// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/backend_impl.h" #include "base/file_path.h" #include "base/file_util.h" #include "base/message_loop.h" #include "base/metrics/field_trial.h" #include "base/metrics/histogram.h" #include "base/metrics/stats_counters.h" #include "base/rand_util.h" #include "base/string_util.h" #include "base/stringprintf.h" #include "base/sys_info.h" #include "base/threading/worker_pool.h" #include "base/threading/thread_restrictions.h" #include "base/time.h" #include "base/timer.h" #include "net/base/net_errors.h" #include "net/disk_cache/cache_util.h" #include "net/disk_cache/entry_impl.h" #include "net/disk_cache/errors.h" #include "net/disk_cache/experiments.h" #include "net/disk_cache/file.h" #include "net/disk_cache/hash.h" #include "net/disk_cache/mem_backend_impl.h" // This has to be defined before including histogram_macros.h from this file. #define NET_DISK_CACHE_BACKEND_IMPL_CC_ #include "net/disk_cache/histogram_macros.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { const char* kIndexName = "index"; const int kMaxOldFolders = 100; // Seems like ~240 MB correspond to less than 50k entries for 99% of the people. // Note that the actual target is to keep the index table load factor under 55% // for most users. const int k64kEntriesStore = 240 * 1000 * 1000; const int kBaseTableLen = 64 * 1024; const int kDefaultCacheSize = 80 * 1024 * 1024; int DesiredIndexTableLen(int32 storage_size) { if (storage_size <= k64kEntriesStore) return kBaseTableLen; if (storage_size <= k64kEntriesStore * 2) return kBaseTableLen * 2; if (storage_size <= k64kEntriesStore * 4) return kBaseTableLen * 4; if (storage_size <= k64kEntriesStore * 8) return kBaseTableLen * 8; // The biggest storage_size for int32 requires a 4 MB table. return kBaseTableLen * 16; } int MaxStorageSizeForTable(int table_len) { return table_len * (k64kEntriesStore / kBaseTableLen); } size_t GetIndexSize(int table_len) { size_t table_size = sizeof(disk_cache::CacheAddr) * table_len; return sizeof(disk_cache::IndexHeader) + table_size; } // ------------------------------------------------------------------------ // Returns a fully qualified name from path and name, using a given name prefix // and index number. For instance, if the arguments are "/foo", "bar" and 5, it // will return "/foo/old_bar_005". FilePath GetPrefixedName(const FilePath& path, const std::string& name, int index) { std::string tmp = base::StringPrintf("%s%s_%03d", "old_", name.c_str(), index); return path.AppendASCII(tmp); } // This is a simple Task to cleanup old caches. class CleanupTask : public Task { public: CleanupTask(const FilePath& path, const std::string& name) : path_(path), name_(name) {} virtual void Run(); private: FilePath path_; std::string name_; DISALLOW_COPY_AND_ASSIGN(CleanupTask); }; void CleanupTask::Run() { for (int i = 0; i < kMaxOldFolders; i++) { FilePath to_delete = GetPrefixedName(path_, name_, i); disk_cache::DeleteCache(to_delete, true); } } // Returns a full path to rename the current cache, in order to delete it. path // is the current folder location, and name is the current folder name. FilePath GetTempCacheName(const FilePath& path, const std::string& name) { // We'll attempt to have up to kMaxOldFolders folders for deletion. for (int i = 0; i < kMaxOldFolders; i++) { FilePath to_delete = GetPrefixedName(path, name, i); if (!file_util::PathExists(to_delete)) return to_delete; } return FilePath(); } // Moves the cache files to a new folder and creates a task to delete them. bool DelayedCacheCleanup(const FilePath& full_path) { // GetTempCacheName() and MoveCache() use synchronous file // operations. base::ThreadRestrictions::ScopedAllowIO allow_io; FilePath current_path = full_path.StripTrailingSeparators(); FilePath path = current_path.DirName(); FilePath name = current_path.BaseName(); #if defined(OS_POSIX) std::string name_str = name.value(); #elif defined(OS_WIN) // We created this file so it should only contain ASCII. std::string name_str = WideToASCII(name.value()); #endif FilePath to_delete = GetTempCacheName(path, name_str); if (to_delete.empty()) { LOG(ERROR) << "Unable to get another cache folder"; return false; } if (!disk_cache::MoveCache(full_path, to_delete)) { LOG(ERROR) << "Unable to move cache folder"; return false; } base::WorkerPool::PostTask(FROM_HERE, new CleanupTask(path, name_str), true); return true; } // Sets group for the current experiment. Returns false if the files should be // discarded. bool InitExperiment(disk_cache::IndexHeader* header) { if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 || header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) { // Discard current cache. return false; } // See if we already defined the group for this profile. if (header->experiment >= disk_cache::EXPERIMENT_DELETED_LIST_OUT) return true; // The experiment is closed. header->experiment = disk_cache::EXPERIMENT_DELETED_LIST_OUT; return true; } // Initializes the field trial structures to allow performance measurements // for the current cache configuration. void SetFieldTrialInfo(int size_group) { static bool first = true; if (!first) return; // Field trials involve static objects so we have to do this only once. first = false; std::string group1 = base::StringPrintf("CacheSizeGroup_%d", size_group); int totalProbability = 10; scoped_refptr<base::FieldTrial> trial1( new base::FieldTrial("CacheSize", totalProbability, group1, 2011, 6, 30)); trial1->AppendGroup(group1, totalProbability); } // ------------------------------------------------------------------------ // This class takes care of building an instance of the backend. class CacheCreator { public: CacheCreator(const FilePath& path, bool force, int max_bytes, net::CacheType type, uint32 flags, base::MessageLoopProxy* thread, net::NetLog* net_log, disk_cache::Backend** backend, net::CompletionCallback* callback) : path_(path), force_(force), retry_(false), max_bytes_(max_bytes), type_(type), flags_(flags), thread_(thread), backend_(backend), callback_(callback), cache_(NULL), net_log_(net_log), ALLOW_THIS_IN_INITIALIZER_LIST( my_callback_(this, &CacheCreator::OnIOComplete)) { } ~CacheCreator() {} // Creates the backend. int Run(); // Callback implementation. void OnIOComplete(int result); private: void DoCallback(int result); const FilePath& path_; bool force_; bool retry_; int max_bytes_; net::CacheType type_; uint32 flags_; scoped_refptr<base::MessageLoopProxy> thread_; disk_cache::Backend** backend_; net::CompletionCallback* callback_; disk_cache::BackendImpl* cache_; net::NetLog* net_log_; net::CompletionCallbackImpl<CacheCreator> my_callback_; DISALLOW_COPY_AND_ASSIGN(CacheCreator); }; int CacheCreator::Run() { cache_ = new disk_cache::BackendImpl(path_, thread_, net_log_); cache_->SetMaxSize(max_bytes_); cache_->SetType(type_); cache_->SetFlags(flags_); int rv = cache_->Init(&my_callback_); DCHECK_EQ(net::ERR_IO_PENDING, rv); return rv; } void CacheCreator::OnIOComplete(int result) { if (result == net::OK || !force_ || retry_) return DoCallback(result); // This is a failure and we are supposed to try again, so delete the object, // delete all the files, and try again. retry_ = true; delete cache_; cache_ = NULL; if (!DelayedCacheCleanup(path_)) return DoCallback(result); // The worker thread will start deleting files soon, but the original folder // is not there anymore... let's create a new set of files. int rv = Run(); DCHECK_EQ(net::ERR_IO_PENDING, rv); } void CacheCreator::DoCallback(int result) { DCHECK_NE(net::ERR_IO_PENDING, result); if (result == net::OK) { *backend_ = cache_; } else { LOG(ERROR) << "Unable to create cache"; *backend_ = NULL; delete cache_; } callback_->Run(result); delete this; } // ------------------------------------------------------------------------ // A task to perform final cleanup on the background thread. class FinalCleanup : public Task { public: explicit FinalCleanup(disk_cache::BackendImpl* backend) : backend_(backend) {} ~FinalCleanup() {} virtual void Run(); private: disk_cache::BackendImpl* backend_; DISALLOW_EVIL_CONSTRUCTORS(FinalCleanup); }; void FinalCleanup::Run() { backend_->CleanupCache(); } } // namespace // ------------------------------------------------------------------------ namespace disk_cache { int CreateCacheBackend(net::CacheType type, const FilePath& path, int max_bytes, bool force, base::MessageLoopProxy* thread, net::NetLog* net_log, Backend** backend, CompletionCallback* callback) { DCHECK(callback); if (type == net::MEMORY_CACHE) { *backend = MemBackendImpl::CreateBackend(max_bytes, net_log); return *backend ? net::OK : net::ERR_FAILED; } DCHECK(thread); return BackendImpl::CreateBackend(path, force, max_bytes, type, kNone, thread, net_log, backend, callback); } // Returns the preferred maximum number of bytes for the cache given the // number of available bytes. int PreferedCacheSize(int64 available) { // Return 80% of the available space if there is not enough space to use // kDefaultCacheSize. if (available < kDefaultCacheSize * 10 / 8) return static_cast<int32>(available * 8 / 10); // Return kDefaultCacheSize if it uses 80% to 10% of the available space. if (available < kDefaultCacheSize * 10) return kDefaultCacheSize; // Return 10% of the available space if the target size // (2.5 * kDefaultCacheSize) is more than 10%. if (available < static_cast<int64>(kDefaultCacheSize) * 25) return static_cast<int32>(available / 10); // Return the target size (2.5 * kDefaultCacheSize) if it uses 10% to 1% // of the available space. if (available < static_cast<int64>(kDefaultCacheSize) * 250) return kDefaultCacheSize * 5 / 2; // Return 1% of the available space if it does not exceed kint32max. if (available < static_cast<int64>(kint32max) * 100) return static_cast<int32>(available / 100); return kint32max; } // ------------------------------------------------------------------------ BackendImpl::BackendImpl(const FilePath& path, base::MessageLoopProxy* cache_thread, net::NetLog* net_log) : ALLOW_THIS_IN_INITIALIZER_LIST(background_queue_(this, cache_thread)), path_(path), block_files_(path), mask_(0), max_size_(0), io_delay_(0), cache_type_(net::DISK_CACHE), uma_report_(0), user_flags_(0), init_(false), restarted_(false), unit_test_(false), read_only_(false), disabled_(false), new_eviction_(false), first_timer_(true), net_log_(net_log), done_(true, false), ALLOW_THIS_IN_INITIALIZER_LIST(factory_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(ptr_factory_(this)) { } BackendImpl::BackendImpl(const FilePath& path, uint32 mask, base::MessageLoopProxy* cache_thread, net::NetLog* net_log) : ALLOW_THIS_IN_INITIALIZER_LIST(background_queue_(this, cache_thread)), path_(path), block_files_(path), mask_(mask), max_size_(0), io_delay_(0), cache_type_(net::DISK_CACHE), uma_report_(0), user_flags_(kMask), init_(false), restarted_(false), unit_test_(false), read_only_(false), disabled_(false), new_eviction_(false), first_timer_(true), net_log_(net_log), done_(true, false), ALLOW_THIS_IN_INITIALIZER_LIST(factory_(this)), ALLOW_THIS_IN_INITIALIZER_LIST(ptr_factory_(this)) { } BackendImpl::~BackendImpl() { background_queue_.WaitForPendingIO(); if (background_queue_.BackgroundIsCurrentThread()) { // Unit tests may use the same thread for everything. CleanupCache(); } else { background_queue_.background_thread()->PostTask(FROM_HERE, new FinalCleanup(this)); done_.Wait(); } } // If the initialization of the cache fails, and force is true, we will discard // the whole cache and create a new one. In order to process a potentially large // number of files, we'll rename the cache folder to old_ + original_name + // number, (located on the same parent folder), and spawn a worker thread to // delete all the files on all the stale cache folders. The whole process can // still fail if we are not able to rename the cache folder (for instance due to // a sharing violation), and in that case a cache for this profile (on the // desired path) cannot be created. // // Static. int BackendImpl::CreateBackend(const FilePath& full_path, bool force, int max_bytes, net::CacheType type, uint32 flags, base::MessageLoopProxy* thread, net::NetLog* net_log, Backend** backend, CompletionCallback* callback) { DCHECK(callback); CacheCreator* creator = new CacheCreator(full_path, force, max_bytes, type, flags, thread, net_log, backend, callback); // This object will self-destroy when finished. return creator->Run(); } int BackendImpl::Init(CompletionCallback* callback) { background_queue_.Init(callback); return net::ERR_IO_PENDING; } int BackendImpl::SyncInit() { DCHECK(!init_); if (init_) return net::ERR_FAILED; bool create_files = false; if (!InitBackingStore(&create_files)) { ReportError(ERR_STORAGE_ERROR); return net::ERR_FAILED; } num_refs_ = num_pending_io_ = max_refs_ = 0; entry_count_ = byte_count_ = 0; if (!restarted_) { buffer_bytes_ = 0; trace_object_ = TraceObject::GetTraceObject(); // Create a recurrent timer of 30 secs. int timer_delay = unit_test_ ? 1000 : 30000; timer_.Start(TimeDelta::FromMilliseconds(timer_delay), this, &BackendImpl::OnStatsTimer); } init_ = true; if (data_->header.experiment != NO_EXPERIMENT && cache_type_ != net::DISK_CACHE) { // No experiment for other caches. return net::ERR_FAILED; } if (!(user_flags_ & disk_cache::kNoRandom)) { // The unit test controls directly what to test. new_eviction_ = (cache_type_ == net::DISK_CACHE); } if (!CheckIndex()) { ReportError(ERR_INIT_FAILED); return net::ERR_FAILED; } if (!(user_flags_ & disk_cache::kNoRandom) && cache_type_ == net::DISK_CACHE && !InitExperiment(&data_->header)) return net::ERR_FAILED; // We don't care if the value overflows. The only thing we care about is that // the id cannot be zero, because that value is used as "not dirty". // Increasing the value once per second gives us many years before we start // having collisions. data_->header.this_id++; if (!data_->header.this_id) data_->header.this_id++; if (data_->header.crash) { ReportError(ERR_PREVIOUS_CRASH); } else { ReportError(0); data_->header.crash = 1; } if (!block_files_.Init(create_files)) return net::ERR_FAILED; // We want to minimize the changes to cache for an AppCache. if (cache_type() == net::APP_CACHE) { DCHECK(!new_eviction_); read_only_ = true; } // Setup load-time data only for the main cache. if (cache_type() == net::DISK_CACHE) SetFieldTrialInfo(GetSizeGroup()); eviction_.Init(this); // stats_ and rankings_ may end up calling back to us so we better be enabled. disabled_ = false; if (!stats_.Init(this, &data_->header.stats)) return net::ERR_FAILED; disabled_ = !rankings_.Init(this, new_eviction_); return disabled_ ? net::ERR_FAILED : net::OK; } void BackendImpl::CleanupCache() { Trace("Backend Cleanup"); eviction_.Stop(); timer_.Stop(); if (init_) { stats_.Store(); if (data_) data_->header.crash = 0; File::WaitForPendingIO(&num_pending_io_); if (user_flags_ & kNoRandom) { // This is a net_unittest, verify that we are not 'leaking' entries. DCHECK(!num_refs_); } } block_files_.CloseFiles(); factory_.RevokeAll(); ptr_factory_.InvalidateWeakPtrs(); done_.Signal(); } // ------------------------------------------------------------------------ int BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry, CompletionCallback* callback) { DCHECK(callback); background_queue_.OpenPrevEntry(iter, prev_entry, callback); return net::ERR_IO_PENDING; } int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) { DCHECK(entry); *entry = OpenEntryImpl(key); return (*entry) ? net::OK : net::ERR_FAILED; } int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) { DCHECK(entry); *entry = CreateEntryImpl(key); return (*entry) ? net::OK : net::ERR_FAILED; } int BackendImpl::SyncDoomEntry(const std::string& key) { if (disabled_) return net::ERR_FAILED; EntryImpl* entry = OpenEntryImpl(key); if (!entry) return net::ERR_FAILED; entry->DoomImpl(); entry->Release(); return net::OK; } int BackendImpl::SyncDoomAllEntries() { // This is not really an error, but it is an interesting condition. ReportError(ERR_CACHE_DOOMED); stats_.OnEvent(Stats::DOOM_CACHE); if (!num_refs_) { RestartCache(false); return disabled_ ? net::ERR_FAILED : net::OK; } else { if (disabled_) return net::ERR_FAILED; eviction_.TrimCache(true); return net::OK; } } int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time, const base::Time end_time) { DCHECK_NE(net::APP_CACHE, cache_type_); if (end_time.is_null()) return SyncDoomEntriesSince(initial_time); DCHECK(end_time >= initial_time); if (disabled_) return net::ERR_FAILED; EntryImpl* node; void* iter = NULL; EntryImpl* next = OpenNextEntryImpl(&iter); if (!next) return net::OK; while (next) { node = next; next = OpenNextEntryImpl(&iter); if (node->GetLastUsed() >= initial_time && node->GetLastUsed() < end_time) { node->DoomImpl(); } else if (node->GetLastUsed() < initial_time) { if (next) next->Release(); next = NULL; SyncEndEnumeration(iter); } node->Release(); } return net::OK; } // We use OpenNextEntryImpl to retrieve elements from the cache, until we get // entries that are too old. int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) { DCHECK_NE(net::APP_CACHE, cache_type_); if (disabled_) return net::ERR_FAILED; stats_.OnEvent(Stats::DOOM_RECENT); for (;;) { void* iter = NULL; EntryImpl* entry = OpenNextEntryImpl(&iter); if (!entry) return net::OK; if (initial_time > entry->GetLastUsed()) { entry->Release(); SyncEndEnumeration(iter); return net::OK; } entry->DoomImpl(); entry->Release(); SyncEndEnumeration(iter); // Dooming the entry invalidates the iterator. } } int BackendImpl::SyncOpenNextEntry(void** iter, Entry** next_entry) { *next_entry = OpenNextEntryImpl(iter); return (*next_entry) ? net::OK : net::ERR_FAILED; } int BackendImpl::SyncOpenPrevEntry(void** iter, Entry** prev_entry) { *prev_entry = OpenPrevEntryImpl(iter); return (*prev_entry) ? net::OK : net::ERR_FAILED; } void BackendImpl::SyncEndEnumeration(void* iter) { scoped_ptr<Rankings::Iterator> iterator( reinterpret_cast<Rankings::Iterator*>(iter)); } EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) { if (disabled_) return NULL; TimeTicks start = TimeTicks::Now(); uint32 hash = Hash(key); Trace("Open hash 0x%x", hash); bool error; EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error); if (!cache_entry) { stats_.OnEvent(Stats::OPEN_MISS); return NULL; } if (ENTRY_NORMAL != cache_entry->entry()->Data()->state) { // The entry was already evicted. cache_entry->Release(); stats_.OnEvent(Stats::OPEN_MISS); return NULL; } eviction_.OnOpenEntry(cache_entry); entry_count_++; CACHE_UMA(AGE_MS, "OpenTime", GetSizeGroup(), start); stats_.OnEvent(Stats::OPEN_HIT); SIMPLE_STATS_COUNTER("disk_cache.hit"); return cache_entry; } EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) { if (disabled_ || key.empty()) return NULL; TimeTicks start = TimeTicks::Now(); uint32 hash = Hash(key); Trace("Create hash 0x%x", hash); scoped_refptr<EntryImpl> parent; Addr entry_address(data_->table[hash & mask_]); if (entry_address.is_initialized()) { // We have an entry already. It could be the one we are looking for, or just // a hash conflict. bool error; EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error); if (old_entry) return ResurrectEntry(old_entry); EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error); DCHECK(!error); if (parent_entry) { parent.swap(&parent_entry); } else if (data_->table[hash & mask_]) { // We should have corrected the problem. NOTREACHED(); return NULL; } } // The general flow is to allocate disk space and initialize the entry data, // followed by saving that to disk, then linking the entry though the index // and finally through the lists. If there is a crash in this process, we may // end up with: // a. Used, unreferenced empty blocks on disk (basically just garbage). // b. Used, unreferenced but meaningful data on disk (more garbage). // c. A fully formed entry, reachable only through the index. // d. A fully formed entry, also reachable through the lists, but still dirty. // // Anything after (b) can be automatically cleaned up. We may consider saving // the current operation (as we do while manipulating the lists) so that we // can detect and cleanup (a) and (b). int num_blocks = EntryImpl::NumBlocksForEntry(key.size()); if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) { LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return NULL; } Addr node_address(0); if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) { block_files_.DeleteBlock(entry_address, false); LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return NULL; } scoped_refptr<EntryImpl> cache_entry( new EntryImpl(this, entry_address, false)); IncreaseNumRefs(); if (!cache_entry->CreateEntry(node_address, key, hash)) { block_files_.DeleteBlock(entry_address, false); block_files_.DeleteBlock(node_address, false); LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return NULL; } cache_entry->BeginLogging(net_log_, true); // We are not failing the operation; let's add this to the map. open_entries_[entry_address.value()] = cache_entry; // Save the entry. block_files_.GetFile(entry_address)->Store(cache_entry->entry()); block_files_.GetFile(node_address)->Store(cache_entry->rankings()); IncreaseNumEntries(); entry_count_++; // Link this entry through the index. if (parent.get()) { parent->SetNextAddress(entry_address); } else { data_->table[hash & mask_] = entry_address.value(); } // Link this entry through the lists. eviction_.OnCreateEntry(cache_entry); CACHE_UMA(AGE_MS, "CreateTime", GetSizeGroup(), start); stats_.OnEvent(Stats::CREATE_HIT); SIMPLE_STATS_COUNTER("disk_cache.miss"); Trace("create entry hit "); return cache_entry.release(); } EntryImpl* BackendImpl::OpenNextEntryImpl(void** iter) { return OpenFollowingEntry(true, iter); } EntryImpl* BackendImpl::OpenPrevEntryImpl(void** iter) { return OpenFollowingEntry(false, iter); } bool BackendImpl::SetMaxSize(int max_bytes) { COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model); if (max_bytes < 0) return false; // Zero size means use the default. if (!max_bytes) return true; // Avoid a DCHECK later on. if (max_bytes >= kint32max - kint32max / 10) max_bytes = kint32max - kint32max / 10 - 1; user_flags_ |= kMaxSize; max_size_ = max_bytes; return true; } void BackendImpl::SetType(net::CacheType type) { DCHECK(type != net::MEMORY_CACHE); cache_type_ = type; } FilePath BackendImpl::GetFileName(Addr address) const { if (!address.is_separate_file() || !address.is_initialized()) { NOTREACHED(); return FilePath(); } std::string tmp = base::StringPrintf("f_%06x", address.FileNumber()); return path_.AppendASCII(tmp); } MappedFile* BackendImpl::File(Addr address) { if (disabled_) return NULL; return block_files_.GetFile(address); } bool BackendImpl::CreateExternalFile(Addr* address) { int file_number = data_->header.last_file + 1; Addr file_address(0); bool success = false; for (int i = 0; i < 0x0fffffff; i++, file_number++) { if (!file_address.SetFileNumber(file_number)) { file_number = 1; continue; } FilePath name = GetFileName(file_address); int flags = base::PLATFORM_FILE_READ | base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_CREATE | base::PLATFORM_FILE_EXCLUSIVE_WRITE; base::PlatformFileError error; scoped_refptr<disk_cache::File> file(new disk_cache::File( base::CreatePlatformFile(name, flags, NULL, &error))); if (!file->IsValid()) { if (error != base::PLATFORM_FILE_ERROR_EXISTS) return false; continue; } success = true; break; } DCHECK(success); if (!success) return false; data_->header.last_file = file_number; address->set_value(file_address.value()); return true; } bool BackendImpl::CreateBlock(FileType block_type, int block_count, Addr* block_address) { return block_files_.CreateBlock(block_type, block_count, block_address); } void BackendImpl::DeleteBlock(Addr block_address, bool deep) { block_files_.DeleteBlock(block_address, deep); } LruData* BackendImpl::GetLruData() { return &data_->header.lru; } void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) { if (!read_only_) { eviction_.UpdateRank(entry, modified); } } void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) { Addr address(rankings->Data()->contents); EntryImpl* cache_entry = NULL; if (NewEntry(address, &cache_entry)) return; uint32 hash = cache_entry->GetHash(); cache_entry->Release(); // Anything on the table means that this entry is there. if (data_->table[hash & mask_]) return; data_->table[hash & mask_] = address.value(); } void BackendImpl::InternalDoomEntry(EntryImpl* entry) { uint32 hash = entry->GetHash(); std::string key = entry->GetKey(); Addr entry_addr = entry->entry()->address(); bool error; EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error); CacheAddr child(entry->GetNextAddress()); Trace("Doom entry 0x%p", entry); if (!entry->doomed()) { // We may have doomed this entry from within MatchEntry. eviction_.OnDoomEntry(entry); entry->InternalDoom(); if (!new_eviction_) { DecreaseNumEntries(); } stats_.OnEvent(Stats::DOOM_ENTRY); } if (parent_entry) { parent_entry->SetNextAddress(Addr(child)); parent_entry->Release(); } else if (!error) { data_->table[hash & mask_] = child; } } // An entry may be linked on the DELETED list for a while after being doomed. // This function is called when we want to remove it. void BackendImpl::RemoveEntry(EntryImpl* entry) { if (!new_eviction_) return; DCHECK(ENTRY_NORMAL != entry->entry()->Data()->state); Trace("Remove entry 0x%p", entry); eviction_.OnDestroyEntry(entry); DecreaseNumEntries(); } void BackendImpl::OnEntryDestroyBegin(Addr address) { EntriesMap::iterator it = open_entries_.find(address.value()); if (it != open_entries_.end()) open_entries_.erase(it); } void BackendImpl::OnEntryDestroyEnd() { DecreaseNumRefs(); if (data_->header.num_bytes > max_size_ && !read_only_) eviction_.TrimCache(false); } EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const { DCHECK(rankings->HasData()); EntriesMap::const_iterator it = open_entries_.find(rankings->Data()->contents); if (it != open_entries_.end()) { // We have this entry in memory. return it->second; } return NULL; } int32 BackendImpl::GetCurrentEntryId() const { return data_->header.this_id; } int BackendImpl::MaxFileSize() const { return max_size_ / 8; } void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) { if (disabled_ || old_size == new_size) return; if (old_size > new_size) SubstractStorageSize(old_size - new_size); else AddStorageSize(new_size - old_size); // Update the usage statistics. stats_.ModifyStorageStats(old_size, new_size); } void BackendImpl::TooMuchStorageRequested(int32 size) { stats_.ModifyStorageStats(0, size); } bool BackendImpl::IsAllocAllowed(int current_size, int new_size) { DCHECK_GT(new_size, current_size); if (user_flags_ & kNoBuffering) return false; int to_add = new_size - current_size; if (buffer_bytes_ + to_add > MaxBuffersSize()) return false; buffer_bytes_ += to_add; CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024); return true; } void BackendImpl::BufferDeleted(int size) { buffer_bytes_ -= size; DCHECK_GE(size, 0); } bool BackendImpl::IsLoaded() const { CACHE_UMA(COUNTS, "PendingIO", GetSizeGroup(), num_pending_io_); if (user_flags_ & kNoLoadProtection) return false; return num_pending_io_ > 5; } std::string BackendImpl::HistogramName(const char* name, int experiment) const { if (!experiment) return base::StringPrintf("DiskCache.%d.%s", cache_type_, name); return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_, name, experiment); } base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() { return ptr_factory_.GetWeakPtr(); } int BackendImpl::GetSizeGroup() const { if (disabled_) return 0; // We want to report times grouped by the current cache size (50 MB groups). int group = data_->header.num_bytes / (50 * 1024 * 1024); if (group > 6) group = 6; // Limit the number of groups, just in case. return group; } // We want to remove biases from some histograms so we only send data once per // week. bool BackendImpl::ShouldReportAgain() { if (uma_report_) return uma_report_ == 2; uma_report_++; int64 last_report = stats_.GetCounter(Stats::LAST_REPORT); Time last_time = Time::FromInternalValue(last_report); if (!last_report || (Time::Now() - last_time).InDays() >= 7) { stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue()); uma_report_++; return true; } return false; } void BackendImpl::FirstEviction() { DCHECK(data_->header.create_time); if (!GetEntryCount()) return; // This is just for unit tests. Time create_time = Time::FromInternalValue(data_->header.create_time); CACHE_UMA(AGE, "FillupAge", 0, create_time); int64 use_time = stats_.GetCounter(Stats::TIMER); CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120)); CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio()); if (!use_time) use_time = 1; CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0, static_cast<int>(data_->header.num_entries / use_time)); CACHE_UMA(COUNTS, "FirstByteIORate", 0, static_cast<int>((data_->header.num_bytes / 1024) / use_time)); int avg_size = data_->header.num_bytes / GetEntryCount(); CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size); int large_entries_bytes = stats_.GetLargeEntriesSize(); int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes; CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio); if (new_eviction_) { CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio()); CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0, data_->header.lru.sizes[0] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0, data_->header.lru.sizes[1] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0, data_->header.lru.sizes[2] * 100 / data_->header.num_entries); } stats_.ResetRatios(); } void BackendImpl::CriticalError(int error) { LOG(ERROR) << "Critical error found " << error; if (disabled_) return; stats_.OnEvent(Stats::FATAL_ERROR); LogStats(); ReportError(error); // Setting the index table length to an invalid value will force re-creation // of the cache files. data_->header.table_len = 1; disabled_ = true; if (!num_refs_) MessageLoop::current()->PostTask(FROM_HERE, factory_.NewRunnableMethod(&BackendImpl::RestartCache, true)); } void BackendImpl::ReportError(int error) { // We transmit positive numbers, instead of direct error codes. DCHECK_LE(error, 0); CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1); } void BackendImpl::OnEvent(Stats::Counters an_event) { stats_.OnEvent(an_event); } void BackendImpl::OnRead(int32 bytes) { DCHECK_GE(bytes, 0); byte_count_ += bytes; if (byte_count_ < 0) byte_count_ = kint32max; } void BackendImpl::OnWrite(int32 bytes) { // We use the same implementation as OnRead... just log the number of bytes. OnRead(bytes); } void BackendImpl::OnStatsTimer() { stats_.OnEvent(Stats::TIMER); int64 time = stats_.GetCounter(Stats::TIMER); int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES); // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding // the bias towards 0. if (num_refs_ && (current != num_refs_)) { int64 diff = (num_refs_ - current) / 50; if (!diff) diff = num_refs_ > current ? 1 : -1; current = current + diff; stats_.SetCounter(Stats::OPEN_ENTRIES, current); stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_); } CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_); CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_); CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024); entry_count_ = 0; byte_count_ = 0; if (!data_) first_timer_ = false; if (first_timer_) { first_timer_ = false; if (ShouldReportAgain()) ReportStats(); } // Save stats to disk at 5 min intervals. if (time % 10 == 0) stats_.Store(); } void BackendImpl::IncrementIoCount() { num_pending_io_++; } void BackendImpl::DecrementIoCount() { num_pending_io_--; } void BackendImpl::SetUnitTestMode() { user_flags_ |= kUnitTestMode; unit_test_ = true; } void BackendImpl::SetUpgradeMode() { user_flags_ |= kUpgradeMode; read_only_ = true; } void BackendImpl::SetNewEviction() { user_flags_ |= kNewEviction; new_eviction_ = true; } void BackendImpl::SetFlags(uint32 flags) { user_flags_ |= flags; } void BackendImpl::ClearRefCountForTest() { num_refs_ = 0; } int BackendImpl::FlushQueueForTest(CompletionCallback* callback) { background_queue_.FlushQueue(callback); return net::ERR_IO_PENDING; } int BackendImpl::RunTaskForTest(Task* task, CompletionCallback* callback) { background_queue_.RunTask(task, callback); return net::ERR_IO_PENDING; } void BackendImpl::TrimForTest(bool empty) { eviction_.SetTestMode(); eviction_.TrimCache(empty); } void BackendImpl::TrimDeletedListForTest(bool empty) { eviction_.SetTestMode(); eviction_.TrimDeletedList(empty); } int BackendImpl::SelfCheck() { if (!init_) { LOG(ERROR) << "Init failed"; return ERR_INIT_FAILED; } int num_entries = rankings_.SelfCheck(); if (num_entries < 0) { LOG(ERROR) << "Invalid rankings list, error " << num_entries; return num_entries; } if (num_entries != data_->header.num_entries) { LOG(ERROR) << "Number of entries mismatch"; return ERR_NUM_ENTRIES_MISMATCH; } return CheckAllEntries(); } // ------------------------------------------------------------------------ int32 BackendImpl::GetEntryCount() const { if (!index_ || disabled_) return 0; // num_entries includes entries already evicted. int32 not_deleted = data_->header.num_entries - data_->header.lru.sizes[Rankings::DELETED]; if (not_deleted < 0) { NOTREACHED(); not_deleted = 0; } return not_deleted; } int BackendImpl::OpenEntry(const std::string& key, Entry** entry, CompletionCallback* callback) { DCHECK(callback); background_queue_.OpenEntry(key, entry, callback); return net::ERR_IO_PENDING; } int BackendImpl::CreateEntry(const std::string& key, Entry** entry, CompletionCallback* callback) { DCHECK(callback); background_queue_.CreateEntry(key, entry, callback); return net::ERR_IO_PENDING; } int BackendImpl::DoomEntry(const std::string& key, CompletionCallback* callback) { DCHECK(callback); background_queue_.DoomEntry(key, callback); return net::ERR_IO_PENDING; } int BackendImpl::DoomAllEntries(CompletionCallback* callback) { DCHECK(callback); background_queue_.DoomAllEntries(callback); return net::ERR_IO_PENDING; } int BackendImpl::DoomEntriesBetween(const base::Time initial_time, const base::Time end_time, CompletionCallback* callback) { DCHECK(callback); background_queue_.DoomEntriesBetween(initial_time, end_time, callback); return net::ERR_IO_PENDING; } int BackendImpl::DoomEntriesSince(const base::Time initial_time, CompletionCallback* callback) { DCHECK(callback); background_queue_.DoomEntriesSince(initial_time, callback); return net::ERR_IO_PENDING; } int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry, CompletionCallback* callback) { DCHECK(callback); background_queue_.OpenNextEntry(iter, next_entry, callback); return net::ERR_IO_PENDING; } void BackendImpl::EndEnumeration(void** iter) { background_queue_.EndEnumeration(*iter); *iter = NULL; } void BackendImpl::GetStats(StatsItems* stats) { if (disabled_) return; std::pair<std::string, std::string> item; item.first = "Entries"; item.second = base::StringPrintf("%d", data_->header.num_entries); stats->push_back(item); item.first = "Pending IO"; item.second = base::StringPrintf("%d", num_pending_io_); stats->push_back(item); item.first = "Max size"; item.second = base::StringPrintf("%d", max_size_); stats->push_back(item); item.first = "Current size"; item.second = base::StringPrintf("%d", data_->header.num_bytes); stats->push_back(item); stats_.GetItems(stats); } // ------------------------------------------------------------------------ // We just created a new file so we're going to write the header and set the // file length to include the hash table (zero filled). bool BackendImpl::CreateBackingStore(disk_cache::File* file) { AdjustMaxCacheSize(0); IndexHeader header; header.table_len = DesiredIndexTableLen(max_size_); // We need file version 2.1 for the new eviction algorithm. if (new_eviction_) header.version = 0x20001; header.create_time = Time::Now().ToInternalValue(); if (!file->Write(&header, sizeof(header), 0)) return false; return file->SetLength(GetIndexSize(header.table_len)); } bool BackendImpl::InitBackingStore(bool* file_created) { file_util::CreateDirectory(path_); FilePath index_name = path_.AppendASCII(kIndexName); int flags = base::PLATFORM_FILE_READ | base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_OPEN_ALWAYS | base::PLATFORM_FILE_EXCLUSIVE_WRITE; scoped_refptr<disk_cache::File> file(new disk_cache::File( base::CreatePlatformFile(index_name, flags, file_created, NULL))); if (!file->IsValid()) return false; bool ret = true; if (*file_created) ret = CreateBackingStore(file); file = NULL; if (!ret) return false; index_ = new MappedFile(); data_ = reinterpret_cast<Index*>(index_->Init(index_name, 0)); if (!data_) { LOG(ERROR) << "Unable to map Index file"; return false; } if (index_->GetLength() < sizeof(Index)) { // We verify this again on CheckIndex() but it's easier to make sure now // that the header is there. LOG(ERROR) << "Corrupt Index file"; return false; } return true; } // The maximum cache size will be either set explicitly by the caller, or // calculated by this code. void BackendImpl::AdjustMaxCacheSize(int table_len) { if (max_size_) return; // If table_len is provided, the index file exists. DCHECK(!table_len || data_->header.magic); // The user is not setting the size, let's figure it out. #ifdef ANDROID int64 available = 10 * 1024 * 1024; // 10 MB #else int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_); #endif if (available < 0) { max_size_ = kDefaultCacheSize; return; } if (table_len) available += data_->header.num_bytes; max_size_ = PreferedCacheSize(available); // Let's not use more than the default size while we tune-up the performance // of bigger caches. TODO(rvargas): remove this limit. if (max_size_ > kDefaultCacheSize * 4) max_size_ = kDefaultCacheSize * 4; if (!table_len) return; // If we already have a table, adjust the size to it. int current_max_size = MaxStorageSizeForTable(table_len); if (max_size_ > current_max_size) max_size_= current_max_size; } void BackendImpl::RestartCache(bool failure) { int64 errors = stats_.GetCounter(Stats::FATAL_ERROR); int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE); int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT); int64 last_report = stats_.GetCounter(Stats::LAST_REPORT); PrepareForRestart(); if (failure) { DCHECK(!num_refs_); DCHECK(!open_entries_.size()); DelayedCacheCleanup(path_); } else { DeleteCache(path_, false); } // Don't call Init() if directed by the unit test: we are simulating a failure // trying to re-enable the cache. if (unit_test_) init_ = true; // Let the destructor do proper cleanup. else if (SyncInit() == net::OK) { stats_.SetCounter(Stats::FATAL_ERROR, errors); stats_.SetCounter(Stats::DOOM_CACHE, full_dooms); stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms); stats_.SetCounter(Stats::LAST_REPORT, last_report); } } void BackendImpl::PrepareForRestart() { // Reset the mask_ if it was not given by the user. if (!(user_flags_ & kMask)) mask_ = 0; if (!(user_flags_ & kNewEviction)) new_eviction_ = false; disabled_ = true; #ifdef ANDROID if (data_) { #endif data_->header.crash = 0; #ifdef ANDROID } #endif index_ = NULL; data_ = NULL; block_files_.CloseFiles(); rankings_.Reset(); init_ = false; restarted_ = true; } int BackendImpl::NewEntry(Addr address, EntryImpl** entry) { EntriesMap::iterator it = open_entries_.find(address.value()); if (it != open_entries_.end()) { // Easy job. This entry is already in memory. EntryImpl* this_entry = it->second; this_entry->AddRef(); *entry = this_entry; return 0; } scoped_refptr<EntryImpl> cache_entry( new EntryImpl(this, address, read_only_)); IncreaseNumRefs(); *entry = NULL; if (!address.is_initialized() || address.is_separate_file() || address.file_type() != BLOCK_256) { LOG(WARNING) << "Wrong entry address."; return ERR_INVALID_ADDRESS; } TimeTicks start = TimeTicks::Now(); if (!cache_entry->entry()->Load()) return ERR_READ_FAILURE; if (IsLoaded()) { CACHE_UMA(AGE_MS, "LoadTime", GetSizeGroup(), start); } if (!cache_entry->SanityCheck()) { LOG(WARNING) << "Messed up entry found."; return ERR_INVALID_ENTRY; } if (!cache_entry->LoadNodeAddress()) return ERR_READ_FAILURE; // Prevent overwriting the dirty flag on the destructor. cache_entry->SetDirtyFlag(GetCurrentEntryId()); if (!rankings_.SanityCheck(cache_entry->rankings(), false)) { cache_entry->SetDirtyFlag(0); // Don't remove this from the list (it is not linked properly). Instead, // break the link back to the entry because it is going away, and leave the // rankings node to be deleted if we find it through a list. rankings_.SetContents(cache_entry->rankings(), 0); } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) { cache_entry->SetDirtyFlag(0); rankings_.SetContents(cache_entry->rankings(), address.value()); } if (!cache_entry->DataSanityCheck()) { LOG(WARNING) << "Messed up entry found."; cache_entry->SetDirtyFlag(0); cache_entry->FixForDelete(); } if (cache_entry->dirty()) { Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()), address.value()); } open_entries_[address.value()] = cache_entry; cache_entry->BeginLogging(net_log_, false); cache_entry.swap(entry); return 0; } EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash, bool find_parent, Addr entry_addr, bool* match_error) { Addr address(data_->table[hash & mask_]); scoped_refptr<EntryImpl> cache_entry, parent_entry; EntryImpl* tmp = NULL; bool found = false; std::set<CacheAddr> visited; *match_error = false; for (;;) { if (disabled_) break; if (visited.find(address.value()) != visited.end()) { // It's possible for a buggy version of the code to write a loop. Just // break it. Trace("Hash collision loop 0x%x", address.value()); address.set_value(0); parent_entry->SetNextAddress(address); } visited.insert(address.value()); if (!address.is_initialized()) { if (find_parent) found = true; break; } int error = NewEntry(address, &tmp); cache_entry.swap(&tmp); if (error || cache_entry->dirty()) { // This entry is dirty on disk (it was not properly closed): we cannot // trust it. Addr child(0); if (!error) child.set_value(cache_entry->GetNextAddress()); if (parent_entry) { parent_entry->SetNextAddress(child); parent_entry = NULL; } else { data_->table[hash & mask_] = child.value(); } Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(), address.value()); if (!error) { // It is important to call DestroyInvalidEntry after removing this // entry from the table. DestroyInvalidEntry(cache_entry); cache_entry = NULL; } else { Trace("NewEntry failed on MatchEntry 0x%x", address.value()); } // Restart the search. address.set_value(data_->table[hash & mask_]); visited.clear(); continue; } DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_); if (cache_entry->IsSameEntry(key, hash)) { if (!cache_entry->Update()) cache_entry = NULL; found = true; if (find_parent && entry_addr.value() != address.value()) { Trace("Entry not on the index 0x%x", address.value()); *match_error = true; parent_entry = NULL; } break; } if (!cache_entry->Update()) cache_entry = NULL; parent_entry = cache_entry; cache_entry = NULL; if (!parent_entry) break; address.set_value(parent_entry->GetNextAddress()); } if (parent_entry && (!find_parent || !found)) parent_entry = NULL; if (find_parent && entry_addr.is_initialized() && !cache_entry) { *match_error = true; parent_entry = NULL; } if (cache_entry && (find_parent || !found)) cache_entry = NULL; find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp); return tmp; } // This is the actual implementation for OpenNextEntry and OpenPrevEntry. EntryImpl* BackendImpl::OpenFollowingEntry(bool forward, void** iter) { if (disabled_) return NULL; DCHECK(iter); const int kListsToSearch = 3; scoped_refptr<EntryImpl> entries[kListsToSearch]; scoped_ptr<Rankings::Iterator> iterator( reinterpret_cast<Rankings::Iterator*>(*iter)); *iter = NULL; if (!iterator.get()) { iterator.reset(new Rankings::Iterator(&rankings_)); bool ret = false; // Get an entry from each list. for (int i = 0; i < kListsToSearch; i++) { EntryImpl* temp = NULL; ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i), &iterator->nodes[i], &temp); entries[i].swap(&temp); // The entry was already addref'd. } if (!ret) return NULL; } else { // Get the next entry from the last list, and the actual entries for the // elements on the other lists. for (int i = 0; i < kListsToSearch; i++) { EntryImpl* temp = NULL; if (iterator->list == i) { OpenFollowingEntryFromList(forward, iterator->list, &iterator->nodes[i], &temp); } else { temp = GetEnumeratedEntry(iterator->nodes[i], static_cast<Rankings::List>(i)); } entries[i].swap(&temp); // The entry was already addref'd. } } int newest = -1; int oldest = -1; Time access_times[kListsToSearch]; for (int i = 0; i < kListsToSearch; i++) { if (entries[i].get()) { access_times[i] = entries[i]->GetLastUsed(); if (newest < 0) { DCHECK_LT(oldest, 0); newest = oldest = i; continue; } if (access_times[i] > access_times[newest]) newest = i; if (access_times[i] < access_times[oldest]) oldest = i; } } if (newest < 0 || oldest < 0) return NULL; EntryImpl* next_entry; if (forward) { next_entry = entries[newest].release(); iterator->list = static_cast<Rankings::List>(newest); } else { next_entry = entries[oldest].release(); iterator->list = static_cast<Rankings::List>(oldest); } *iter = iterator.release(); return next_entry; } bool BackendImpl::OpenFollowingEntryFromList(bool forward, Rankings::List list, CacheRankingsBlock** from_entry, EntryImpl** next_entry) { if (disabled_) return false; if (!new_eviction_ && Rankings::NO_USE != list) return false; Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry); CacheRankingsBlock* next_block = forward ? rankings_.GetNext(rankings.get(), list) : rankings_.GetPrev(rankings.get(), list); Rankings::ScopedRankingsBlock next(&rankings_, next_block); *from_entry = NULL; *next_entry = GetEnumeratedEntry(next.get(), list); if (!*next_entry) return false; *from_entry = next.release(); return true; } EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next, Rankings::List list) { if (!next || disabled_) return NULL; EntryImpl* entry; int rv = NewEntry(Addr(next->Data()->contents), &entry); if (rv) { rankings_.Remove(next, list, false); if (rv == ERR_INVALID_ADDRESS) { // There is nothing linked from the index. Delete the rankings node. DeleteBlock(next->address(), true); } return NULL; } if (entry->dirty()) { // We cannot trust this entry. InternalDoomEntry(entry); entry->Release(); return NULL; } if (!entry->Update()) { entry->Release(); return NULL; } // Note that it is unfortunate (but possible) for this entry to be clean, but // not actually the real entry. In other words, we could have lost this entry // from the index, and it could have been replaced with a newer one. It's not // worth checking that this entry is "the real one", so we just return it and // let the enumeration continue; this entry will be evicted at some point, and // the regular path will work with the real entry. With time, this problem // will disasappear because this scenario is just a bug. // Make sure that we save the key for later. entry->GetKey(); return entry; } EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) { if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) { deleted_entry->Release(); stats_.OnEvent(Stats::CREATE_MISS); Trace("create entry miss "); return NULL; } // We are attempting to create an entry and found out that the entry was // previously deleted. eviction_.OnCreateEntry(deleted_entry); entry_count_++; stats_.OnEvent(Stats::RESURRECT_HIT); Trace("Resurrect entry hit "); return deleted_entry; } void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) { LOG(WARNING) << "Destroying invalid entry."; Trace("Destroying invalid entry 0x%p", entry); entry->SetPointerForInvalidEntry(GetCurrentEntryId()); eviction_.OnDoomEntry(entry); entry->InternalDoom(); if (!new_eviction_) DecreaseNumEntries(); stats_.OnEvent(Stats::INVALID_ENTRY); } void BackendImpl::AddStorageSize(int32 bytes) { data_->header.num_bytes += bytes; DCHECK_GE(data_->header.num_bytes, 0); } void BackendImpl::SubstractStorageSize(int32 bytes) { data_->header.num_bytes -= bytes; DCHECK_GE(data_->header.num_bytes, 0); } void BackendImpl::IncreaseNumRefs() { num_refs_++; if (max_refs_ < num_refs_) max_refs_ = num_refs_; } void BackendImpl::DecreaseNumRefs() { DCHECK(num_refs_); num_refs_--; if (!num_refs_ && disabled_) MessageLoop::current()->PostTask(FROM_HERE, factory_.NewRunnableMethod(&BackendImpl::RestartCache, true)); } void BackendImpl::IncreaseNumEntries() { data_->header.num_entries++; DCHECK_GT(data_->header.num_entries, 0); } void BackendImpl::DecreaseNumEntries() { data_->header.num_entries--; if (data_->header.num_entries < 0) { NOTREACHED(); data_->header.num_entries = 0; } } void BackendImpl::LogStats() { StatsItems stats; GetStats(&stats); for (size_t index = 0; index < stats.size(); index++) VLOG(1) << stats[index].first << ": " << stats[index].second; } void BackendImpl::ReportStats() { CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries); int current_size = data_->header.num_bytes / (1024 * 1024); int max_size = max_size_ / (1024 * 1024); CACHE_UMA(COUNTS_10000, "Size2", 0, current_size); CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size); if (!max_size) max_size++; CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size); CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0, static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES))); CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0, static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES))); stats_.SetCounter(Stats::MAX_ENTRIES, 0); CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0, static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR))); CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0, static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE))); CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0, static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT))); stats_.SetCounter(Stats::FATAL_ERROR, 0); stats_.SetCounter(Stats::DOOM_CACHE, 0); stats_.SetCounter(Stats::DOOM_RECENT, 0); int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120; if (!data_->header.create_time || !data_->header.lru.filled) { int cause = data_->header.create_time ? 0 : 1; if (!data_->header.lru.filled) cause |= 2; CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause); CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours)); return; } // This is an up to date client that will report FirstEviction() data. After // that event, start reporting this: CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours)); int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120; stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER)); // We may see users with no use_hours at this point if this is the first time // we are running this code. if (use_hours) use_hours = total_hours - use_hours; if (!use_hours || !GetEntryCount() || !data_->header.num_bytes) return; CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours)); CACHE_UMA(PERCENTAGE, "HitRatio", data_->header.experiment, stats_.GetHitRatio()); int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours; CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate)); int avg_size = data_->header.num_bytes / GetEntryCount(); CACHE_UMA(COUNTS, "EntrySize", 0, avg_size); CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries); CACHE_UMA(PERCENTAGE, "IndexLoad", 0, data_->header.num_entries * 100 / (mask_ + 1)); int large_entries_bytes = stats_.GetLargeEntriesSize(); int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes; CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio); if (new_eviction_) { CACHE_UMA(PERCENTAGE, "ResurrectRatio", data_->header.experiment, stats_.GetResurrectRatio()); CACHE_UMA(PERCENTAGE, "NoUseRatio", 0, data_->header.lru.sizes[0] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "LowUseRatio", 0, data_->header.lru.sizes[1] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "HighUseRatio", 0, data_->header.lru.sizes[2] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "DeletedRatio", data_->header.experiment, data_->header.lru.sizes[4] * 100 / data_->header.num_entries); } stats_.ResetRatios(); stats_.SetCounter(Stats::TRIM_ENTRY, 0); if (cache_type_ == net::DISK_CACHE) block_files_.ReportStats(); } void BackendImpl::UpgradeTo2_1() { // 2.1 is basically the same as 2.0, except that new fields are actually // updated by the new eviction algorithm. DCHECK(0x20000 == data_->header.version); data_->header.version = 0x20001; data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries; } bool BackendImpl::CheckIndex() { DCHECK(data_); size_t current_size = index_->GetLength(); if (current_size < sizeof(Index)) { LOG(ERROR) << "Corrupt Index file"; return false; } if (new_eviction_) { // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1. if (kIndexMagic != data_->header.magic || kCurrentVersion >> 16 != data_->header.version >> 16) { LOG(ERROR) << "Invalid file version or magic"; return false; } if (kCurrentVersion == data_->header.version) { // We need file version 2.1 for the new eviction algorithm. UpgradeTo2_1(); } } else { if (kIndexMagic != data_->header.magic || kCurrentVersion != data_->header.version) { LOG(ERROR) << "Invalid file version or magic"; return false; } } if (!data_->header.table_len) { LOG(ERROR) << "Invalid table size"; return false; } if (current_size < GetIndexSize(data_->header.table_len) || data_->header.table_len & (kBaseTableLen - 1)) { LOG(ERROR) << "Corrupt Index file"; return false; } AdjustMaxCacheSize(data_->header.table_len); if (data_->header.num_bytes < 0 || (max_size_ < kint32max - kDefaultCacheSize && data_->header.num_bytes > max_size_ + kDefaultCacheSize)) { LOG(ERROR) << "Invalid cache (current) size"; return false; } if (data_->header.num_entries < 0) { LOG(ERROR) << "Invalid number of entries"; return false; } if (!mask_) mask_ = data_->header.table_len - 1; // Load the table into memory with a single read. scoped_array<char> buf(new char[current_size]); return index_->Read(buf.get(), current_size, 0); } int BackendImpl::CheckAllEntries() { int num_dirty = 0; int num_entries = 0; DCHECK(mask_ < kuint32max); for (int i = 0; i <= static_cast<int>(mask_); i++) { Addr address(data_->table[i]); if (!address.is_initialized()) continue; for (;;) { EntryImpl* tmp; int ret = NewEntry(address, &tmp); if (ret) return ret; scoped_refptr<EntryImpl> cache_entry; cache_entry.swap(&tmp); if (cache_entry->dirty()) num_dirty++; else if (CheckEntry(cache_entry.get())) num_entries++; else return ERR_INVALID_ENTRY; address.set_value(cache_entry->GetNextAddress()); if (!address.is_initialized()) break; } } Trace("CheckAllEntries End"); if (num_entries + num_dirty != data_->header.num_entries) { LOG(ERROR) << "Number of entries mismatch"; return ERR_NUM_ENTRIES_MISMATCH; } return num_dirty; } bool BackendImpl::CheckEntry(EntryImpl* cache_entry) { bool ok = block_files_.IsValid(cache_entry->entry()->address()); ok = ok && block_files_.IsValid(cache_entry->rankings()->address()); EntryStore* data = cache_entry->entry()->Data(); for (size_t i = 0; i < arraysize(data->data_addr); i++) { if (data->data_addr[i]) { Addr address(data->data_addr[i]); if (address.is_block_file()) ok = ok && block_files_.IsValid(address); } } RankingsNode* rankings = cache_entry->rankings()->Data(); return ok && !rankings->dummy; } int BackendImpl::MaxBuffersSize() { static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory(); static bool done = false; if (!done) { const int kMaxBuffersSize = 30 * 1024 * 1024; // We want to use up to 2% of the computer's memory. total_memory = total_memory * 2 / 100; if (total_memory > kMaxBuffersSize || total_memory <= 0) total_memory = kMaxBuffersSize; done = true; } return static_cast<int>(total_memory); } } // namespace disk_cache