// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MEMORY_SINGLETON_H_ #define BASE_MEMORY_SINGLETON_H_ #pragma once #include "base/at_exit.h" #include "base/atomicops.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/platform_thread.h" #include "base/threading/thread_restrictions.h" // Default traits for Singleton<Type>. Calls operator new and operator delete on // the object. Registers automatic deletion at process exit. // Overload if you need arguments or another memory allocation function. template<typename Type> struct DefaultSingletonTraits { // Allocates the object. static Type* New() { // The parenthesis is very important here; it forces POD type // initialization. return new Type(); } // Destroys the object. static void Delete(Type* x) { delete x; } // Set to true to automatically register deletion of the object on process // exit. See below for the required call that makes this happen. static const bool kRegisterAtExit = true; // Set to false to disallow access on a non-joinable thread. This is // different from kRegisterAtExit because StaticMemorySingletonTraits allows // access on non-joinable threads, and gracefully handles this. static const bool kAllowedToAccessOnNonjoinableThread = false; }; // Alternate traits for use with the Singleton<Type>. Identical to // DefaultSingletonTraits except that the Singleton will not be cleaned up // at exit. template<typename Type> struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { static const bool kRegisterAtExit = false; static const bool kAllowedToAccessOnNonjoinableThread = true; }; // Alternate traits for use with the Singleton<Type>. Allocates memory // for the singleton instance from a static buffer. The singleton will // be cleaned up at exit, but can't be revived after destruction unless // the Resurrect() method is called. // // This is useful for a certain category of things, notably logging and // tracing, where the singleton instance is of a type carefully constructed to // be safe to access post-destruction. // In logging and tracing you'll typically get stray calls at odd times, like // during static destruction, thread teardown and the like, and there's a // termination race on the heap-based singleton - e.g. if one thread calls // get(), but then another thread initiates AtExit processing, the first thread // may call into an object residing in unallocated memory. If the instance is // allocated from the data segment, then this is survivable. // // The destructor is to deallocate system resources, in this case to unregister // a callback the system will invoke when logging levels change. Note that // this is also used in e.g. Chrome Frame, where you have to allow for the // possibility of loading briefly into someone else's process space, and // so leaking is not an option, as that would sabotage the state of your host // process once you've unloaded. template <typename Type> struct StaticMemorySingletonTraits { // WARNING: User has to deal with get() in the singleton class // this is traits for returning NULL. static Type* New() { if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1)) return NULL; Type* ptr = reinterpret_cast<Type*>(buffer_); // We are protected by a memory barrier. new(ptr) Type(); return ptr; } static void Delete(Type* p) { base::subtle::NoBarrier_Store(&dead_, 1); base::subtle::MemoryBarrier(); if (p != NULL) p->Type::~Type(); } static const bool kRegisterAtExit = true; static const bool kAllowedToAccessOnNonjoinableThread = true; // Exposed for unittesting. static void Resurrect() { base::subtle::NoBarrier_Store(&dead_, 0); } private: static const size_t kBufferSize = (sizeof(Type) + sizeof(intptr_t) - 1) / sizeof(intptr_t); static intptr_t buffer_[kBufferSize]; // Signal the object was already deleted, so it is not revived. static base::subtle::Atomic32 dead_; }; template <typename Type> intptr_t StaticMemorySingletonTraits<Type>::buffer_[kBufferSize]; template <typename Type> base::subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0; // The Singleton<Type, Traits, DifferentiatingType> class manages a single // instance of Type which will be created on first use and will be destroyed at // normal process exit). The Trait::Delete function will not be called on // abnormal process exit. // // DifferentiatingType is used as a key to differentiate two different // singletons having the same memory allocation functions but serving a // different purpose. This is mainly used for Locks serving different purposes. // // Example usage: // // In your header: // #include "base/memory/singleton.h" // class FooClass { // public: // static FooClass* GetInstance(); <-- See comment below on this. // void Bar() { ... } // private: // FooClass() { ... } // friend struct DefaultSingletonTraits<FooClass>; // // DISALLOW_COPY_AND_ASSIGN(FooClass); // }; // // In your source file: // FooClass* FooClass::GetInstance() { // return Singleton<FooClass>::get(); // } // // And to call methods on FooClass: // FooClass::GetInstance()->Bar(); // // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance // and it is important that FooClass::GetInstance() is not inlined in the // header. This makes sure that when source files from multiple targets include // this header they don't end up with different copies of the inlined code // creating multiple copies of the singleton. // // Singleton<> has no non-static members and doesn't need to actually be // instantiated. // // This class is itself thread-safe. The underlying Type must of course be // thread-safe if you want to use it concurrently. Two parameters may be tuned // depending on the user's requirements. // // Glossary: // RAE = kRegisterAtExit // // On every platform, if Traits::RAE is true, the singleton will be destroyed at // process exit. More precisely it uses base::AtExitManager which requires an // object of this type to be instantiated. AtExitManager mimics the semantics // of atexit() such as LIFO order but under Windows is safer to call. For more // information see at_exit.h. // // If Traits::RAE is false, the singleton will not be freed at process exit, // thus the singleton will be leaked if it is ever accessed. Traits::RAE // shouldn't be false unless absolutely necessary. Remember that the heap where // the object is allocated may be destroyed by the CRT anyway. // // Caveats: // (a) Every call to get(), operator->() and operator*() incurs some overhead // (16ns on my P4/2.8GHz) to check whether the object has already been // initialized. You may wish to cache the result of get(); it will not // change. // // (b) Your factory function must never throw an exception. This class is not // exception-safe. // template <typename Type, typename Traits = DefaultSingletonTraits<Type>, typename DifferentiatingType = Type> class Singleton { private: // Classes using the Singleton<T> pattern should declare a GetInstance() // method and call Singleton::get() from within that. friend Type* Type::GetInstance(); // This class is safe to be constructed and copy-constructed since it has no // member. // Return a pointer to the one true instance of the class. static Type* get() { if (!Traits::kAllowedToAccessOnNonjoinableThread) base::ThreadRestrictions::AssertSingletonAllowed(); // Our AtomicWord doubles as a spinlock, where a value of // kBeingCreatedMarker means the spinlock is being held for creation. static const base::subtle::AtomicWord kBeingCreatedMarker = 1; base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_); if (value != 0 && value != kBeingCreatedMarker) { // See the corresponding HAPPENS_BEFORE below. ANNOTATE_HAPPENS_AFTER(&instance_); return reinterpret_cast<Type*>(value); } // Object isn't created yet, maybe we will get to create it, let's try... if (base::subtle::Acquire_CompareAndSwap(&instance_, 0, kBeingCreatedMarker) == 0) { // instance_ was NULL and is now kBeingCreatedMarker. Only one thread // will ever get here. Threads might be spinning on us, and they will // stop right after we do this store. Type* newval = Traits::New(); // This annotation helps race detectors recognize correct lock-less // synchronization between different threads calling get(). // See the corresponding HAPPENS_AFTER below and above. ANNOTATE_HAPPENS_BEFORE(&instance_); base::subtle::Release_Store( &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); if (newval != NULL && Traits::kRegisterAtExit) base::AtExitManager::RegisterCallback(OnExit, NULL); return newval; } // We hit a race. Another thread beat us and either: // - Has the object in BeingCreated state // - Already has the object created... // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr. // Unless your constructor can be very time consuming, it is very unlikely // to hit this race. When it does, we just spin and yield the thread until // the object has been created. while (true) { value = base::subtle::NoBarrier_Load(&instance_); if (value != kBeingCreatedMarker) break; base::PlatformThread::YieldCurrentThread(); } // See the corresponding HAPPENS_BEFORE above. ANNOTATE_HAPPENS_AFTER(&instance_); return reinterpret_cast<Type*>(value); } // Adapter function for use with AtExit(). This should be called single // threaded, so don't use atomic operations. // Calling OnExit while singleton is in use by other threads is a mistake. static void OnExit(void* /*unused*/) { // AtExit should only ever be register after the singleton instance was // created. We should only ever get here with a valid instance_ pointer. Traits::Delete( reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_))); instance_ = 0; } static base::subtle::AtomicWord instance_; }; template <typename Type, typename Traits, typename DifferentiatingType> base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: instance_ = 0; #endif // BASE_MEMORY_SINGLETON_H_