// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Weak pointers help in cases where you have many objects referring back to a // shared object and you wish for the lifetime of the shared object to not be // bound to the lifetime of the referrers. In other words, this is useful when // reference counting is not a good fit. // // A common alternative to weak pointers is to have the shared object hold a // list of all referrers, and then when the shared object is destroyed, it // calls a method on the referrers to tell them to drop their references. This // approach also requires the referrers to tell the shared object when they get // destroyed so that the shared object can remove the referrer from its list of // referrers. Such a solution works, but it is a bit complex. // // EXAMPLE: // // class Controller : public SupportsWeakPtr<Controller> { // public: // void SpawnWorker() { Worker::StartNew(AsWeakPtr()); } // void WorkComplete(const Result& result) { ... } // }; // // class Worker { // public: // static void StartNew(const WeakPtr<Controller>& controller) { // Worker* worker = new Worker(controller); // // Kick off asynchronous processing... // } // private: // Worker(const WeakPtr<Controller>& controller) // : controller_(controller) {} // void DidCompleteAsynchronousProcessing(const Result& result) { // if (controller_) // controller_->WorkComplete(result); // } // WeakPtr<Controller> controller_; // }; // // Given the above classes, a consumer may allocate a Controller object, call // SpawnWorker several times, and then destroy the Controller object before all // of the workers have completed. Because the Worker class only holds a weak // pointer to the Controller, we don't have to worry about the Worker // dereferencing the Controller back pointer after the Controller has been // destroyed. // // WARNING: weak pointers are not threadsafe!!! You must only use a WeakPtr // instance on thread where it was created. #ifndef BASE_MEMORY_WEAK_PTR_H_ #define BASE_MEMORY_WEAK_PTR_H_ #pragma once #include "base/base_api.h" #include "base/logging.h" #include "base/memory/ref_counted.h" #include "base/threading/thread_checker.h" namespace base { namespace internal { // These classes are part of the WeakPtr implementation. // DO NOT USE THESE CLASSES DIRECTLY YOURSELF. class BASE_API WeakReference { public: // While Flag is bound to a specific thread, it may be deleted from another // via base::WeakPtr::~WeakPtr(). class Flag : public RefCountedThreadSafe<Flag> { public: explicit Flag(Flag** handle); void Invalidate(); bool IsValid() const; void DetachFromThread() { thread_checker_.DetachFromThread(); } private: friend class base::RefCountedThreadSafe<Flag>; ~Flag(); ThreadChecker thread_checker_; Flag** handle_; }; WeakReference(); WeakReference(Flag* flag); ~WeakReference(); bool is_valid() const; private: scoped_refptr<Flag> flag_; }; class BASE_API WeakReferenceOwner { public: WeakReferenceOwner(); ~WeakReferenceOwner(); WeakReference GetRef() const; bool HasRefs() const { return flag_ != NULL; } void Invalidate(); // Indicates that this object will be used on another thread from now on. void DetachFromThread() { if (flag_) flag_->DetachFromThread(); } private: mutable WeakReference::Flag* flag_; }; // This class simplifies the implementation of WeakPtr's type conversion // constructor by avoiding the need for a public accessor for ref_. A // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this // base class gives us a way to access ref_ in a protected fashion. class BASE_API WeakPtrBase { public: WeakPtrBase(); ~WeakPtrBase(); protected: WeakPtrBase(const WeakReference& ref); WeakReference ref_; }; } // namespace internal template <typename T> class SupportsWeakPtr; template <typename T> class WeakPtrFactory; // The WeakPtr class holds a weak reference to |T*|. // // This class is designed to be used like a normal pointer. You should always // null-test an object of this class before using it or invoking a method that // may result in the underlying object being destroyed. // // EXAMPLE: // // class Foo { ... }; // WeakPtr<Foo> foo; // if (foo) // foo->method(); // template <typename T> class WeakPtr : public internal::WeakPtrBase { public: WeakPtr() : ptr_(NULL) { } // Allow conversion from U to T provided U "is a" T. template <typename U> WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.get()) { } T* get() const { return ref_.is_valid() ? ptr_ : NULL; } operator T*() const { return get(); } T* operator*() const { DCHECK(get() != NULL); return *get(); } T* operator->() const { DCHECK(get() != NULL); return get(); } void reset() { ref_ = internal::WeakReference(); ptr_ = NULL; } private: friend class SupportsWeakPtr<T>; friend class WeakPtrFactory<T>; WeakPtr(const internal::WeakReference& ref, T* ptr) : WeakPtrBase(ref), ptr_(ptr) { } // This pointer is only valid when ref_.is_valid() is true. Otherwise, its // value is undefined (as opposed to NULL). T* ptr_; }; // A class may extend from SupportsWeakPtr to expose weak pointers to itself. // This is useful in cases where you want others to be able to get a weak // pointer to your class. It also has the property that you don't need to // initialize it from your constructor. template <class T> class SupportsWeakPtr { public: SupportsWeakPtr() {} WeakPtr<T> AsWeakPtr() { return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this)); } // Indicates that this object will be used on another thread from now on. void DetachFromThread() { weak_reference_owner_.DetachFromThread(); } private: internal::WeakReferenceOwner weak_reference_owner_; DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr); }; // A class may alternatively be composed of a WeakPtrFactory and thereby // control how it exposes weak pointers to itself. This is helpful if you only // need weak pointers within the implementation of a class. This class is also // useful when working with primitive types. For example, you could have a // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool. template <class T> class WeakPtrFactory { public: explicit WeakPtrFactory(T* ptr) : ptr_(ptr) { } WeakPtr<T> GetWeakPtr() { return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_); } // Call this method to invalidate all existing weak pointers. void InvalidateWeakPtrs() { weak_reference_owner_.Invalidate(); } // Call this method to determine if any weak pointers exist. bool HasWeakPtrs() const { return weak_reference_owner_.HasRefs(); } // Indicates that this object will be used on another thread from now on. void DetachFromThread() { weak_reference_owner_.DetachFromThread(); } private: internal::WeakReferenceOwner weak_reference_owner_; T* ptr_; DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory); }; } // namespace base #endif // BASE_MEMORY_WEAK_PTR_H_