==(const Unprintable& /* rhs */) { return true; } private: char c_; }; TEST(EqTest, CanDescribeSelf) { Matcher<Unprintable> m = Eq(Unprintable()); EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); } // Tests that Eq(v) can be used to match any type that supports // comparing with type T, where T is v's type. TEST(EqTest, IsPolymorphic) { Matcher<int> m1 = Eq(1); EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2)); Matcher<char> m2 = Eq(1); EXPECT_TRUE(m2.Matches('\1')); EXPECT_FALSE(m2.Matches('a')); } // Tests that TypedEq<T>(v) matches values of type T that's equal to v. TEST(TypedEqTest, ChecksEqualityForGivenType) { Matcher<char> m1 = TypedEq<char>('a'); EXPECT_TRUE(m1.Matches('a')); EXPECT_FALSE(m1.Matches('b')); Matcher<int> m2 = TypedEq<int>(6); EXPECT_TRUE(m2.Matches(6)); EXPECT_FALSE(m2.Matches(7)); } // Tests that TypedEq(v) describes itself properly. TEST(TypedEqTest, CanDescribeSelf) { EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2))); } // Tests that TypedEq<T>(v) has type Matcher<T>. // Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T // is a "bare" type (i.e. not in the form of const U or U&). If v's // type is not T, the compiler will generate a message about // "undefined referece". template <typename T> struct Type { static bool IsTypeOf(const T& /* v */) { return true; } template <typename T2> static void IsTypeOf(T2 v); }; TEST(TypedEqTest, HasSpecifiedType) { // Verfies that the type of TypedEq<T>(v) is Matcher<T>. Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5)); Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5)); } // Tests that Ge(v) matches anything >= v. TEST(GeTest, ImplementsGreaterThanOrEqual) { Matcher<int> m1 = Ge(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(0)); EXPECT_FALSE(m1.Matches(-1)); } // Tests that Ge(v) describes itself properly. TEST(GeTest, CanDescribeSelf) { Matcher<int> m = Ge(5); EXPECT_EQ("is >= 5", Describe(m)); } // Tests that Gt(v) matches anything > v. TEST(GtTest, ImplementsGreaterThan) { Matcher<double> m1 = Gt(0); EXPECT_TRUE(m1.Matches(1.0)); EXPECT_FALSE(m1.Matches(0.0)); EXPECT_FALSE(m1.Matches(-1.0)); } // Tests that Gt(v) describes itself properly. TEST(GtTest, CanDescribeSelf) { Matcher<int> m = Gt(5); EXPECT_EQ("is > 5", Describe(m)); } // Tests that Le(v) matches anything <= v. TEST(LeTest, ImplementsLessThanOrEqual) { Matcher<char> m1 = Le('b'); EXPECT_TRUE(m1.Matches('a')); EXPECT_TRUE(m1.Matches('b')); EXPECT_FALSE(m1.Matches('c')); } // Tests that Le(v) describes itself properly. TEST(LeTest, CanDescribeSelf) { Matcher<int> m = Le(5); EXPECT_EQ("is <= 5", Describe(m)); } // Tests that Lt(v) matches anything < v. TEST(LtTest, ImplementsLessThan) { Matcher<const string&> m1 = Lt("Hello"); EXPECT_TRUE(m1.Matches("Abc")); EXPECT_FALSE(m1.Matches("Hello")); EXPECT_FALSE(m1.Matches("Hello, world!")); } // Tests that Lt(v) describes itself properly. TEST(LtTest, CanDescribeSelf) { Matcher<int> m = Lt(5); EXPECT_EQ("is < 5", Describe(m)); } // Tests that Ne(v) matches anything != v. TEST(NeTest, ImplementsNotEqual) { Matcher<int> m1 = Ne(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(-1)); EXPECT_FALSE(m1.Matches(0)); } // Tests that Ne(v) describes itself properly. TEST(NeTest, CanDescribeSelf) { Matcher<int> m = Ne(5); EXPECT_EQ("isn't equal to 5", Describe(m)); } // Tests that IsNull() matches any NULL pointer of any type. TEST(IsNullTest, MatchesNullPointer) { Matcher<int*> m1 = IsNull(); int* p1 = NULL; int n = 0; EXPECT_TRUE(m1.Matches(p1)); EXPECT_FALSE(m1.Matches(&n)); Matcher<const char*> m2 = IsNull(); const char* p2 = NULL; EXPECT_TRUE(m2.Matches(p2)); EXPECT_FALSE(m2.Matches("hi")); #if !GTEST_OS_SYMBIAN // Nokia's Symbian compiler generates: // gmock-matchers.h: ambiguous access to overloaded function // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)' // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing:: // MatcherInterface<void *> *)' // gmock-matchers.h: (point of instantiation: 'testing:: // gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()') // gmock-matchers.h: (instantiating: 'testing::PolymorphicMatc Matcher<void*> m3 = IsNull(); void* p3 = NULL; EXPECT_TRUE(m3.Matches(p3)); EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); #endif } TEST(IsNullTest, LinkedPtr) { const Matcher<linked_ptr<int> > m = IsNull(); const linked_ptr<int> null_p; const linked_ptr<int> non_null_p(new int); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } TEST(IsNullTest, ReferenceToConstLinkedPtr) { const Matcher<const linked_ptr<double>&> m = IsNull(); const linked_ptr<double> null_p; const linked_ptr<double> non_null_p(new double); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } TEST(IsNullTest, ReferenceToConstScopedPtr) { const Matcher<const scoped_ptr<double>&> m = IsNull(); const scoped_ptr<double> null_p; const scoped_ptr<double> non_null_p(new double); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } // Tests that IsNull() describes itself properly. TEST(IsNullTest, CanDescribeSelf) { Matcher<int*> m = IsNull(); EXPECT_EQ("is NULL", Describe(m)); EXPECT_EQ("isn't NULL", DescribeNegation(m)); } // Tests that NotNull() matches any non-NULL pointer of any type. TEST(NotNullTest, MatchesNonNullPointer) { Matcher<int*> m1 = NotNull(); int* p1 = NULL; int n = 0; EXPECT_FALSE(m1.Matches(p1)); EXPECT_TRUE(m1.Matches(&n)); Matcher<const char*> m2 = NotNull(); const char* p2 = NULL; EXPECT_FALSE(m2.Matches(p2)); EXPECT_TRUE(m2.Matches("hi")); } TEST(NotNullTest, LinkedPtr) { const Matcher<linked_ptr<int> > m = NotNull(); const linked_ptr<int> null_p; const linked_ptr<int> non_null_p(new int); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, ReferenceToConstLinkedPtr) { const Matcher<const linked_ptr<double>&> m = NotNull(); const linked_ptr<double> null_p; const linked_ptr<double> non_null_p(new double); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, ReferenceToConstScopedPtr) { const Matcher<const scoped_ptr<double>&> m = NotNull(); const scoped_ptr<double> null_p; const scoped_ptr<double> non_null_p(new double); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } // Tests that NotNull() describes itself properly. TEST(NotNullTest, CanDescribeSelf) { Matcher<int*> m = NotNull(); EXPECT_EQ("isn't NULL", Describe(m)); } // Tests that Ref(variable) matches an argument that references // 'variable'. TEST(RefTest, MatchesSameVariable) { int a = 0; int b = 0; Matcher<int&> m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) describes itself properly. TEST(RefTest, CanDescribeSelf) { int n = 5; Matcher<int&> m = Ref(n); stringstream ss; ss << "references the variable @" << &n << " 5"; EXPECT_EQ(string(ss.str()), Describe(m)); } // Test that Ref(non_const_varialbe) can be used as a matcher for a // const reference. TEST(RefTest, CanBeUsedAsMatcherForConstReference) { int a = 0; int b = 0; Matcher<const int&> m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be // used wherever Ref(base) can be used (Ref(derived) is a sub-type // of Ref(base), but not vice versa. TEST(RefTest, IsCovariant) { Base base, base2; Derived derived; Matcher<const Base&> m1 = Ref(base); EXPECT_TRUE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); EXPECT_FALSE(m1.Matches(derived)); m1 = Ref(derived); EXPECT_TRUE(m1.Matches(derived)); EXPECT_FALSE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); } TEST(RefTest, ExplainsResult) { int n = 0; EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n), StartsWith("which is located @")); int m = 0; EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m), StartsWith("which is located @")); } // Tests string comparison matchers. TEST(StrEqTest, MatchesEqualString) { Matcher<const char*> m = StrEq(string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const string&> m2 = StrEq("Hello"); EXPECT_TRUE(m2.Matches("Hello")); EXPECT_FALSE(m2.Matches("Hi")); } TEST(StrEqTest, CanDescribeSelf) { Matcher<string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", Describe(m)); string str("01204500800"); str[3] = '\0'; Matcher<string> m2 = StrEq(str); EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; Matcher<string> m3 = StrEq(str); EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); } TEST(StrNeTest, MatchesUnequalString) { Matcher<const char*> m = StrNe("Hello"); EXPECT_TRUE(m.Matches("")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches("Hello")); Matcher<string> m2 = StrNe(string("Hello")); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hello")); } TEST(StrNeTest, CanDescribeSelf) { Matcher<const char*> m = StrNe("Hi"); EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); } TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher<const char*> m = StrCaseEq(string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_TRUE(m.Matches("hello")); EXPECT_FALSE(m.Matches("Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const string&> m2 = StrCaseEq("Hello"); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hi")); } TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { string str1("oabocdooeoo"); string str2("OABOCDOOEOO"); Matcher<const string&> m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + string(1, '\0'))); str1[3] = str2[3] = '\0'; Matcher<const string&> m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = '\0'; str2[0] = str2[6] = str2[7] = str2[10] = '\0'; Matcher<const string&> m2 = StrCaseEq(str1); str1[9] = str2[9] = '\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher<const string&> m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + "x")); str2.append(1, '\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(string(str2, 0, 9))); } TEST(StrCaseEqTest, CanDescribeSelf) { Matcher<string> m = StrCaseEq("Hi"); EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); } TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher<const char*> m = StrCaseNe("Hello"); EXPECT_TRUE(m.Matches("Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); Matcher<string> m2 = StrCaseNe(string("Hello")); EXPECT_TRUE(m2.Matches("")); EXPECT_FALSE(m2.Matches("Hello")); } TEST(StrCaseNeTest, CanDescribeSelf) { Matcher<const char*> m = StrCaseNe("Hi"); EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching string-typed values. TEST(HasSubstrTest, WorksForStringClasses) { const Matcher<string> m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(string("I love food."))); EXPECT_FALSE(m1.Matches(string("tofo"))); const Matcher<const std::string&> m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(std::string("I love food."))); EXPECT_FALSE(m2.Matches(std::string("tofo"))); } // Tests that HasSubstr() works for matching C-string-typed values. TEST(HasSubstrTest, WorksForCStrings) { const Matcher<char*> m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food."))); EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const char*> m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches("I love food.")); EXPECT_FALSE(m2.Matches("tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(HasSubstrTest, CanDescribeSelf) { Matcher<string> m = HasSubstr("foo\n\""); EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); } TEST(KeyTest, CanDescribeSelf) { Matcher<const pair<std::string, int>&> m = Key("foo"); EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); } TEST(KeyTest, ExplainsResult) { Matcher<pair<int, bool> > m = Key(GreaterThan(10)); EXPECT_EQ("whose first field is a value which is 5 less than 10", Explain(m, make_pair(5, true))); EXPECT_EQ("whose first field is a value which is 5 more than 10", Explain(m, make_pair(15, true))); } TEST(KeyTest, MatchesCorrectly) { pair<int, std::string> p(25, "foo"); EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25)))); } TEST(KeyTest, SafelyCastsInnerMatcher) { Matcher<int> is_positive = Gt(0); Matcher<int> is_negative = Lt(0); pair<char, bool> p('a', true); EXPECT_THAT(p, Key(is_positive)); EXPECT_THAT(p, Not(Key(is_negative))); } TEST(KeyTest, InsideContainsUsingMap) { map<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(KeyTest, InsideContainsUsingMultimap) { multimap<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Not(Contains(Key(25)))); container.insert(make_pair(25, 'd')); EXPECT_THAT(container, Contains(Key(25))); container.insert(make_pair(25, 'e')); EXPECT_THAT(container, Contains(Key(25))); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(PairTest, Typing) { // Test verifies the following type conversions can be compiled. Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42); Matcher<const pair<const char*, int> > m2 = Pair("foo", 42); Matcher<pair<const char*, int> > m3 = Pair("foo", 42); Matcher<pair<int, const std::string> > m4 = Pair(25, "42"); Matcher<pair<const std::string, int> > m5 = Pair("25", 42); } TEST(PairTest, CanDescribeSelf) { Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42); EXPECT_EQ("has a first field that is equal to \"foo\"" ", and has a second field that is equal to 42", Describe(m1)); EXPECT_EQ("has a first field that isn't equal to \"foo\"" ", or has a second field that isn't equal to 42", DescribeNegation(m1)); // Double and triple negation (1 or 2 times not and description of negation). Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42)); EXPECT_EQ("has a first field that isn't equal to 13" ", and has a second field that is equal to 42", DescribeNegation(m2)); } TEST(PairTest, CanExplainMatchResultTo) { // If neither field matches, Pair() should explain about the first // field. const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0)); EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, -2))); // If the first field matches but the second doesn't, Pair() should // explain about the second field. EXPECT_EQ("whose second field does not match, which is 2 less than 0", Explain(m, make_pair(1, -2))); // If the first field doesn't match but the second does, Pair() // should explain about the first field. EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, 2))); // If both fields match, Pair() should explain about them both. EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0, and the second field is a value " "which is 2 more than 0", Explain(m, make_pair(1, 2))); // If only the first match has an explanation, only this explanation should // be printed. const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0); EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0", Explain(explain_first, make_pair(1, 0))); // If only the second match has an explanation, only this explanation should // be printed. const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0)); EXPECT_EQ("whose both fields match, where the second field is a value " "which is 1 more than 0", Explain(explain_second, make_pair(0, 1))); } TEST(PairTest, MatchesCorrectly) { pair<int, std::string> p(25, "foo"); // Both fields match. EXPECT_THAT(p, Pair(25, "foo")); EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); // 'first' doesnt' match, but 'second' matches. EXPECT_THAT(p, Not(Pair(42, "foo"))); EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); // 'first' matches, but 'second' doesn't match. EXPECT_THAT(p, Not(Pair(25, "bar"))); EXPECT_THAT(p, Not(Pair(25, Not("foo")))); // Neither field matches. EXPECT_THAT(p, Not(Pair(13, "bar"))); EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); } TEST(PairTest, SafelyCastsInnerMatchers) { Matcher<int> is_positive = Gt(0); Matcher<int> is_negative = Lt(0); pair<char, bool> p('a', true); EXPECT_THAT(p, Pair(is_positive, _)); EXPECT_THAT(p, Not(Pair(is_negative, _))); EXPECT_THAT(p, Pair(_, is_positive)); EXPECT_THAT(p, Not(Pair(_, is_negative))); } TEST(PairTest, InsideContainsUsingMap) { map<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Pair(1, 'a'))); EXPECT_THAT(container, Contains(Pair(1, _))); EXPECT_THAT(container, Contains(Pair(_, 'a'))); EXPECT_THAT(container, Not(Contains(Pair(3, _)))); } // Tests StartsWith(s). TEST(StartsWithTest, MatchesStringWithGivenPrefix) { const Matcher<const char*> m1 = StartsWith(string("")); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const string&> m2 = StartsWith("Hi"); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Hi Hi!")); EXPECT_TRUE(m2.Matches("High")); EXPECT_FALSE(m2.Matches("H")); EXPECT_FALSE(m2.Matches(" Hi")); } TEST(StartsWithTest, CanDescribeSelf) { Matcher<const std::string> m = StartsWith("Hi"); EXPECT_EQ("starts with \"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(EndsWithTest, MatchesStringWithGivenSuffix) { const Matcher<const char*> m1 = EndsWith(""); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const string&> m2 = EndsWith(string("Hi")); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Wow Hi Hi")); EXPECT_TRUE(m2.Matches("Super Hi")); EXPECT_FALSE(m2.Matches("i")); EXPECT_FALSE(m2.Matches("Hi ")); } TEST(EndsWithTest, CanDescribeSelf) { Matcher<const std::string> m = EndsWith("Hi"); EXPECT_EQ("ends with \"Hi\"", Describe(m)); } // Tests MatchesRegex(). TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { const Matcher<const char*> m1 = MatchesRegex("a.*z"); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("abcz")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const string&> m2 = MatchesRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_FALSE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1az")); } TEST(MatchesRegexTest, CanDescribeSelf) { Matcher<const std::string> m1 = MatchesRegex(string("Hi.*")); EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); Matcher<const char*> m2 = MatchesRegex(new RE("a.*")); EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); } // Tests ContainsRegex(). TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { const Matcher<const char*> m1 = ContainsRegex(string("a.*z")); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("0abcz1")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const string&> m2 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_TRUE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1a")); } TEST(ContainsRegexTest, CanDescribeSelf) { Matcher<const std::string> m1 = ContainsRegex("Hi.*"); EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); Matcher<const char*> m2 = ContainsRegex(new RE("a.*")); EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); } // Tests for wide strings. #if GTEST_HAS_STD_WSTRING TEST(StdWideStrEqTest, MatchesEqual) { Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const ::std::wstring&> m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi")); Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::std::wstring&> m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::std::wstring&> m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); } TEST(StdWideStrEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m)); Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2)); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::std::wstring&> m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::std::wstring&> m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); } TEST(StdWideStrNeTest, MatchesUnequalString) { Matcher<const wchar_t*> m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); } TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::std::wstring str1(L"oabocdooeoo"); ::std::wstring str2(L"OABOCDOOEOO"); Matcher<const ::std::wstring&> m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); str1[3] = str2[3] = L'\0'; Matcher<const ::std::wstring&> m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher<const ::std::wstring&> m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher<const ::std::wstring&> m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); } TEST(StdWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrCaseNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching wstring-typed values. TEST(StdWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); } // Tests that HasSubstr() works for matching C-wide-string-typed values. TEST(StdWideHasSubstrTest, WorksForCStrings) { const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(StdWideHasSubstrTest, CanDescribeSelf) { Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); } // Tests StartsWith(s). TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); } TEST(StdWideStartsWithTest, CanDescribeSelf) { Matcher<const ::std::wstring> m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher<const wchar_t*> m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); } TEST(StdWideEndsWithTest, CanDescribeSelf) { Matcher<const ::std::wstring> m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_WSTRING TEST(GlobalWideStrEqTest, MatchesEqual) { Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const ::wstring&> m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi")); Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); ::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::wstring&> m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::wstring&> m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); } TEST(GlobalWideStrEqTest, CanDescribeSelf) { Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m)); Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2)); ::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::wstring&> m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::wstring&> m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); } TEST(GlobalWideStrNeTest, MatchesUnequalString) { Matcher<const wchar_t*> m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(GlobalWideStrNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); } TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); } TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::wstring str1(L"oabocdooeoo"); ::wstring str2(L"OABOCDOOEOO"); Matcher<const ::wstring&> m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0'))); str1[3] = str2[3] = L'\0'; Matcher<const ::wstring&> m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher<const ::wstring&> m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher<const ::wstring&> m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9))); } TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); } TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching wstring-typed values. TEST(GlobalWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::wstring(L"tofo"))); const Matcher<const ::wstring&> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::wstring(L"tofo"))); } // Tests that HasSubstr() works for matching C-wide-string-typed values. TEST(GlobalWideHasSubstrTest, WorksForCStrings) { const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(GlobalWideHasSubstrTest, CanDescribeSelf) { Matcher< ::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); } // Tests StartsWith(s). TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const ::wstring&> m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); } TEST(GlobalWideStartsWithTest, CanDescribeSelf) { Matcher<const ::wstring> m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher<const wchar_t*> m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); } TEST(GlobalWideEndsWithTest, CanDescribeSelf) { Matcher<const ::wstring> m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); } #endif // GTEST_HAS_GLOBAL_WSTRING typedef ::std::tr1::tuple<long, int> Tuple2; // NOLINT // Tests that Eq() matches a 2-tuple where the first field == the // second field. TEST(Eq2Test, MatchesEqualArguments) { Matcher<const Tuple2&> m = Eq(); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Eq() describes itself properly. TEST(Eq2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Eq(); EXPECT_EQ("are an equal pair", Describe(m)); } // Tests that Ge() matches a 2-tuple where the first field >= the // second field. TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { Matcher<const Tuple2&> m = Ge(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Ge() describes itself properly. TEST(Ge2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Ge(); EXPECT_EQ("are a pair where the first >= the second", Describe(m)); } // Tests that Gt() matches a 2-tuple where the first field > the // second field. TEST(Gt2Test, MatchesGreaterThanArguments) { Matcher<const Tuple2&> m = Gt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Gt() describes itself properly. TEST(Gt2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Gt(); EXPECT_EQ("are a pair where the first > the second", Describe(m)); } // Tests that Le() matches a 2-tuple where the first field <= the // second field. TEST(Le2Test, MatchesLessThanOrEqualArguments) { Matcher<const Tuple2&> m = Le(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Le() describes itself properly. TEST(Le2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Le(); EXPECT_EQ("are a pair where the first <= the second", Describe(m)); } // Tests that Lt() matches a 2-tuple where the first field < the // second field. TEST(Lt2Test, MatchesLessThanArguments) { Matcher<const Tuple2&> m = Lt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Lt() describes itself properly. TEST(Lt2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Lt(); EXPECT_EQ("are a pair where the first < the second", Describe(m)); } // Tests that Ne() matches a 2-tuple where the first field != the // second field. TEST(Ne2Test, MatchesUnequalArguments) { Matcher<const Tuple2&> m = Ne(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); } // Tests that Ne() describes itself properly. TEST(Ne2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Ne(); EXPECT_EQ("are an unequal pair", Describe(m)); } // Tests that Not(m) matches any value that doesn't match m. TEST(NotTest, NegatesMatcher) { Matcher<int> m; m = Not(Eq(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); } // Tests that Not(m) describes itself properly. TEST(NotTest, CanDescribeSelf) { Matcher<int> m = Not(Eq(5)); EXPECT_EQ("isn't equal to 5", Describe(m)); } // Tests that monomorphic matchers are safely cast by the Not matcher. TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 is a monomorphic matcher. Matcher<int> greater_than_5 = Gt(5); Matcher<const int&> m = Not(greater_than_5); Matcher<int&> m2 = Not(greater_than_5); Matcher<int&> m3 = Not(m); } // Helper to allow easy testing of AllOf matchers with num parameters. void AllOfMatches(int num, const Matcher<int>& m) { SCOPED_TRACE(Describe(m)); EXPECT_TRUE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_FALSE(m.Matches(i)); } EXPECT_TRUE(m.Matches(num + 1)); } // Tests that AllOf(m1, ..., mn) matches any value that matches all of // the given matchers. TEST(AllOfTest, MatchesWhenAllMatch) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); EXPECT_FALSE(m.Matches(3)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(3)); // The following tests for varying number of sub-matchers. Due to the way // the sub-matchers are handled it is enough to test every sub-matcher once // with sub-matchers using the same matcher type. Varying matcher types are // checked for above. AllOfMatches(2, AllOf(Ne(1), Ne(2))); AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8))); AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9))); AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10))); } // Tests that AllOf(m1, ..., mn) describes itself properly. TEST(AllOfTest, CanDescribeSelf) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_EQ("(is > 0) and " "((isn't equal to 1) and " "(isn't equal to 2))", Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_EQ("(is > 0) and " "((isn't equal to 1) and " "((isn't equal to 2) and " "(isn't equal to 3)))", Describe(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_EQ("(is >= 0) and " "((is < 10) and " "((isn't equal to 3) and " "((isn't equal to 5) and " "(isn't equal to 7))))", Describe(m)); } // Tests that AllOf(m1, ..., mn) describes its negation properly. TEST(AllOfTest, CanDescribeNegation) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(isn't <= 2) or " "(isn't >= 1)", DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_EQ("(isn't > 0) or " "((is equal to 1) or " "(is equal to 2))", DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_EQ("(isn't > 0) or " "((is equal to 1) or " "((is equal to 2) or " "(is equal to 3)))", DescribeNegation(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_EQ("(isn't >= 0) or " "((isn't < 10) or " "((is equal to 3) or " "((is equal to 5) or " "(is equal to 7))))", DescribeNegation(m)); } // Tests that monomorphic matchers are safely cast by the AllOf matcher. TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher<int> greater_than_5 = Gt(5); Matcher<int> less_than_10 = Lt(10); Matcher<const int&> m = AllOf(greater_than_5, less_than_10); Matcher<int&> m2 = AllOf(greater_than_5, less_than_10); Matcher<int&> m3 = AllOf(greater_than_5, m2); // Tests that BothOf works when composing itself. Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10); Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10); } TEST(AllOfTest, ExplainsResult) { Matcher<int> m; // Successful match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); // Successful match. Both matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", Explain(m, 30)); // Successful match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", Explain(m, 25)); // Successful match. All matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " "and which is 10 more than 30", Explain(m, 40)); // Failed match. The first matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. The second matcher, which failed, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 40)); // Failed match. The second matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); } // Helper to allow easy testing of AnyOf matchers with num parameters. void AnyOfMatches(int num, const Matcher<int>& m) { SCOPED_TRACE(Describe(m)); EXPECT_FALSE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_TRUE(m.Matches(i)); } EXPECT_FALSE(m.Matches(num + 1)); } // Tests that AnyOf(m1, ..., mn) matches any value that matches at // least one of the given matchers. TEST(AnyOfTest, MatchesWhenAnyMatches) { Matcher<int> m; m = AnyOf(Le(1), Ge(3)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(2)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(11)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); // The following tests for varying number of sub-matchers. Due to the way // the sub-matchers are handled it is enough to test every sub-matcher once // with sub-matchers using the same matcher type. Varying matcher types are // checked for above. AnyOfMatches(2, AnyOf(1, 2)); AnyOfMatches(3, AnyOf(1, 2, 3)); AnyOfMatches(4, AnyOf(1, 2, 3, 4)); AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); } // Tests that AnyOf(m1, ..., mn) describes itself properly. TEST(AnyOfTest, CanDescribeSelf) { Matcher<int> m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(is <= 1) or (is >= 3)", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(is < 0) or " "((is equal to 1) or (is equal to 2))", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(is < 0) or " "((is equal to 1) or " "((is equal to 2) or " "(is equal to 3)))", Describe(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ("(is <= 0) or " "((is > 10) or " "((is equal to 3) or " "((is equal to 5) or " "(is equal to 7))))", Describe(m)); } // Tests that AnyOf(m1, ..., mn) describes its negation properly. TEST(AnyOfTest, CanDescribeNegation) { Matcher<int> m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(isn't < 0) and " "((isn't equal to 1) and (isn't equal to 2))", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(isn't < 0) and " "((isn't equal to 1) and " "((isn't equal to 2) and " "(isn't equal to 3)))", DescribeNegation(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ("(isn't <= 0) and " "((isn't > 10) and " "((isn't equal to 3) and " "((isn't equal to 5) and " "(isn't equal to 7))))", DescribeNegation(m)); } // Tests that monomorphic matchers are safely cast by the AnyOf matcher. TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher<int> greater_than_5 = Gt(5); Matcher<int> less_than_10 = Lt(10); Matcher<const int&> m = AnyOf(greater_than_5, less_than_10); Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10); Matcher<int&> m3 = AnyOf(greater_than_5, m2); // Tests that EitherOf works when composing itself. Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10); Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10); } TEST(AnyOfTest, ExplainsResult) { Matcher<int> m; // Failed match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AnyOf(GreaterThan(10), Lt(0)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. Both matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", Explain(m, 5)); // Failed match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", Explain(m, 5)); // Failed match. All matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " "and which is 25 less than 30", Explain(m, 5)); // Successful match. The first matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); // Successful match. The second matcher, which succeeded, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AnyOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 0)); // Successful match. The second matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(30), GreaterThan(20)); EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); } // The following predicate function and predicate functor are for // testing the Truly(predicate) matcher. // Returns non-zero if the input is positive. Note that the return // type of this function is not bool. It's OK as Truly() accepts any // unary function or functor whose return type can be implicitly // converted to bool. int IsPositive(double x) { return x > 0 ? 1 : 0; } // This functor returns true if the input is greater than the given // number. class IsGreaterThan { public: explicit IsGreaterThan(int threshold) : threshold_(threshold) {} bool operator()(int n) const { return n > threshold_; } private: int threshold_; }; // For testing Truly(). const int foo = 0; // This predicate returns true iff the argument references foo and has // a zero value. bool ReferencesFooAndIsZero(const int& n) { return (&n == &foo) && (n == 0); } // Tests that Truly(predicate) matches what satisfies the given // predicate. TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { Matcher<double> m = Truly(IsPositive); EXPECT_TRUE(m.Matches(2.0)); EXPECT_FALSE(m.Matches(-1.5)); } // Tests that Truly(predicate_functor) works too. TEST(TrulyTest, CanBeUsedWithFunctor) { Matcher<int> m = Truly(IsGreaterThan(5)); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(4)); } // Tests that Truly(predicate) can describe itself properly. TEST(TrulyTest, CanDescribeSelf) { Matcher<double> m = Truly(IsPositive); EXPECT_EQ("satisfies the given predicate", Describe(m)); } // Tests that Truly(predicate) works when the matcher takes its // argument by reference. TEST(TrulyTest, WorksForByRefArguments) { Matcher<const int&> m = Truly(ReferencesFooAndIsZero); EXPECT_TRUE(m.Matches(foo)); int n = 0; EXPECT_FALSE(m.Matches(n)); } // Tests that Matches(m) is a predicate satisfied by whatever that // matches matcher m. TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { EXPECT_TRUE(Matches(Ge(0))(1)); EXPECT_FALSE(Matches(Eq('a'))('b')); } // Tests that Matches(m) works when the matcher takes its argument by // reference. TEST(MatchesTest, WorksOnByRefArguments) { int m = 0, n = 0; EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); EXPECT_FALSE(Matches(Ref(m))(n)); } // Tests that a Matcher on non-reference type can be used in // Matches(). TEST(MatchesTest, WorksWithMatcherOnNonRefType) { Matcher<int> eq5 = Eq(5); EXPECT_TRUE(Matches(eq5)(5)); EXPECT_FALSE(Matches(eq5)(2)); } // Tests Value(value, matcher). Since Value() is a simple wrapper for // Matches(), which has been tested already, we don't spend a lot of // effort on testing Value(). TEST(ValueTest, WorksWithPolymorphicMatcher) { EXPECT_TRUE(Value("hi", StartsWith("h"))); EXPECT_FALSE(Value(5, Gt(10))); } TEST(ValueTest, WorksWithMonomorphicMatcher) { const Matcher<int> is_zero = Eq(0); EXPECT_TRUE(Value(0, is_zero)); EXPECT_FALSE(Value('a', is_zero)); int n = 0; const Matcher<const int&> ref_n = Ref(n); EXPECT_TRUE(Value(n, ref_n)); EXPECT_FALSE(Value(1, ref_n)); } TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { const Matcher<int> is_even = PolymorphicIsEven(); StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); const Matcher<const double&> is_zero = Eq(0); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } MATCHER_P(Really, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg, result_listener); } TEST(ExplainMatchResultTest, WorksInsideMATCHER) { EXPECT_THAT(0, Really(Eq(0))); } TEST(AllArgsTest, WorksForTuple) { EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt())); EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt()))); } TEST(AllArgsTest, WorksForNonTuple) { EXPECT_THAT(42, AllArgs(Gt(0))); EXPECT_THAT('a', Not(AllArgs(Eq('b')))); } class AllArgsHelper { public: AllArgsHelper() {} MOCK_METHOD2(Helper, int(char x, int y)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); }; TEST(AllArgsTest, WorksInWithClause) { AllArgsHelper helper; ON_CALL(helper, Helper(_, _)) .With(AllArgs(Lt())) .WillByDefault(Return(1)); EXPECT_CALL(helper, Helper(_, _)); EXPECT_CALL(helper, Helper(_, _)) .With(AllArgs(Gt())) .WillOnce(Return(2)); EXPECT_EQ(1, helper.Helper('\1', 2)); EXPECT_EQ(2, helper.Helper('a', 1)); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // matches the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { ASSERT_THAT(5, Ge(2)) << "This should succeed."; ASSERT_THAT("Foo", EndsWith("oo")); EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; EXPECT_THAT("Hello", StartsWith("Hell")); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // doesn't match the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), // which cannot reference auto variables. static unsigned short n; // NOLINT n = 5; // VC++ prior to version 8.0 SP1 has a bug where it will not see any // functions declared in the namespace scope from within nested classes. // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all // namespace-level functions invoked inside them need to be explicitly // resolved. EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)), "Value of: n\n" "Expected: is > 10\n" " Actual: 5" + OfType("unsigned short")); n = 0; EXPECT_NONFATAL_FAILURE( EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))), "Value of: n\n" "Expected: (is <= 7) and (is >= 5)\n" " Actual: 0" + OfType("unsigned short")); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument // has a reference type. TEST(MatcherAssertionTest, WorksForByRefArguments) { // We use a static variable here as EXPECT_FATAL_FAILURE() cannot // reference auto variables. static int n; n = 0; EXPECT_THAT(n, AllOf(Le(7), Ref(n))); EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Value of: n\n" "Expected: does not reference the variable @"); // Tests the "Actual" part. EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Actual: 0" + OfType("int") + ", which is located @"); } #if !GTEST_OS_SYMBIAN // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is // monomorphic. // ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's // Symbian compiler: it tries to compile // template<T, U> class MatcherCastImpl { ... // virtual bool MatchAndExplain(T x, ...) const { // return source_matcher_.MatchAndExplain(static_cast<U>(x), ...); // with U == string and T == const char* // With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... ) // the compiler silently crashes with no output. // If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x) // the code compiles but the converted string is bogus. TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { Matcher<const char*> starts_with_he = StartsWith("he"); ASSERT_THAT("hello", starts_with_he); Matcher<const string&> ends_with_ok = EndsWith("ok"); ASSERT_THAT("book", ends_with_ok); const string bad = "bad"; EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), "Value of: bad\n" "Expected: ends with \"ok\"\n" " Actual: \"bad\""); Matcher<int> is_greater_than_5 = Gt(5); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), "Value of: 5\n" "Expected: is > 5\n" " Actual: 5" + OfType("int")); } #endif // !GTEST_OS_SYMBIAN // Tests floating-point matchers. template <typename RawType> class FloatingPointTest : public testing::Test { protected: typedef typename testing::internal::FloatingPoint<RawType> Floating; typedef typename Floating::Bits Bits; virtual void SetUp() { const size_t max_ulps = Floating::kMaxUlps; // The bits that represent 0.0. const Bits zero_bits = Floating(0).bits(); // Makes some numbers close to 0.0. close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2); close_to_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps - max_ulps/2); further_from_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps + 1 - max_ulps/2); // The bits that represent 1.0. const Bits one_bits = Floating(1).bits(); // Makes some numbers close to 1.0. close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps); further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1); // +infinity. infinity_ = Floating::Infinity(); // The bits that represent +infinity. const Bits infinity_bits = Floating(infinity_).bits(); // Makes some numbers close to infinity. close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps); further_from_infinity_ = Floating::ReinterpretBits( infinity_bits - max_ulps - 1); // Makes some NAN's. nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1); nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200); } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } // A battery of tests for FloatingEqMatcher::Matches. // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. void TestMatches( testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) { Matcher<RawType> m1 = matcher_maker(0.0); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0)); Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_); EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); Matcher<RawType> m3 = matcher_maker(1.0); EXPECT_TRUE(m3.Matches(close_to_one_)); EXPECT_FALSE(m3.Matches(further_from_one_)); // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. EXPECT_FALSE(m3.Matches(0.0)); Matcher<RawType> m4 = matcher_maker(-infinity_); EXPECT_TRUE(m4.Matches(-close_to_infinity_)); Matcher<RawType> m5 = matcher_maker(infinity_); EXPECT_TRUE(m5.Matches(close_to_infinity_)); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_FALSE(m5.Matches(nan1_)); // matcher_maker can produce a Matcher<const RawType&>, which is needed in // some cases. Matcher<const RawType&> m6 = matcher_maker(0.0); EXPECT_TRUE(m6.Matches(-0.0)); EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); EXPECT_FALSE(m6.Matches(1.0)); // matcher_maker can produce a Matcher<RawType&>, which is needed in some // cases. Matcher<RawType&> m7 = matcher_maker(0.0); RawType x = 0.0; EXPECT_TRUE(m7.Matches(x)); x = 0.01f; EXPECT_FALSE(m7.Matches(x)); } // Pre-calculated numbers to be used by the tests. static RawType close_to_positive_zero_; static RawType close_to_negative_zero_; static RawType further_from_negative_zero_; static RawType close_to_one_; static RawType further_from_one_; static RawType infinity_; static RawType close_to_infinity_; static RawType further_from_infinity_; static RawType nan1_; static RawType nan2_; }; template <typename RawType> RawType FloatingPointTest<RawType>::close_to_positive_zero_; template <typename RawType> RawType FloatingPointTest<RawType>::close_to_negative_zero_; template <typename RawType> RawType FloatingPointTest<RawType>::further_from_negative_zero_; template <typename RawType> RawType FloatingPointTest<RawType>::close_to_one_; template <typename RawType> RawType FloatingPointTest<RawType>::further_from_one_; template <typename RawType> RawType FloatingPointTest<RawType>::infinity_; template <typename RawType> RawType FloatingPointTest<RawType>::close_to_infinity_; template <typename RawType> RawType FloatingPointTest<RawType>::further_from_infinity_; template <typename RawType> RawType FloatingPointTest<RawType>::nan1_; template <typename RawType> RawType FloatingPointTest<RawType>::nan2_; // Instantiate FloatingPointTest for testing floats. typedef FloatingPointTest<float> FloatTest; TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { TestMatches(&FloatEq); } TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { TestMatches(&NanSensitiveFloatEq); } TEST_F(FloatTest, FloatEqCannotMatchNaN) { // FloatEq never matches NaN. Matcher<float> m = FloatEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { // NanSensitiveFloatEq will match NaN. Matcher<float> m = NanSensitiveFloatEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, FloatEqCanDescribeSelf) { Matcher<float> m1 = FloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher<float> m2 = FloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher<float> m3 = FloatEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { Matcher<float> m1 = NanSensitiveFloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher<float> m2 = NanSensitiveFloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher<float> m3 = NanSensitiveFloatEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } // Instantiate FloatingPointTest for testing doubles. typedef FloatingPointTest<double> DoubleTest; TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { TestMatches(&DoubleEq); } TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { TestMatches(&NanSensitiveDoubleEq); } TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { // DoubleEq never matches NaN. Matcher<double> m = DoubleEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { // NanSensitiveDoubleEq will match NaN. Matcher<double> m = NanSensitiveDoubleEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { Matcher<double> m1 = DoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher<double> m2 = DoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher<double> m3 = DoubleEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { Matcher<double> m1 = NanSensitiveDoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher<double> m2 = NanSensitiveDoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher<double> m3 = NanSensitiveDoubleEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } TEST(PointeeTest, RawPointer) { const Matcher<int*> m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, RawPointerToConst) { const Matcher<const double*> m = Pointee(Ge(0)); double x = 1; EXPECT_TRUE(m.Matches(&x)); x = -1; EXPECT_FALSE(m.Matches(&x)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, ReferenceToConstRawPointer) { const Matcher<int* const &> m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, ReferenceToNonConstRawPointer) { const Matcher<double* &> m = Pointee(Ge(0)); double x = 1.0; double* p = &x; EXPECT_TRUE(m.Matches(p)); x = -1; EXPECT_FALSE(m.Matches(p)); p = NULL; EXPECT_FALSE(m.Matches(p)); } TEST(PointeeTest, NeverMatchesNull) { const Matcher<const char*> m = Pointee(_); EXPECT_FALSE(m.Matches(NULL)); } // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). TEST(PointeeTest, MatchesAgainstAValue) { const Matcher<int*> m = Pointee(5); int n = 5; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, CanDescribeSelf) { const Matcher<int*> m = Pointee(Gt(3)); EXPECT_EQ("points to a value that is > 3", Describe(m)); EXPECT_EQ("does not point to a value that is > 3", DescribeNegation(m)); } TEST(PointeeTest, CanExplainMatchResult) { const Matcher<const string*> m = Pointee(StartsWith("Hi")); EXPECT_EQ("", Explain(m, static_cast<const string*>(NULL))); const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT long n = 3; // NOLINT EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", Explain(m2, &n)); } TEST(PointeeTest, AlwaysExplainsPointee) { const Matcher<int*> m = Pointee(0); int n = 42; EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); } // An uncopyable class. class Uncopyable { public: explicit Uncopyable(int a_value) : value_(a_value) {} int value() const { return value_; } private: const int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); }; // Returns true iff x.value() is positive. bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } // A user-defined struct for testing Field(). struct AStruct { AStruct() : x(0), y(1.0), z(5), p(NULL) {} AStruct(const AStruct& rhs) : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} int x; // A non-const field. const double y; // A const field. Uncopyable z; // An uncopyable field. const char* p; // A pointer field. private: GTEST_DISALLOW_ASSIGN_(AStruct); }; // A derived struct for testing Field(). struct DerivedStruct : public AStruct { char ch; private: GTEST_DISALLOW_ASSIGN_(DerivedStruct); }; // Tests that Field(&Foo::field, ...) works when field is non-const. TEST(FieldTest, WorksForNonConstField) { Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is const. TEST(FieldTest, WorksForConstField) { AStruct a; Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::y, Le(0.0)); EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is not copyable. TEST(FieldTest, WorksForUncopyableField) { AStruct a; Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is a pointer. TEST(FieldTest, WorksForPointerField) { // Matching against NULL. Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.p = "hi"; EXPECT_FALSE(m.Matches(a)); // Matching a pointer that is not NULL. m = Field(&AStruct::p, StartsWith("hi")); a.p = "hill"; EXPECT_TRUE(m.Matches(a)); a.p = "hole"; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() works when the object is passed by reference. TEST(FieldTest, WorksForByRefArgument) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of Foo. TEST(FieldTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(d)); d.x = -1; EXPECT_FALSE(m.Matches(d)); } // Tests that Field(&Foo::field, m) works when field's type and m's // argument type are compatible but not the same. TEST(FieldTest, WorksForCompatibleMatcherType) { // The field is an int, but the inner matcher expects a signed char. Matcher<const AStruct&> m = Field(&AStruct::x, Matcher<signed char>(Ge(0))); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() can describe itself. TEST(FieldTest, CanDescribeSelf) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the match result. TEST(FieldTest, CanExplainMatchResult) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ( "whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } // Tests that Field() works when the argument is a pointer to const. TEST(FieldForPointerTest, WorksForPointerToConst) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a pointer to non-const. TEST(FieldForPointerTest, WorksForPointerToNonConst) { Matcher<AStruct*> m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a reference to a const pointer. TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() does not match the NULL pointer. TEST(FieldForPointerTest, DoesNotMatchNull) { Matcher<const AStruct*> m = Field(&AStruct::x, _); EXPECT_FALSE(m.Matches(NULL)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of const Foo*. TEST(FieldForPointerTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(&d)); d.x = -1; EXPECT_FALSE(m.Matches(&d)); } // Tests that Field() can describe itself when used to match a pointer. TEST(FieldForPointerTest, CanDescribeSelf) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the result of matching a pointer. TEST(FieldForPointerTest, CanExplainMatchResult) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL))); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), Explain(m, &a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } // A user-defined class for testing Property(). class AClass { public: AClass() : n_(0) {} // A getter that returns a non-reference. int n() const { return n_; } void set_n(int new_n) { n_ = new_n; } // A getter that returns a reference to const. const string& s() const { return s_; } void set_s(const string& new_s) { s_ = new_s; } // A getter that returns a reference to non-const. double& x() const { return x_; } private: int n_; string s_; static double x_; }; double AClass::x_ = 0.0; // A derived class for testing Property(). class DerivedClass : public AClass { private: int k_; }; // Tests that Property(&Foo::property, ...) works when property() // returns a non-reference. TEST(PropertyTest, WorksForNonReferenceProperty) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to const. TEST(PropertyTest, WorksForReferenceToConstProperty) { Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to non-const. TEST(PropertyTest, WorksForReferenceToNonConstProperty) { double x = 0.0; AClass a; Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); EXPECT_FALSE(m.Matches(a)); m = Property(&AClass::x, Not(Ref(x))); EXPECT_TRUE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument is // passed by value. TEST(PropertyTest, WorksForByValueArgument) { Matcher<AClass> m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of Foo. TEST(PropertyTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(d)); d.set_n(-1); EXPECT_FALSE(m.Matches(d)); } // Tests that Property(&Foo::property, m) works when property()'s type // and m's argument type are compatible but different. TEST(PropertyTest, WorksForCompatibleMatcherType) { // n() returns an int but the inner matcher expects a signed char. Matcher<const AClass&> m = Property(&AClass::n, Matcher<signed char>(Ge(0))); AClass a; EXPECT_TRUE(m.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); } // Tests that Property() can describe itself. TEST(PropertyTest, CanDescribeSelf) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the match result. TEST(PropertyTest, CanExplainMatchResult) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ( "whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } // Tests that Property() works when the argument is a pointer to const. TEST(PropertyForPointerTest, WorksForPointerToConst) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(&a)); a.set_n(-1); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a pointer to non-const. TEST(PropertyForPointerTest, WorksForPointerToNonConst) { Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a reference to a // const pointer. TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() does not match the NULL pointer. TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { Matcher<const AClass*> m = Property(&AClass::x, _); EXPECT_FALSE(m.Matches(NULL)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of const Foo*. TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(&d)); d.set_n(-1); EXPECT_FALSE(m.Matches(&d)); } // Tests that Property() can describe itself when used to match a pointer. TEST(PropertyForPointerTest, CanDescribeSelf) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the result of matching a pointer. TEST(PropertyForPointerTest, CanExplainMatchResult) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL))); EXPECT_EQ( "which points to an object whose given property is 1" + OfType("int"), Explain(m, &a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } // Tests ResultOf. // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function pointer. string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; } TEST(ResultOfTest, WorksForFunctionPointers) { Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf() can describe itself. TEST(ResultOfTest, CanDescribeItself) { Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo")); EXPECT_EQ("is mapped by the given callable to a value that " "is equal to \"foo\"", Describe(matcher)); EXPECT_EQ("is mapped by the given callable to a value that " "isn't equal to \"foo\"", DescribeNegation(matcher)); } // Tests that ResultOf() can explain the match result. int IntFunction(int input) { return input == 42 ? 80 : 90; } TEST(ResultOfTest, CanExplainMatchResult) { Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), Explain(matcher, 36)); matcher = ResultOf(&IntFunction, GreaterThan(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + ", which is 5 more than 85", Explain(matcher, 36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a non-reference. TEST(ResultOfTest, WorksForNonReferenceResults) { Matcher<int> matcher = ResultOf(&IntFunction, Eq(80)); EXPECT_TRUE(matcher.Matches(42)); EXPECT_FALSE(matcher.Matches(36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to non-const. double& DoubleFunction(double& input) { return input; } // NOLINT Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT return obj; } TEST(ResultOfTest, WorksForReferenceToNonConstResults) { double x = 3.14; double x2 = x; Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x)); EXPECT_TRUE(matcher.Matches(x)); EXPECT_FALSE(matcher.Matches(x2)); // Test that ResultOf works with uncopyable objects Uncopyable obj(0); Uncopyable obj2(0); Matcher<Uncopyable&> matcher2 = ResultOf(&RefUncopyableFunction, Ref(obj)); EXPECT_TRUE(matcher2.Matches(obj)); EXPECT_FALSE(matcher2.Matches(obj2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to const. const string& StringFunction(const string& input) { return input; } TEST(ResultOfTest, WorksForReferenceToConstResults) { string s = "foo"; string s2 = s; Matcher<const string&> matcher = ResultOf(&StringFunction, Ref(s)); EXPECT_TRUE(matcher.Matches(s)); EXPECT_FALSE(matcher.Matches(s2)); } // Tests that ResultOf(f, m) works when f(x) and m's // argument types are compatible but different. TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { // IntFunction() returns int but the inner matcher expects a signed char. Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85))); EXPECT_TRUE(matcher.Matches(36)); EXPECT_FALSE(matcher.Matches(42)); } // Tests that the program aborts when ResultOf is passed // a NULL function pointer. TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { EXPECT_DEATH_IF_SUPPORTED( ResultOf(static_cast<string(*)(int dummy)>(NULL), Eq(string("foo"))), "NULL function pointer is passed into ResultOf\\(\\)\\."); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function reference. TEST(ResultOfTest, WorksForFunctionReferences) { Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function object. struct Functor : public ::std::unary_function<int, string> { result_type operator()(argument_type input) const { return IntToStringFunction(input); } }; TEST(ResultOfTest, WorksForFunctors) { Matcher<int> matcher = ResultOf(Functor(), Eq(string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // functor with more then one operator() defined. ResultOf() must work // for each defined operator(). struct PolymorphicFunctor { typedef int result_type; int operator()(int n) { return n; } int operator()(const char* s) { return static_cast<int>(strlen(s)); } }; TEST(ResultOfTest, WorksForPolymorphicFunctors) { Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_int.Matches(10)); EXPECT_FALSE(matcher_int.Matches(2)); Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_string.Matches("long string")); EXPECT_FALSE(matcher_string.Matches("shrt")); } const int* ReferencingFunction(const int& n) { return &n; } struct ReferencingFunctor { typedef const int* result_type; result_type operator()(const int& n) { return &n; } }; TEST(ResultOfTest, WorksForReferencingCallables) { const int n = 1; const int n2 = 1; Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); EXPECT_TRUE(matcher2.Matches(n)); EXPECT_FALSE(matcher2.Matches(n2)); Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); EXPECT_TRUE(matcher3.Matches(n)); EXPECT_FALSE(matcher3.Matches(n2)); } class DivisibleByImpl { public: explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} // For testing using ExplainMatchResultTo() with polymorphic matchers. template <typename T> bool MatchAndExplain(const T& n, MatchResultListener* listener) const { *listener << "which is " << (n % divider_) << " modulo " << divider_; return (n % divider_) == 0; } void DescribeTo(ostream* os) const { *os << "is divisible by " << divider_; } void DescribeNegationTo(ostream* os) const { *os << "is not divisible by " << divider_; } void set_divider(int a_divider) { divider_ = a_divider; } int divider() const { return divider_; } private: int divider_; }; PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) { return MakePolymorphicMatcher(DivisibleByImpl(n)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_False) { const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_True) { const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_True_False) { const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); } // Tests that when AllOf() succeeds, all matchers are asked to explain // why. TEST(ExplainMatchResultTest, AllOf_True_True) { const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3)); EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); } TEST(ExplainMatchResultTest, AllOf_True_True_2) { const Matcher<int> m = AllOf(Ge(2), Le(3)); EXPECT_EQ("", Explain(m, 2)); } TEST(ExplainmatcherResultTest, MonomorphicMatcher) { const Matcher<int> m = GreaterThan(5); EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); } // The following two tests verify that values without a public copy // ctor can be used as arguments to matchers like Eq(), Ge(), and etc // with the help of ByRef(). class NotCopyable { public: explicit NotCopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const NotCopyable& rhs) const { return value() == rhs.value(); } bool operator>=(const NotCopyable& rhs) const { return value() >= rhs.value(); } private: int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); }; TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { const NotCopyable const_value1(1); const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1)); const NotCopyable n1(1), n2(2); EXPECT_TRUE(m.Matches(n1)); EXPECT_FALSE(m.Matches(n2)); } TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { NotCopyable value2(2); const Matcher<NotCopyable&> m = Ge(ByRef(value2)); NotCopyable n1(1), n2(2); EXPECT_FALSE(m.Matches(n1)); EXPECT_TRUE(m.Matches(n2)); } #if GTEST_HAS_TYPED_TEST // Tests ContainerEq with different container types, and // different element types. template <typename T> class ContainerEqTest : public testing::Test {}; typedef testing::Types< set<int>, vector<size_t>, multiset<size_t>, list<int> > ContainerEqTestTypes; TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes); // Tests that the filled container is equal to itself. TYPED_TEST(ContainerEqTest, EqualsSelf) { static const int vals[] = {1, 1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_EQ("", Explain(m, my_set)); } // Tests that missing values are reported. TYPED_TEST(ContainerEqTest, ValueMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 8, 5}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 4); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3", Explain(m, test_set)); } // Tests that added values are reported. TYPED_TEST(ContainerEqTest, ValueAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 6); const Matcher<const TypeParam&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46,\n" "and doesn't have these expected elements: 5", Explain(m, test_set)); } // Tests duplicated value -- expect no explanation. TYPED_TEST(ContainerEqTest, DuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher<const TypeParam&> m = ContainerEq(my_set); // Depending on the container, match may be true or false // But in any case there should be no explanation. EXPECT_EQ("", Explain(m, test_set)); } #endif // GTEST_HAS_TYPED_TEST // Tests that mutliple missing values are reported. // Using just vector here, so order is predicatble. TEST(ContainerEqExtraTest, MultipleValuesMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 5}; vector<int> my_set(vals, vals + 6); vector<int> test_set(test_vals, test_vals + 3); const Matcher<vector<int> > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3, 8", Explain(m, test_set)); } // Tests that added values are reported. // Using just vector here, so order is predicatble. TEST(ContainerEqExtraTest, MultipleValuesAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; list<size_t> my_set(vals, vals + 6); list<size_t> test_set(test_vals, test_vals + 7); const Matcher<const list<size_t>&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 92, 46}; list<size_t> my_set(vals, vals + 6); list<size_t> test_set(test_vals, test_vals + 5); const Matcher<const list<size_t> > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46,\n" "and doesn't have these expected elements: 5, 8", Explain(m, test_set)); } // Tests to see that duplicate elements are detected, // but (as above) not reported in the explanation. TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; vector<int> my_set(vals, vals + 6); vector<int> test_set(test_vals, test_vals + 5); const Matcher<vector<int> > m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_FALSE(m.Matches(test_set)); // There is nothing to report when both sets contain all the same values. EXPECT_EQ("", Explain(m, test_set)); } // Tests that ContainerEq works for non-trivial associative containers, // like maps. TEST(ContainerEqExtraTest, WorksForMaps) { map<int, std::string> my_map; my_map[0] = "a"; my_map[1] = "b"; map<int, std::string> test_map; test_map[0] = "aa"; test_map[1] = "b"; const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); EXPECT_TRUE(m.Matches(my_map)); EXPECT_FALSE(m.Matches(test_map)); EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" "and doesn't have these expected elements: (0, \"a\")", Explain(m, test_map)); } TEST(ContainerEqExtraTest, WorksForNativeArray) { int a1[] = { 1, 2, 3 }; int a2[] = { 1, 2, 3 }; int b[] = { 1, 2, 4 }; EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); } TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { const char a1[][3] = { "hi", "lo" }; const char a2[][3] = { "hi", "lo" }; const char b[][3] = { "lo", "hi" }; // Tests using ContainerEq() in the first dimension. EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); // Tests using ContainerEq() in the second dimension. EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); } TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { const int a1[] = { 1, 2, 3 }; const int a2[] = { 1, 2, 3 }; const int b[] = { 1, 2, 3, 4 }; const int* const p1 = a1; EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2)); EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b))); const int c[] = { 1, 3, 2 }; EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c))); } TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { std::string a1[][3] = { { "hi", "hello", "ciao" }, { "bye", "see you", "ciao" } }; std::string a2[][3] = { { "hi", "hello", "ciao" }, { "bye", "see you", "ciao" } }; const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); EXPECT_THAT(a1, m); a2[0][0] = "ha"; EXPECT_THAT(a1, m); } // Tests IsReadableTypeName(). TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { EXPECT_TRUE(IsReadableTypeName("int")); EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); } TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { EXPECT_FALSE( IsReadableTypeName("basic_string<char, std::char_traits<char> >")); EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); } // Tests JoinAsTuple(). TEST(JoinAsTupleTest, JoinsEmptyTuple) { EXPECT_EQ("", JoinAsTuple(Strings())); } TEST(JoinAsTupleTest, JoinsOneTuple) { const char* fields[] = { "1" }; EXPECT_EQ("1", JoinAsTuple(Strings(fields, fields + 1))); } TEST(JoinAsTupleTest, JoinsTwoTuple) { const char* fields[] = { "1", "a" }; EXPECT_EQ("(1, a)", JoinAsTuple(Strings(fields, fields + 2))); } TEST(JoinAsTupleTest, JoinsTenTuple) { const char* fields[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" }; EXPECT_EQ("(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)", JoinAsTuple(Strings(fields, fields + 10))); } // Tests FormatMatcherDescription(). TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { EXPECT_EQ("is even", FormatMatcherDescription(false, "IsEven", Strings())); EXPECT_EQ("not (is even)", FormatMatcherDescription(true, "IsEven", Strings())); const char* params[] = { "5" }; EXPECT_EQ("equals 5", FormatMatcherDescription(false, "Equals", Strings(params, params + 1))); const char* params2[] = { "5", "8" }; EXPECT_EQ("is in range (5, 8)", FormatMatcherDescription(false, "IsInRange", Strings(params2, params2 + 2))); } // Tests PolymorphicMatcher::mutable_impl(). TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); DivisibleByImpl& impl = m.mutable_impl(); EXPECT_EQ(42, impl.divider()); impl.set_divider(0); EXPECT_EQ(0, m.mutable_impl().divider()); } // Tests PolymorphicMatcher::impl(). TEST(PolymorphicMatcherTest, CanAccessImpl) { const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); const DivisibleByImpl& impl = m.impl(); EXPECT_EQ(42, impl.divider()); } TEST(MatcherTupleTest, ExplainsMatchFailure) { stringstream ss1; ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), make_tuple('a', 10), &ss1); EXPECT_EQ("", ss1.str()); // Successful match. stringstream ss2; ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), make_tuple(2, 'b'), &ss2); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n" " Expected arg #1: is equal to 'a' (97, 0x61)\n" " Actual: 'b' (98, 0x62)\n", ss2.str()); // Failed match where both arguments need explanation. stringstream ss3; ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), make_tuple(2, 'a'), &ss3); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n", ss3.str()); // Failed match where only one argument needs // explanation. } // Tests Each(). TEST(EachTest, ExplainsMatchResultCorrectly) { set<int> a; // empty Matcher<set<int> > m = Each(2); EXPECT_EQ("", Explain(m, a)); Matcher<const int(&)[1]> n = Each(1); // NOLINT const int b[1] = { 1 }; EXPECT_EQ("", Explain(n, b)); n = Each(3); EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); a.insert(1); a.insert(2); a.insert(3); m = Each(GreaterThan(0)); EXPECT_EQ("", Explain(m, a)); m = Each(GreaterThan(10)); EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", Explain(m, a)); } TEST(EachTest, DescribesItselfCorrectly) { Matcher<vector<int> > m = Each(1); EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); Matcher<vector<int> > m2 = Not(m); EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); } TEST(EachTest, MatchesVectorWhenAllElementsMatch) { vector<int> some_vector; EXPECT_THAT(some_vector, Each(1)); some_vector.push_back(3); EXPECT_THAT(some_vector, Not(Each(1))); EXPECT_THAT(some_vector, Each(3)); some_vector.push_back(1); some_vector.push_back(2); EXPECT_THAT(some_vector, Not(Each(3))); EXPECT_THAT(some_vector, Each(Lt(3.5))); vector<string> another_vector; another_vector.push_back("fee"); EXPECT_THAT(another_vector, Each(string("fee"))); another_vector.push_back("fie"); another_vector.push_back("foe"); another_vector.push_back("fum"); EXPECT_THAT(another_vector, Not(Each(string("fee")))); } TEST(EachTest, MatchesMapWhenAllElementsMatch) { map<const char*, int> my_map; const char* bar = "a string"; my_map[bar] = 2; EXPECT_THAT(my_map, Each(make_pair(bar, 2))); map<string, int> another_map; EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1))); another_map["fee"] = 1; EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1))); another_map["fie"] = 2; another_map["foe"] = 3; another_map["fum"] = 4; EXPECT_THAT(another_map, Not(Each(make_pair(string("fee"), 1)))); EXPECT_THAT(another_map, Not(Each(make_pair(string("fum"), 1)))); EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); } TEST(EachTest, AcceptsMatcher) { const int a[] = { 1, 2, 3 }; EXPECT_THAT(a, Each(Gt(0))); EXPECT_THAT(a, Not(Each(Gt(1)))); } TEST(EachTest, WorksForNativeArrayAsTuple) { const int a[] = { 1, 2 }; const int* const pointer = a; EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0))); EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1)))); } // For testing Pointwise(). class IsHalfOfMatcher { public: template <typename T1, typename T2> bool MatchAndExplain(const tuple<T1, T2>& a_pair, MatchResultListener* listener) const { if (get<0>(a_pair) == get<1>(a_pair)/2) { *listener << "where the second is " << get<1>(a_pair); return true; } else { *listener << "where the second/2 is " << get<1>(a_pair)/2; return false; } } void DescribeTo(ostream* os) const { *os << "are a pair where the first is half of the second"; } void DescribeNegationTo(ostream* os) const { *os << "are a pair where the first isn't half of the second"; } }; PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { return MakePolymorphicMatcher(IsHalfOfMatcher()); } TEST(PointwiseTest, DescribesSelf) { vector<int> rhs; rhs.push_back(1); rhs.push_back(2); rhs.push_back(3); const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); EXPECT_EQ("contains 3 values, where each value and its corresponding value " "in { 1, 2, 3 } are a pair where the first is half of the second", Describe(m)); EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " "index i where x and the i-th value of { 1, 2, 3 } are a pair " "where the first isn't half of the second", DescribeNegation(m)); } TEST(PointwiseTest, MakesCopyOfRhs) { list<signed char> rhs; rhs.push_back(2); rhs.push_back(4); int lhs[] = { 1, 2 }; const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs); EXPECT_THAT(lhs, m); // Changing rhs now shouldn't affect m, which made a copy of rhs. rhs.push_back(6); EXPECT_THAT(lhs, m); } TEST(PointwiseTest, WorksForLhsNativeArray) { const int lhs[] = { 1, 2, 3 }; vector<int> rhs; rhs.push_back(2); rhs.push_back(4); rhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); } TEST(PointwiseTest, WorksForRhsNativeArray) { const int rhs[] = { 1, 2, 3 }; vector<int> lhs; lhs.push_back(2); lhs.push_back(4); lhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); } TEST(PointwiseTest, RejectsWrongSize) { const double lhs[2] = { 1, 2 }; const int rhs[1] = { 0 }; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); EXPECT_EQ("which contains 2 values", Explain(Pointwise(Gt(), rhs), lhs)); const int rhs2[3] = { 0, 1, 2 }; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); } TEST(PointwiseTest, RejectsWrongContent) { const double lhs[3] = { 1, 2, 3 }; const int rhs[3] = { 2, 6, 4 }; EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " "where the second/2 is 3", Explain(Pointwise(IsHalfOf(), rhs), lhs)); } TEST(PointwiseTest, AcceptsCorrectContent) { const double lhs[3] = { 1, 2, 3 }; const int rhs[3] = { 2, 4, 6 }; EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); } TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { const double lhs[3] = { 1, 2, 3 }; const int rhs[3] = { 2, 4, 6 }; const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m1, rhs)); EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); // This type works as a tuple<const double&, const int&> can be // implicitly cast to tuple<double, int>. const Matcher<tuple<double, int> > m2 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m2, rhs)); EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); } } // namespace gmock_matchers_test } // namespace testing