//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// libGLESv2.cpp: Implements the exported OpenGL ES 2.0 functions.
#define GL_APICALL
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <exception>
#include <limits>
#include "common/debug.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Context.h"
#include "libGLESv2/Fence.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Texture.h"
extern "C"
{
void __stdcall glActiveTexture(GLenum texture)
{
TRACE("(GLenum texture = 0x%X)", texture);
try
{
if (texture < GL_TEXTURE0 || texture > GL_TEXTURE0 + gl::MAX_TEXTURE_IMAGE_UNITS - 1)
{
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setActiveSampler(texture - GL_TEXTURE0);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glAttachShader(GLuint program, GLuint shader)
{
TRACE("(GLuint program = %d, GLuint shader = %d)", program, shader);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
gl::Shader *shaderObject = context->getShader(shader);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (!shaderObject)
{
if (context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (!programObject->attachShader(shaderObject))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBindAttribLocation(GLuint program, GLuint index, const GLchar* name)
{
TRACE("(GLuint program = %d, GLuint index = %d, const GLchar* name = 0x%0.8p)", program, index, name);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (strncmp(name, "gl_", 3) == 0)
{
return error(GL_INVALID_OPERATION);
}
programObject->bindAttributeLocation(index, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBindBuffer(GLenum target, GLuint buffer)
{
TRACE("(GLenum target = 0x%X, GLuint buffer = %d)", target, buffer);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (target)
{
case GL_ARRAY_BUFFER:
context->bindArrayBuffer(buffer);
return;
case GL_ELEMENT_ARRAY_BUFFER:
context->bindElementArrayBuffer(buffer);
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBindFramebuffer(GLenum target, GLuint framebuffer)
{
TRACE("(GLenum target = 0x%X, GLuint framebuffer = %d)", target, framebuffer);
try
{
if (target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
if (target == GL_READ_FRAMEBUFFER_ANGLE || target == GL_FRAMEBUFFER)
{
context->bindReadFramebuffer(framebuffer);
}
if (target == GL_DRAW_FRAMEBUFFER_ANGLE || target == GL_FRAMEBUFFER)
{
context->bindDrawFramebuffer(framebuffer);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBindRenderbuffer(GLenum target, GLuint renderbuffer)
{
TRACE("(GLenum target = 0x%X, GLuint renderbuffer = %d)", target, renderbuffer);
try
{
if (target != GL_RENDERBUFFER)
{
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
context->bindRenderbuffer(renderbuffer);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBindTexture(GLenum target, GLuint texture)
{
TRACE("(GLenum target = 0x%X, GLuint texture = %d)", target, texture);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Texture *textureObject = context->getTexture(texture);
if (textureObject && textureObject->getTarget() != target && texture != 0)
{
return error(GL_INVALID_OPERATION);
}
switch (target)
{
case GL_TEXTURE_2D:
context->bindTexture2D(texture);
return;
case GL_TEXTURE_CUBE_MAP:
context->bindTextureCubeMap(texture);
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBlendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
TRACE("(GLclampf red = %f, GLclampf green = %f, GLclampf blue = %f, GLclampf alpha = %f)",
red, green, blue, alpha);
try
{
gl::Context* context = gl::getContext();
if (context)
{
context->setBlendColor(gl::clamp01(red), gl::clamp01(green), gl::clamp01(blue), gl::clamp01(alpha));
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBlendEquation(GLenum mode)
{
glBlendEquationSeparate(mode, mode);
}
void __stdcall glBlendEquationSeparate(GLenum modeRGB, GLenum modeAlpha)
{
TRACE("(GLenum modeRGB = 0x%X, GLenum modeAlpha = 0x%X)", modeRGB, modeAlpha);
try
{
switch (modeRGB)
{
case GL_FUNC_ADD:
case GL_FUNC_SUBTRACT:
case GL_FUNC_REVERSE_SUBTRACT:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (modeAlpha)
{
case GL_FUNC_ADD:
case GL_FUNC_SUBTRACT:
case GL_FUNC_REVERSE_SUBTRACT:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setBlendEquation(modeRGB, modeAlpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBlendFunc(GLenum sfactor, GLenum dfactor)
{
glBlendFuncSeparate(sfactor, dfactor, sfactor, dfactor);
}
void __stdcall glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha)
{
TRACE("(GLenum srcRGB = 0x%X, GLenum dstRGB = 0x%X, GLenum srcAlpha = 0x%X, GLenum dstAlpha = 0x%X)",
srcRGB, dstRGB, srcAlpha, dstAlpha);
try
{
switch (srcRGB)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
case GL_SRC_ALPHA_SATURATE:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (dstRGB)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (srcAlpha)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
case GL_SRC_ALPHA_SATURATE:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (dstAlpha)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
break;
default:
return error(GL_INVALID_ENUM);
}
bool constantColorUsed = (srcRGB == GL_CONSTANT_COLOR || srcRGB == GL_ONE_MINUS_CONSTANT_COLOR ||
dstRGB == GL_CONSTANT_COLOR || dstRGB == GL_ONE_MINUS_CONSTANT_COLOR);
bool constantAlphaUsed = (srcRGB == GL_CONSTANT_ALPHA || srcRGB == GL_ONE_MINUS_CONSTANT_ALPHA ||
dstRGB == GL_CONSTANT_ALPHA || dstRGB == GL_ONE_MINUS_CONSTANT_ALPHA);
if (constantColorUsed && constantAlphaUsed)
{
ERR("Simultaneous use of GL_CONSTANT_ALPHA/GL_ONE_MINUS_CONSTANT_ALPHA and GL_CONSTANT_COLOR/GL_ONE_MINUS_CONSTANT_COLOR invalid under WebGL");
return error(GL_INVALID_OPERATION);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setBlendFactors(srcRGB, dstRGB, srcAlpha, dstAlpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBufferData(GLenum target, GLsizeiptr size, const GLvoid* data, GLenum usage)
{
TRACE("(GLenum target = 0x%X, GLsizeiptr size = %d, const GLvoid* data = 0x%0.8p, GLenum usage = %d)",
target, size, data, usage);
try
{
if (size < 0)
{
return error(GL_INVALID_VALUE);
}
switch (usage)
{
case GL_STREAM_DRAW:
case GL_STATIC_DRAW:
case GL_DYNAMIC_DRAW:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Buffer *buffer;
switch (target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default:
return error(GL_INVALID_ENUM);
}
if (!buffer)
{
return error(GL_INVALID_OPERATION);
}
buffer->bufferData(data, size, usage);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLintptr offset = %d, GLsizeiptr size = %d, const GLvoid* data = 0x%0.8p)",
target, offset, size, data);
try
{
if (size < 0 || offset < 0)
{
return error(GL_INVALID_VALUE);
}
if (data == NULL)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Buffer *buffer;
switch (target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default:
return error(GL_INVALID_ENUM);
}
if (!buffer)
{
return error(GL_INVALID_OPERATION);
}
if ((size_t)size + offset > buffer->size())
{
return error(GL_INVALID_VALUE);
}
buffer->bufferSubData(data, size, offset);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLenum __stdcall glCheckFramebufferStatus(GLenum target)
{
TRACE("(GLenum target = 0x%X)", target);
try
{
if (target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM, 0);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Framebuffer *framebuffer = NULL;
if (target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
}
else
{
framebuffer = context->getDrawFramebuffer();
}
return framebuffer->completeness();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
void __stdcall glClear(GLbitfield mask)
{
TRACE("(GLbitfield mask = %X)", mask);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->clear(mask);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
TRACE("(GLclampf red = %f, GLclampf green = %f, GLclampf blue = %f, GLclampf alpha = %f)",
red, green, blue, alpha);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setClearColor(red, green, blue, alpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glClearDepthf(GLclampf depth)
{
TRACE("(GLclampf depth = %f)", depth);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setClearDepth(depth);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glClearStencil(GLint s)
{
TRACE("(GLint s = %d)", s);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setClearStencil(s);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)
{
TRACE("(GLboolean red = %d, GLboolean green = %d, GLboolean blue = %d, GLboolean alpha = %d)",
red, green, blue, alpha);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setColorMask(red == GL_TRUE, green == GL_TRUE, blue == GL_TRUE, alpha == GL_TRUE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glCompileShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Shader *shaderObject = context->getShader(shader);
if (!shaderObject)
{
if (context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
shaderObject->compile();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glCompressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height,
GLint border, GLsizei imageSize, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, GLsizei width = %d, "
"GLsizei height = %d, GLint border = %d, GLsizei imageSize = %d, const GLvoid* data = 0x%0.8p)",
target, level, internalformat, width, height, border, imageSize, data);
try
{
if (level < 0)
{
return error(GL_INVALID_VALUE);
}
if (width < 0 || height < 0 || (level > 0 && !gl::isPow2(width)) || (level > 0 && !gl::isPow2(height)) || border != 0 || imageSize < 0)
{
return error(GL_INVALID_VALUE);
}
switch (internalformat)
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
if (border != 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
if (level > context->getMaximumTextureLevel())
{
return error(GL_INVALID_VALUE);
}
switch (target)
{
case GL_TEXTURE_2D:
if (width > (context->getMaximumTextureDimension() >> level) ||
height > (context->getMaximumTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if (width != height)
{
return error(GL_INVALID_VALUE);
}
if (width > (context->getMaximumCubeTextureDimension() >> level) ||
height > (context->getMaximumCubeTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if (!context->supportsCompressedTextures())
{
return error(GL_INVALID_ENUM); // in this case, it's as though the internal format switch failed
}
if (imageSize != gl::ComputeCompressedSize(width, height, internalformat))
{
return error(GL_INVALID_VALUE);
}
if (target == GL_TEXTURE_2D)
{
gl::Texture2D *texture = context->getTexture2D();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->setCompressedImage(level, internalformat, width, height, imageSize, data);
}
else
{
gl::TextureCubeMap *texture = context->getTextureCubeMap();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
switch (target)
{
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
texture->setCompressedImage(target, level, internalformat, width, height, imageSize, data);
break;
default: UNREACHABLE();
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glCompressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLsizei imageSize, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLsizei width = %d, GLsizei height = %d, GLenum format = 0x%X, "
"GLsizei imageSize = %d, const GLvoid* data = 0x%0.8p)",
target, level, xoffset, yoffset, width, height, format, imageSize, data);
try
{
if (!gl::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if (level < 0)
{
return error(GL_INVALID_VALUE);
}
if (xoffset < 0 || yoffset < 0 || width < 0 || height < 0 ||
(level > 0 && !gl::isPow2(width)) || (level > 0 && !gl::isPow2(height)) || imageSize < 0)
{
return error(GL_INVALID_VALUE);
}
switch (format)
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
if (width == 0 || height == 0 || data == NULL)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
if (level > context->getMaximumTextureLevel())
{
return error(GL_INVALID_VALUE);
}
if (!context->supportsCompressedTextures())
{
return error(GL_INVALID_ENUM); // in this case, it's as though the format switch has failed.
}
if (imageSize != gl::ComputeCompressedSize(width, height, format))
{
return error(GL_INVALID_VALUE);
}
if (xoffset % 4 != 0 || yoffset % 4 != 0)
{
return error(GL_INVALID_OPERATION); // we wait to check the offsets until this point, because the multiple-of-four restriction
// does not exist unless DXT1 textures are supported.
}
if (target == GL_TEXTURE_2D)
{
gl::Texture2D *texture = context->getTexture2D();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
if (!texture->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
if ((width % 4 != 0 && width != texture->getWidth()) ||
(height % 4 != 0 && height != texture->getHeight()))
{
return error(GL_INVALID_OPERATION);
}
texture->subImageCompressed(level, xoffset, yoffset, width, height, format, imageSize, data);
}
else if (gl::IsCubemapTextureTarget(target))
{
gl::TextureCubeMap *texture = context->getTextureCubeMap();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
if (!texture->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
if ((width % 4 != 0 && width != texture->getWidth()) ||
(height % 4 != 0 && height != texture->getHeight()))
{
return error(GL_INVALID_OPERATION);
}
texture->subImageCompressed(target, level, xoffset, yoffset, width, height, format, imageSize, data);
}
else
{
UNREACHABLE();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, "
"GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d, GLint border = %d)",
target, level, internalformat, x, y, width, height, border);
try
{
if (level < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if (level > 0 && (!gl::isPow2(width) || !gl::isPow2(height)))
{
return error(GL_INVALID_VALUE);
}
if (border != 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
switch (target)
{
case GL_TEXTURE_2D:
if (width > (context->getMaximumTextureDimension() >> level) ||
height > (context->getMaximumTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if (width != height)
{
return error(GL_INVALID_VALUE);
}
if (width > (context->getMaximumCubeTextureDimension() >> level) ||
height > (context->getMaximumCubeTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Framebuffer *framebuffer = context->getReadFramebuffer();
if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (context->getReadFramebufferHandle() != 0 && framebuffer->getColorbuffer()->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
gl::Colorbuffer *source = framebuffer->getColorbuffer();
GLenum colorbufferFormat = source->getFormat();
// [OpenGL ES 2.0.24] table 3.9
switch (internalformat)
{
case GL_ALPHA:
if (colorbufferFormat != GL_ALPHA &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE:
case GL_RGB:
if (colorbufferFormat != GL_RGB &&
colorbufferFormat != GL_RGB565 &&
colorbufferFormat != GL_RGB8_OES &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
if (colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
if (context->supportsCompressedTextures())
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if (target == GL_TEXTURE_2D)
{
gl::Texture2D *texture = context->getTexture2D();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->copyImage(level, internalformat, x, y, width, height, source);
}
else if (gl::IsCubemapTextureTarget(target))
{
gl::TextureCubeMap *texture = context->getTextureCubeMap();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->copyImage(target, level, internalformat, x, y, width, height, source);
}
else UNREACHABLE();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)",
target, level, xoffset, yoffset, x, y, width, height);
try
{
if (!gl::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if (level < 0 || xoffset < 0 || yoffset < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if (std::numeric_limits<GLsizei>::max() - xoffset < width || std::numeric_limits<GLsizei>::max() - yoffset < height)
{
return error(GL_INVALID_VALUE);
}
if (width == 0 || height == 0)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
if (level > context->getMaximumTextureLevel())
{
return error(GL_INVALID_VALUE);
}
gl::Framebuffer *framebuffer = context->getReadFramebuffer();
if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (context->getReadFramebufferHandle() != 0 && framebuffer->getColorbuffer()->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
gl::Colorbuffer *source = framebuffer->getColorbuffer();
GLenum colorbufferFormat = source->getFormat();
gl::Texture *texture = NULL;
if (target == GL_TEXTURE_2D)
{
texture = context->getTexture2D();
}
else if (gl::IsCubemapTextureTarget(target))
{
texture = context->getTextureCubeMap();
}
else UNREACHABLE();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
GLenum textureFormat = texture->getFormat();
// [OpenGL ES 2.0.24] table 3.9
switch (textureFormat)
{
case GL_ALPHA:
if (colorbufferFormat != GL_ALPHA &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE:
case GL_RGB:
if (colorbufferFormat != GL_RGB &&
colorbufferFormat != GL_RGB565 &&
colorbufferFormat != GL_RGB8_OES &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
if (colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
return error(GL_INVALID_OPERATION);
default:
return error(GL_INVALID_OPERATION);
}
texture->copySubImage(target, level, xoffset, yoffset, x, y, width, height, source);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLuint __stdcall glCreateProgram(void)
{
TRACE("()");
try
{
gl::Context *context = gl::getContext();
if (context)
{
return context->createProgram();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
GLuint __stdcall glCreateShader(GLenum type)
{
TRACE("(GLenum type = 0x%X)", type);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (type)
{
case GL_FRAGMENT_SHADER:
case GL_VERTEX_SHADER:
return context->createShader(type);
default:
return error(GL_INVALID_ENUM, 0);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
void __stdcall glCullFace(GLenum mode)
{
TRACE("(GLenum mode = 0x%X)", mode);
try
{
switch (mode)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
{
gl::Context *context = gl::getContext();
if (context)
{
context->setCullMode(mode);
}
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteBuffers(GLsizei n, const GLuint* buffers)
{
TRACE("(GLsizei n = %d, const GLuint* buffers = 0x%0.8p)", n, buffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
context->deleteBuffer(buffers[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteFencesNV(GLsizei n, const GLuint* fences)
{
TRACE("(GLsizei n = %d, const GLuint* fences = 0x%0.8p)", n, fences);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
context->deleteFence(fences[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteFramebuffers(GLsizei n, const GLuint* framebuffers)
{
TRACE("(GLsizei n = %d, const GLuint* framebuffers = 0x%0.8p)", n, framebuffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
if (framebuffers[i] != 0)
{
context->deleteFramebuffer(framebuffers[i]);
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
if (program == 0)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
if (!context->getProgram(program))
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
context->deleteProgram(program);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteRenderbuffers(GLsizei n, const GLuint* renderbuffers)
{
TRACE("(GLsizei n = %d, const GLuint* renderbuffers = 0x%0.8p)", n, renderbuffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
context->deleteRenderbuffer(renderbuffers[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
if (shader == 0)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
if (!context->getShader(shader))
{
if(context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
context->deleteShader(shader);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDeleteTextures(GLsizei n, const GLuint* textures)
{
TRACE("(GLsizei n = %d, const GLuint* textures = 0x%0.8p)", n, textures);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
if (textures[i] != 0)
{
context->deleteTexture(textures[i]);
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDepthFunc(GLenum func)
{
TRACE("(GLenum func = 0x%X)", func);
try
{
switch (func)
{
case GL_NEVER:
case GL_ALWAYS:
case GL_LESS:
case GL_LEQUAL:
case GL_EQUAL:
case GL_GREATER:
case GL_GEQUAL:
case GL_NOTEQUAL:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setDepthFunc(func);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDepthMask(GLboolean flag)
{
TRACE("(GLboolean flag = %d)", flag);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setDepthMask(flag != GL_FALSE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDepthRangef(GLclampf zNear, GLclampf zFar)
{
TRACE("(GLclampf zNear = %f, GLclampf zFar = %f)", zNear, zFar);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setDepthRange(zNear, zFar);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDetachShader(GLuint program, GLuint shader)
{
TRACE("(GLuint program = %d, GLuint shader = %d)", program, shader);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
gl::Shader *shaderObject = context->getShader(shader);
if (!programObject)
{
gl::Shader *shaderByProgramHandle;
shaderByProgramHandle = context->getShader(program);
if (!shaderByProgramHandle)
{
return error(GL_INVALID_VALUE);
}
else
{
return error(GL_INVALID_OPERATION);
}
}
if (!shaderObject)
{
gl::Program *programByShaderHandle = context->getProgram(shader);
if (!programByShaderHandle)
{
return error(GL_INVALID_VALUE);
}
else
{
return error(GL_INVALID_OPERATION);
}
}
if (!programObject->detachShader(shaderObject))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDisable(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (cap)
{
case GL_CULL_FACE: context->setCullFace(false); break;
case GL_POLYGON_OFFSET_FILL: context->setPolygonOffsetFill(false); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: context->setSampleAlphaToCoverage(false); break;
case GL_SAMPLE_COVERAGE: context->setSampleCoverage(false); break;
case GL_SCISSOR_TEST: context->setScissorTest(false); break;
case GL_STENCIL_TEST: context->setStencilTest(false); break;
case GL_DEPTH_TEST: context->setDepthTest(false); break;
case GL_BLEND: context->setBlend(false); break;
case GL_DITHER: context->setDither(false); break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDisableVertexAttribArray(GLuint index)
{
TRACE("(GLuint index = %d)", index);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setEnableVertexAttribArray(index, false);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDrawArrays(GLenum mode, GLint first, GLsizei count)
{
TRACE("(GLenum mode = 0x%X, GLint first = %d, GLsizei count = %d)", mode, first, count);
try
{
if (count < 0 || first < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->drawArrays(mode, first, count);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices)
{
TRACE("(GLenum mode = 0x%X, GLsizei count = %d, GLenum type = 0x%X, const GLvoid* indices = 0x%0.8p)",
mode, count, type, indices);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT:
break;
case GL_UNSIGNED_INT:
if (!context->supports32bitIndices())
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
context->drawElements(mode, count, type, indices);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glEnable(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (cap)
{
case GL_CULL_FACE: context->setCullFace(true); break;
case GL_POLYGON_OFFSET_FILL: context->setPolygonOffsetFill(true); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: context->setSampleAlphaToCoverage(true); break;
case GL_SAMPLE_COVERAGE: context->setSampleCoverage(true); break;
case GL_SCISSOR_TEST: context->setScissorTest(true); break;
case GL_STENCIL_TEST: context->setStencilTest(true); break;
case GL_DEPTH_TEST: context->setDepthTest(true); break;
case GL_BLEND: context->setBlend(true); break;
case GL_DITHER: context->setDither(true); break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glEnableVertexAttribArray(GLuint index)
{
TRACE("(GLuint index = %d)", index);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setEnableVertexAttribArray(index, true);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFinishFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Fence* fenceObject = context->getFence(fence);
if (fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->finishFence();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFinish(void)
{
TRACE("()");
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->finish();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFlush(void)
{
TRACE("()");
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->flush();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFramebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum renderbuffertarget = 0x%X, "
"GLuint renderbuffer = %d)", target, attachment, renderbuffertarget, renderbuffer);
try
{
if ((target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
|| renderbuffertarget != GL_RENDERBUFFER)
{
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Framebuffer *framebuffer = NULL;
GLuint framebufferHandle = 0;
if (target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
framebufferHandle = context->getReadFramebufferHandle();
}
else
{
framebuffer = context->getDrawFramebuffer();
framebufferHandle = context->getDrawFramebufferHandle();
}
if (framebufferHandle == 0 || !framebuffer)
{
return error(GL_INVALID_OPERATION);
}
switch (attachment)
{
case GL_COLOR_ATTACHMENT0:
framebuffer->setColorbuffer(GL_RENDERBUFFER, renderbuffer);
break;
case GL_DEPTH_ATTACHMENT:
framebuffer->setDepthbuffer(GL_RENDERBUFFER, renderbuffer);
break;
case GL_STENCIL_ATTACHMENT:
framebuffer->setStencilbuffer(GL_RENDERBUFFER, renderbuffer);
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFramebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum textarget = 0x%X, "
"GLuint texture = %d, GLint level = %d)", target, attachment, textarget, texture, level);
try
{
if (target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
switch (attachment)
{
case GL_COLOR_ATTACHMENT0:
case GL_DEPTH_ATTACHMENT:
case GL_STENCIL_ATTACHMENT:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
if (texture == 0)
{
textarget = GL_NONE;
}
else
{
gl::Texture *tex = context->getTexture(texture);
if (tex == NULL)
{
return error(GL_INVALID_OPERATION);
}
if (tex->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
switch (textarget)
{
case GL_TEXTURE_2D:
if (tex->getTarget() != GL_TEXTURE_2D)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if (tex->getTarget() != GL_TEXTURE_CUBE_MAP)
{
return error(GL_INVALID_OPERATION);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if (level != 0)
{
return error(GL_INVALID_VALUE);
}
}
gl::Framebuffer *framebuffer = NULL;
GLuint framebufferHandle = 0;
if (target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
framebufferHandle = context->getReadFramebufferHandle();
}
else
{
framebuffer = context->getDrawFramebuffer();
framebufferHandle = context->getDrawFramebufferHandle();
}
if (framebufferHandle == 0 || !framebuffer)
{
return error(GL_INVALID_OPERATION);
}
switch (attachment)
{
case GL_COLOR_ATTACHMENT0: framebuffer->setColorbuffer(textarget, texture); break;
case GL_DEPTH_ATTACHMENT: framebuffer->setDepthbuffer(textarget, texture); break;
case GL_STENCIL_ATTACHMENT: framebuffer->setStencilbuffer(textarget, texture); break;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glFrontFace(GLenum mode)
{
TRACE("(GLenum mode = 0x%X)", mode);
try
{
switch (mode)
{
case GL_CW:
case GL_CCW:
{
gl::Context *context = gl::getContext();
if (context)
{
context->setFrontFace(mode);
}
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenBuffers(GLsizei n, GLuint* buffers)
{
TRACE("(GLsizei n = %d, GLuint* buffers = 0x%0.8p)", n, buffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
buffers[i] = context->createBuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenerateMipmap(GLenum target)
{
TRACE("(GLenum target = 0x%X)", target);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Texture *texture;
switch (target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
default:
return error(GL_INVALID_ENUM);
}
if (texture->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
texture->generateMipmaps();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenFencesNV(GLsizei n, GLuint* fences)
{
TRACE("(GLsizei n = %d, GLuint* fences = 0x%0.8p)", n, fences);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
fences[i] = context->createFence();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenFramebuffers(GLsizei n, GLuint* framebuffers)
{
TRACE("(GLsizei n = %d, GLuint* framebuffers = 0x%0.8p)", n, framebuffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
framebuffers[i] = context->createFramebuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenRenderbuffers(GLsizei n, GLuint* renderbuffers)
{
TRACE("(GLsizei n = %d, GLuint* renderbuffers = 0x%0.8p)", n, renderbuffers);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
renderbuffers[i] = context->createRenderbuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGenTextures(GLsizei n, GLuint* textures)
{
TRACE("(GLsizei n = %d, GLuint* textures = 0x%0.8p)", n, textures);
try
{
if (n < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
for (int i = 0; i < n; i++)
{
textures[i] = context->createTexture();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetActiveAttrib(GLuint program, GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufsize = %d, GLsizei *length = 0x%0.8p, "
"GLint *size = 0x%0.8p, GLenum *type = %0.8p, GLchar *name = %0.8p)",
program, index, bufsize, length, size, type, name);
try
{
if (bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (index >= (GLuint)programObject->getActiveAttributeCount())
{
return error(GL_INVALID_VALUE);
}
programObject->getActiveAttribute(index, bufsize, length, size, type, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetActiveUniform(GLuint program, GLuint index, GLsizei bufsize, GLsizei* length, GLint* size, GLenum* type, GLchar* name)
{
TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufsize = %d, "
"GLsizei* length = 0x%0.8p, GLint* size = 0x%0.8p, GLenum* type = 0x%0.8p, GLchar* name = 0x%0.8p)",
program, index, bufsize, length, size, type, name);
try
{
if (bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (index >= (GLuint)programObject->getActiveUniformCount())
{
return error(GL_INVALID_VALUE);
}
programObject->getActiveUniform(index, bufsize, length, size, type, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetAttachedShaders(GLuint program, GLsizei maxcount, GLsizei* count, GLuint* shaders)
{
TRACE("(GLuint program = %d, GLsizei maxcount = %d, GLsizei* count = 0x%0.8p, GLuint* shaders = 0x%0.8p)",
program, maxcount, count, shaders);
try
{
if (maxcount < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
return programObject->getAttachedShaders(maxcount, count, shaders);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
int __stdcall glGetAttribLocation(GLuint program, const GLchar* name)
{
TRACE("(GLuint program = %d, const GLchar* name = %s)", program, name);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION, -1);
}
else
{
return error(GL_INVALID_VALUE, -1);
}
}
if (!programObject->isLinked())
{
return error(GL_INVALID_OPERATION, -1);
}
return programObject->getAttributeLocation(name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, -1);
}
return -1;
}
void __stdcall glGetBooleanv(GLenum pname, GLboolean* params)
{
TRACE("(GLenum pname = 0x%X, GLboolean* params = 0x%0.8p)", pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (!(context->getBooleanv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if (!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if (numParams == 0)
return; // it is known that the pname is valid, but there are no parameters to return
if (nativeType == GL_FLOAT)
{
GLfloat *floatParams = NULL;
floatParams = new GLfloat[numParams];
context->getFloatv(pname, floatParams);
for (unsigned int i = 0; i < numParams; ++i)
{
if (floatParams[i] == 0.0f)
params[i] = GL_FALSE;
else
params[i] = GL_TRUE;
}
delete [] floatParams;
}
else if (nativeType == GL_INT)
{
GLint *intParams = NULL;
intParams = new GLint[numParams];
context->getIntegerv(pname, intParams);
for (unsigned int i = 0; i < numParams; ++i)
{
if (intParams[i] == 0)
params[i] = GL_FALSE;
else
params[i] = GL_TRUE;
}
delete [] intParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetBufferParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Buffer *buffer;
switch (target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default: return error(GL_INVALID_ENUM);
}
if (!buffer)
{
// A null buffer means that "0" is bound to the requested buffer target
return error(GL_INVALID_OPERATION);
}
switch (pname)
{
case GL_BUFFER_USAGE:
*params = buffer->usage();
break;
case GL_BUFFER_SIZE:
*params = buffer->size();
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLenum __stdcall glGetError(void)
{
TRACE("()");
gl::Context *context = gl::getContext();
if (context)
{
return context->getError();
}
return GL_NO_ERROR;
}
void __stdcall glGetFenceivNV(GLuint fence, GLenum pname, GLint *params)
{
TRACE("(GLuint fence = %d, GLenum pname = 0x%X, GLint *params = 0x%0.8p)", fence, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Fence *fenceObject = context->getFence(fence);
if (fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->getFenceiv(pname, params);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetFloatv(GLenum pname, GLfloat* params)
{
TRACE("(GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (!(context->getFloatv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if (!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if (numParams == 0)
return; // it is known that the pname is valid, but that there are no parameters to return.
if (nativeType == GL_BOOL)
{
GLboolean *boolParams = NULL;
boolParams = new GLboolean[numParams];
context->getBooleanv(pname, boolParams);
for (unsigned int i = 0; i < numParams; ++i)
{
if (boolParams[i] == GL_FALSE)
params[i] = 0.0f;
else
params[i] = 1.0f;
}
delete [] boolParams;
}
else if (nativeType == GL_INT)
{
GLint *intParams = NULL;
intParams = new GLint[numParams];
context->getIntegerv(pname, intParams);
for (unsigned int i = 0; i < numParams; ++i)
{
params[i] = (GLfloat)intParams[i];
}
delete [] intParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetFramebufferAttachmentParameteriv(GLenum target, GLenum attachment, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)",
target, attachment, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
gl::Framebuffer *framebuffer = NULL;
if (target == GL_READ_FRAMEBUFFER_ANGLE)
{
if(context->getReadFramebufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
framebuffer = context->getReadFramebuffer();
}
else
{
if (context->getDrawFramebufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
framebuffer = context->getDrawFramebuffer();
}
GLenum attachmentType;
GLuint attachmentHandle;
switch (attachment)
{
case GL_COLOR_ATTACHMENT0:
attachmentType = framebuffer->getColorbufferType();
attachmentHandle = framebuffer->getColorbufferHandle();
break;
case GL_DEPTH_ATTACHMENT:
attachmentType = framebuffer->getDepthbufferType();
attachmentHandle = framebuffer->getDepthbufferHandle();
break;
case GL_STENCIL_ATTACHMENT:
attachmentType = framebuffer->getStencilbufferType();
attachmentHandle = framebuffer->getStencilbufferHandle();
break;
default: return error(GL_INVALID_ENUM);
}
GLenum attachmentObjectType; // Type category
if (attachmentType == GL_NONE || attachmentType == GL_RENDERBUFFER)
{
attachmentObjectType = attachmentType;
}
else if (gl::IsTextureTarget(attachmentType))
{
attachmentObjectType = GL_TEXTURE;
}
else UNREACHABLE();
switch (pname)
{
case GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE:
*params = attachmentObjectType;
break;
case GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME:
if (attachmentObjectType == GL_RENDERBUFFER || attachmentObjectType == GL_TEXTURE)
{
*params = attachmentHandle;
}
else
{
return error(GL_INVALID_ENUM);
}
break;
case GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL:
if (attachmentObjectType == GL_TEXTURE)
{
*params = 0; // FramebufferTexture2D will not allow level to be set to anything else in GL ES 2.0
}
else
{
return error(GL_INVALID_ENUM);
}
break;
case GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE:
if (attachmentObjectType == GL_TEXTURE)
{
if (gl::IsCubemapTextureTarget(attachmentType))
{
*params = attachmentType;
}
else
{
*params = 0;
}
}
else
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetIntegerv(GLenum pname, GLint* params)
{
TRACE("(GLenum pname = 0x%X, GLint* params = 0x%0.8p)", pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (!(context->getIntegerv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if (!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if (numParams == 0)
return; // it is known that pname is valid, but there are no parameters to return
if (nativeType == GL_BOOL)
{
GLboolean *boolParams = NULL;
boolParams = new GLboolean[numParams];
context->getBooleanv(pname, boolParams);
for (unsigned int i = 0; i < numParams; ++i)
{
if (boolParams[i] == GL_FALSE)
params[i] = 0;
else
params[i] = 1;
}
delete [] boolParams;
}
else if (nativeType == GL_FLOAT)
{
GLfloat *floatParams = NULL;
floatParams = new GLfloat[numParams];
context->getFloatv(pname, floatParams);
for (unsigned int i = 0; i < numParams; ++i)
{
if (pname == GL_DEPTH_RANGE || pname == GL_COLOR_CLEAR_VALUE || pname == GL_DEPTH_CLEAR_VALUE || pname == GL_BLEND_COLOR)
{
params[i] = (GLint)(((GLfloat)(0xFFFFFFFF) * floatParams[i] - 1.0f) / 2.0f);
}
else
params[i] = (GLint)(floatParams[i] > 0.0f ? floor(floatParams[i] + 0.5) : ceil(floatParams[i] - 0.5));
}
delete [] floatParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetProgramiv(GLuint program, GLenum pname, GLint* params)
{
TRACE("(GLuint program = %d, GLenum pname = %d, GLint* params = 0x%0.8p)", program, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
return error(GL_INVALID_VALUE);
}
switch (pname)
{
case GL_DELETE_STATUS:
*params = programObject->isFlaggedForDeletion();
return;
case GL_LINK_STATUS:
*params = programObject->isLinked();
return;
case GL_VALIDATE_STATUS:
*params = programObject->isValidated();
return;
case GL_INFO_LOG_LENGTH:
*params = programObject->getInfoLogLength();
return;
case GL_ATTACHED_SHADERS:
*params = programObject->getAttachedShadersCount();
return;
case GL_ACTIVE_ATTRIBUTES:
*params = programObject->getActiveAttributeCount();
return;
case GL_ACTIVE_ATTRIBUTE_MAX_LENGTH:
*params = programObject->getActiveAttributeMaxLength();
return;
case GL_ACTIVE_UNIFORMS:
*params = programObject->getActiveUniformCount();
return;
case GL_ACTIVE_UNIFORM_MAX_LENGTH:
*params = programObject->getActiveUniformMaxLength();
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetProgramInfoLog(GLuint program, GLsizei bufsize, GLsizei* length, GLchar* infolog)
{
TRACE("(GLuint program = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* infolog = 0x%0.8p)",
program, bufsize, length, infolog);
try
{
if (bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
return error(GL_INVALID_VALUE);
}
programObject->getInfoLog(bufsize, length, infolog);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetRenderbufferParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (target != GL_RENDERBUFFER)
{
return error(GL_INVALID_ENUM);
}
if (context->getRenderbufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
gl::Renderbuffer *renderbuffer = context->getRenderbuffer(context->getRenderbufferHandle());
switch (pname)
{
case GL_RENDERBUFFER_WIDTH:
*params = renderbuffer->getWidth();
break;
case GL_RENDERBUFFER_HEIGHT:
*params = renderbuffer->getHeight();
break;
case GL_RENDERBUFFER_INTERNAL_FORMAT:
*params = renderbuffer->getFormat();
break;
case GL_RENDERBUFFER_RED_SIZE:
if (renderbuffer->isColorbuffer())
{
*params = static_cast<gl::Colorbuffer*>(renderbuffer->getStorage())->getRedSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_GREEN_SIZE:
if (renderbuffer->isColorbuffer())
{
*params = static_cast<gl::Colorbuffer*>(renderbuffer->getStorage())->getGreenSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_BLUE_SIZE:
if (renderbuffer->isColorbuffer())
{
*params = static_cast<gl::Colorbuffer*>(renderbuffer->getStorage())->getBlueSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_ALPHA_SIZE:
if (renderbuffer->isColorbuffer())
{
*params = static_cast<gl::Colorbuffer*>(renderbuffer->getStorage())->getAlphaSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_DEPTH_SIZE:
if (renderbuffer->isDepthbuffer())
{
*params = static_cast<gl::Depthbuffer*>(renderbuffer->getStorage())->getDepthSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_STENCIL_SIZE:
if (renderbuffer->isStencilbuffer())
{
*params = static_cast<gl::Stencilbuffer*>(renderbuffer->getStorage())->getStencilSize();
}
else
{
*params = 0;
}
break;
case GL_RENDERBUFFER_SAMPLES_ANGLE:
{
if (context->getMaxSupportedSamples() != 0)
{
*params = renderbuffer->getStorage()->getSamples();
}
else
{
return error(GL_INVALID_ENUM);
}
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetShaderiv(GLuint shader, GLenum pname, GLint* params)
{
TRACE("(GLuint shader = %d, GLenum pname = %d, GLint* params = 0x%0.8p)", shader, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Shader *shaderObject = context->getShader(shader);
if (!shaderObject)
{
return error(GL_INVALID_VALUE);
}
switch (pname)
{
case GL_SHADER_TYPE:
*params = shaderObject->getType();
return;
case GL_DELETE_STATUS:
*params = shaderObject->isFlaggedForDeletion();
return;
case GL_COMPILE_STATUS:
*params = shaderObject->isCompiled() ? GL_TRUE : GL_FALSE;
return;
case GL_INFO_LOG_LENGTH:
*params = shaderObject->getInfoLogLength();
return;
case GL_SHADER_SOURCE_LENGTH:
*params = shaderObject->getSourceLength();
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetShaderInfoLog(GLuint shader, GLsizei bufsize, GLsizei* length, GLchar* infolog)
{
TRACE("(GLuint shader = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* infolog = 0x%0.8p)",
shader, bufsize, length, infolog);
try
{
if (bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Shader *shaderObject = context->getShader(shader);
if (!shaderObject)
{
return error(GL_INVALID_VALUE);
}
shaderObject->getInfoLog(bufsize, length, infolog);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype, GLint* range, GLint* precision)
{
TRACE("(GLenum shadertype = 0x%X, GLenum precisiontype = 0x%X, GLint* range = 0x%0.8p, GLint* precision = 0x%0.8p)",
shadertype, precisiontype, range, precision);
try
{
switch (shadertype)
{
case GL_VERTEX_SHADER:
case GL_FRAGMENT_SHADER:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (precisiontype)
{
case GL_LOW_FLOAT:
case GL_MEDIUM_FLOAT:
case GL_HIGH_FLOAT:
// Assume IEEE 754 precision
range[0] = 127;
range[1] = 127;
*precision = 23;
break;
case GL_LOW_INT:
case GL_MEDIUM_INT:
case GL_HIGH_INT:
// Some (most) hardware only supports single-precision floating-point numbers,
// which can accurately represent integers up to +/-16777216
range[0] = 24;
range[1] = 24;
*precision = 0;
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetShaderSource(GLuint shader, GLsizei bufsize, GLsizei* length, GLchar* source)
{
TRACE("(GLuint shader = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* source = 0x%0.8p)",
shader, bufsize, length, source);
try
{
if (bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Shader *shaderObject = context->getShader(shader);
if (!shaderObject)
{
return error(GL_INVALID_OPERATION);
}
shaderObject->getSource(bufsize, length, source);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
const GLubyte* __stdcall glGetString(GLenum name)
{
TRACE("(GLenum name = 0x%X)", name);
try
{
gl::Context *context = gl::getContext();
switch (name)
{
case GL_VENDOR:
return (GLubyte*)"TransGaming Inc.";
case GL_RENDERER:
return (GLubyte*)"ANGLE";
case GL_VERSION:
return (GLubyte*)"OpenGL ES 2.0 (git-devel "__DATE__ " " __TIME__")";
case GL_SHADING_LANGUAGE_VERSION:
return (GLubyte*)"OpenGL ES GLSL ES 1.00 (git-devel "__DATE__ " " __TIME__")";
case GL_EXTENSIONS:
return (GLubyte*)((context != NULL) ? context->getExtensionString() : "");
default:
return error(GL_INVALID_ENUM, (GLubyte*)NULL);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, (GLubyte*)NULL);
}
return NULL;
}
void __stdcall glGetTexParameterfv(GLenum target, GLenum pname, GLfloat* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", target, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Texture *texture;
switch (target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
default:
return error(GL_INVALID_ENUM);
}
switch (pname)
{
case GL_TEXTURE_MAG_FILTER:
*params = (GLfloat)texture->getMagFilter();
break;
case GL_TEXTURE_MIN_FILTER:
*params = (GLfloat)texture->getMinFilter();
break;
case GL_TEXTURE_WRAP_S:
*params = (GLfloat)texture->getWrapS();
break;
case GL_TEXTURE_WRAP_T:
*params = (GLfloat)texture->getWrapT();
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetTexParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Texture *texture;
switch (target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
default:
return error(GL_INVALID_ENUM);
}
switch (pname)
{
case GL_TEXTURE_MAG_FILTER:
*params = texture->getMagFilter();
break;
case GL_TEXTURE_MIN_FILTER:
*params = texture->getMinFilter();
break;
case GL_TEXTURE_WRAP_S:
*params = texture->getWrapS();
break;
case GL_TEXTURE_WRAP_T:
*params = texture->getWrapT();
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetUniformfv(GLuint program, GLint location, GLfloat* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLfloat* params = 0x%0.8p)", program, location, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (program == 0)
{
return error(GL_INVALID_VALUE);
}
gl::Program *programObject = context->getProgram(program);
if (!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if (!programObject->getUniformfv(location, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetUniformiv(GLuint program, GLint location, GLint* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLint* params = 0x%0.8p)", program, location, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (program == 0)
{
return error(GL_INVALID_VALUE);
}
gl::Program *programObject = context->getProgram(program);
if (!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if (!programObject)
{
return error(GL_INVALID_OPERATION);
}
if (!programObject->getUniformiv(location, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
int __stdcall glGetUniformLocation(GLuint program, const GLchar* name)
{
TRACE("(GLuint program = %d, const GLchar* name = 0x%0.8p)", program, name);
try
{
gl::Context *context = gl::getContext();
if (strstr(name, "gl_") == name)
{
return -1;
}
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION, -1);
}
else
{
return error(GL_INVALID_VALUE, -1);
}
}
if (!programObject->isLinked())
{
return error(GL_INVALID_OPERATION, -1);
}
return programObject->getUniformLocation(name, false);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, -1);
}
return -1;
}
void __stdcall glGetVertexAttribfv(GLuint index, GLenum pname, GLfloat* params)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", index, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
const gl::VertexAttribute &attribState = context->getVertexAttribState(index);
switch (pname)
{
case GL_VERTEX_ATTRIB_ARRAY_ENABLED:
*params = (GLfloat)(attribState.mArrayEnabled ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_SIZE:
*params = (GLfloat)attribState.mSize;
break;
case GL_VERTEX_ATTRIB_ARRAY_STRIDE:
*params = (GLfloat)attribState.mStride;
break;
case GL_VERTEX_ATTRIB_ARRAY_TYPE:
*params = (GLfloat)attribState.mType;
break;
case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED:
*params = (GLfloat)(attribState.mNormalized ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING:
*params = (GLfloat)attribState.mBoundBuffer.id();
break;
case GL_CURRENT_VERTEX_ATTRIB:
for (int i = 0; i < 4; ++i)
{
params[i] = attribState.mCurrentValue[i];
}
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetVertexAttribiv(GLuint index, GLenum pname, GLint* params)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", index, pname, params);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
const gl::VertexAttribute &attribState = context->getVertexAttribState(index);
switch (pname)
{
case GL_VERTEX_ATTRIB_ARRAY_ENABLED:
*params = (attribState.mArrayEnabled ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_SIZE:
*params = attribState.mSize;
break;
case GL_VERTEX_ATTRIB_ARRAY_STRIDE:
*params = attribState.mStride;
break;
case GL_VERTEX_ATTRIB_ARRAY_TYPE:
*params = attribState.mType;
break;
case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED:
*params = (attribState.mNormalized ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING:
*params = attribState.mBoundBuffer.id();
break;
case GL_CURRENT_VERTEX_ATTRIB:
for (int i = 0; i < 4; ++i)
{
float currentValue = attribState.mCurrentValue[i];
params[i] = (GLint)(currentValue > 0.0f ? floor(currentValue + 0.5f) : ceil(currentValue - 0.5f));
}
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glGetVertexAttribPointerv(GLuint index, GLenum pname, GLvoid** pointer)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLvoid** pointer = 0x%0.8p)", index, pname, pointer);
try
{
gl::Context *context = gl::getContext();
if (context)
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
if (pname != GL_VERTEX_ATTRIB_ARRAY_POINTER)
{
return error(GL_INVALID_ENUM);
}
*pointer = const_cast<GLvoid*>(context->getVertexAttribPointer(index));
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glHint(GLenum target, GLenum mode)
{
TRACE("(GLenum target = 0x%X, GLenum mode = 0x%X)", target, mode);
try
{
switch (mode)
{
case GL_FASTEST:
case GL_NICEST:
case GL_DONT_CARE:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
switch (target)
{
case GL_GENERATE_MIPMAP_HINT:
if (context) context->setGenerateMipmapHint(mode);
break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
if (context) context->setFragmentShaderDerivativeHint(mode);
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLboolean __stdcall glIsBuffer(GLuint buffer)
{
TRACE("(GLuint buffer = %d)", buffer);
try
{
gl::Context *context = gl::getContext();
if (context && buffer)
{
gl::Buffer *bufferObject = context->getBuffer(buffer);
if (bufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsEnabled(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (cap)
{
case GL_CULL_FACE: return context->isCullFaceEnabled();
case GL_POLYGON_OFFSET_FILL: return context->isPolygonOffsetFillEnabled();
case GL_SAMPLE_ALPHA_TO_COVERAGE: return context->isSampleAlphaToCoverageEnabled();
case GL_SAMPLE_COVERAGE: return context->isSampleCoverageEnabled();
case GL_SCISSOR_TEST: return context->isScissorTestEnabled();
case GL_STENCIL_TEST: return context->isStencilTestEnabled();
case GL_DEPTH_TEST: return context->isDepthTestEnabled();
case GL_BLEND: return context->isBlendEnabled();
case GL_DITHER: return context->isDitherEnabled();
default:
return error(GL_INVALID_ENUM, false);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, false);
}
return false;
}
GLboolean __stdcall glIsFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Fence *fenceObject = context->getFence(fence);
if (fenceObject == NULL)
{
return GL_FALSE;
}
return fenceObject->isFence();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsFramebuffer(GLuint framebuffer)
{
TRACE("(GLuint framebuffer = %d)", framebuffer);
try
{
gl::Context *context = gl::getContext();
if (context && framebuffer)
{
gl::Framebuffer *framebufferObject = context->getFramebuffer(framebuffer);
if (framebufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
gl::Context *context = gl::getContext();
if (context && program)
{
gl::Program *programObject = context->getProgram(program);
if (programObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsRenderbuffer(GLuint renderbuffer)
{
TRACE("(GLuint renderbuffer = %d)", renderbuffer);
try
{
gl::Context *context = gl::getContext();
if (context && renderbuffer)
{
gl::Renderbuffer *renderbufferObject = context->getRenderbuffer(renderbuffer);
if (renderbufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
gl::Context *context = gl::getContext();
if (context && shader)
{
gl::Shader *shaderObject = context->getShader(shader);
if (shaderObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean __stdcall glIsTexture(GLuint texture)
{
TRACE("(GLuint texture = %d)", texture);
try
{
gl::Context *context = gl::getContext();
if (context && texture)
{
gl::Texture *textureObject = context->getTexture(texture);
if (textureObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
void __stdcall glLineWidth(GLfloat width)
{
TRACE("(GLfloat width = %f)", width);
try
{
if (width <= 0.0f)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setLineWidth(width);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glLinkProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
programObject->link();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glPixelStorei(GLenum pname, GLint param)
{
TRACE("(GLenum pname = 0x%X, GLint param = %d)", pname, param);
try
{
gl::Context *context = gl::getContext();
if (context)
{
switch (pname)
{
case GL_UNPACK_ALIGNMENT:
if (param != 1 && param != 2 && param != 4 && param != 8)
{
return error(GL_INVALID_VALUE);
}
context->setUnpackAlignment(param);
break;
case GL_PACK_ALIGNMENT:
if (param != 1 && param != 2 && param != 4 && param != 8)
{
return error(GL_INVALID_VALUE);
}
context->setPackAlignment(param);
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glPolygonOffset(GLfloat factor, GLfloat units)
{
TRACE("(GLfloat factor = %f, GLfloat units = %f)", factor, units);
try
{
gl::Context *context = gl::getContext();
if (context)
{
context->setPolygonOffsetParams(factor, units);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d, "
"GLenum format = 0x%X, GLenum type = 0x%X, GLvoid* pixels = 0x%0.8p)",
x, y, width, height, format, type, pixels);
try
{
if (width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
break;
default:
return error(GL_INVALID_OPERATION);
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
break;
default:
return error(GL_INVALID_OPERATION);
}
break;
case gl::IMPLEMENTATION_COLOR_READ_FORMAT:
switch (type)
{
case gl::IMPLEMENTATION_COLOR_READ_TYPE:
break;
default:
return error(GL_INVALID_OPERATION);
}
break;
default:
return error(GL_INVALID_OPERATION);
}
gl::Context *context = gl::getContext();
if (context)
{
context->readPixels(x, y, width, height, format, type, pixels);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glReleaseShaderCompiler(void)
{
TRACE("()");
try
{
gl::Shader::releaseCompiler();
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glRenderbufferStorageMultisampleANGLE(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height)
{
TRACE("(GLenum target = 0x%X, GLsizei samples = %d, GLenum internalformat = 0x%X, GLsizei width = %d, GLsizei height = %d)",
target, samples, internalformat, width, height);
try
{
switch (target)
{
case GL_RENDERBUFFER:
break;
default:
return error(GL_INVALID_ENUM);
}
if (!gl::IsColorRenderable(internalformat) && !gl::IsDepthRenderable(internalformat) && !gl::IsStencilRenderable(internalformat))
{
return error(GL_INVALID_ENUM);
}
if (width < 0 || height < 0 || samples < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
if (width > context->getMaximumRenderbufferDimension() ||
height > context->getMaximumRenderbufferDimension() ||
samples > context->getMaxSupportedSamples())
{
return error(GL_INVALID_VALUE);
}
GLuint handle = context->getRenderbufferHandle();
if (handle == 0)
{
return error(GL_INVALID_OPERATION);
}
switch (internalformat)
{
case GL_DEPTH_COMPONENT16:
context->setRenderbufferStorage(new gl::Depthbuffer(width, height, samples));
break;
case GL_RGBA4:
case GL_RGB5_A1:
case GL_RGB565:
case GL_RGB8_OES:
case GL_RGBA8_OES:
context->setRenderbufferStorage(new gl::Colorbuffer(width, height, internalformat, samples));
break;
case GL_STENCIL_INDEX8:
context->setRenderbufferStorage(new gl::Stencilbuffer(width, height, samples));
break;
case GL_DEPTH24_STENCIL8_OES:
context->setRenderbufferStorage(new gl::DepthStencilbuffer(width, height, samples));
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glRenderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)
{
glRenderbufferStorageMultisampleANGLE(target, 0, internalformat, width, height);
}
void __stdcall glSampleCoverage(GLclampf value, GLboolean invert)
{
TRACE("(GLclampf value = %f, GLboolean invert = %d)", value, invert);
try
{
gl::Context* context = gl::getContext();
if (context)
{
context->setSampleCoverageParams(gl::clamp01(value), invert == GL_TRUE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glSetFenceNV(GLuint fence, GLenum condition)
{
TRACE("(GLuint fence = %d, GLenum condition = 0x%X)", fence, condition);
try
{
if (condition != GL_ALL_COMPLETED_NV)
{
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Fence *fenceObject = context->getFence(fence);
if (fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->setFence(condition);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glScissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", x, y, width, height);
try
{
if (width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context* context = gl::getContext();
if (context)
{
context->setScissorParams(x, y, width, height);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glShaderBinary(GLsizei n, const GLuint* shaders, GLenum binaryformat, const GLvoid* binary, GLsizei length)
{
TRACE("(GLsizei n = %d, const GLuint* shaders = 0x%0.8p, GLenum binaryformat = 0x%X, "
"const GLvoid* binary = 0x%0.8p, GLsizei length = %d)",
n, shaders, binaryformat, binary, length);
try
{
// No binary shader formats are supported.
return error(GL_INVALID_ENUM);
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glShaderSource(GLuint shader, GLsizei count, const GLchar** string, const GLint* length)
{
TRACE("(GLuint shader = %d, GLsizei count = %d, const GLchar** string = 0x%0.8p, const GLint* length = 0x%0.8p)",
shader, count, string, length);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Shader *shaderObject = context->getShader(shader);
if (!shaderObject)
{
if (context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
shaderObject->setSource(count, string, length);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glStencilFunc(GLenum func, GLint ref, GLuint mask)
{
glStencilFuncSeparate(GL_FRONT_AND_BACK, func, ref, mask);
}
void __stdcall glStencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
TRACE("(GLenum face = 0x%X, GLenum func = 0x%X, GLint ref = %d, GLuint mask = %d)", face, func, ref, mask);
try
{
switch (face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (func)
{
case GL_NEVER:
case GL_ALWAYS:
case GL_LESS:
case GL_LEQUAL:
case GL_EQUAL:
case GL_GEQUAL:
case GL_GREATER:
case GL_NOTEQUAL:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilParams(func, ref, mask);
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackParams(func, ref, mask);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glStencilMask(GLuint mask)
{
glStencilMaskSeparate(GL_FRONT_AND_BACK, mask);
}
void __stdcall glStencilMaskSeparate(GLenum face, GLuint mask)
{
TRACE("(GLenum face = 0x%X, GLuint mask = %d)", face, mask);
try
{
switch (face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilWritemask(mask);
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackWritemask(mask);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glStencilOp(GLenum fail, GLenum zfail, GLenum zpass)
{
glStencilOpSeparate(GL_FRONT_AND_BACK, fail, zfail, zpass);
}
void __stdcall glStencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)
{
TRACE("(GLenum face = 0x%X, GLenum fail = 0x%X, GLenum zfail = 0x%X, GLenum zpas = 0x%Xs)",
face, fail, zfail, zpass);
try
{
switch (face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (fail)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (zfail)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
switch (zpass)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
gl::Context *context = gl::getContext();
if (context)
{
if (face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilOperations(fail, zfail, zpass);
}
if (face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackOperations(fail, zfail, zpass);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLboolean __stdcall glTestFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Fence *fenceObject = context->getFence(fence);
if (fenceObject == NULL)
{
return error(GL_INVALID_OPERATION, GL_TRUE);
}
return fenceObject->testFence();
}
}
catch(std::bad_alloc&)
{
error(GL_OUT_OF_MEMORY);
}
return GL_TRUE;
}
void __stdcall glTexImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height,
GLint border, GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint internalformat = %d, GLsizei width = %d, GLsizei height = %d, "
"GLint border = %d, GLenum format = 0x%X, GLenum type = 0x%X, const GLvoid* pixels = 0x%0.8p)",
target, level, internalformat, width, height, border, format, type, pixels);
try
{
if (level < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if (level > 0 && (!gl::isPow2(width) || !gl::isPow2(height)))
{
return error(GL_INVALID_VALUE);
}
if (internalformat != format)
{
return error(GL_INVALID_OPERATION);
}
switch (internalformat)
{
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_5_6_5:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: // error cases for compressed textures are handled below
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
break;
default:
return error(GL_INVALID_VALUE);
}
if (border != 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
switch (target)
{
case GL_TEXTURE_2D:
if (width > (context->getMaximumTextureDimension() >> level) ||
height > (context->getMaximumTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if (width != height)
{
return error(GL_INVALID_VALUE);
}
if (width > (context->getMaximumCubeTextureDimension() >> level) ||
height > (context->getMaximumCubeTextureDimension() >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if (internalformat == GL_COMPRESSED_RGB_S3TC_DXT1_EXT ||
internalformat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT)
{
if (context->supportsCompressedTextures())
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_ENUM);
}
}
if (type == GL_FLOAT)
{
if (!context->supportsFloatTextures())
{
return error(GL_INVALID_ENUM);
}
}
else if (type == GL_HALF_FLOAT_OES)
{
if (!context->supportsHalfFloatTextures())
{
return error(GL_INVALID_ENUM);
}
}
if (target == GL_TEXTURE_2D)
{
gl::Texture2D *texture = context->getTexture2D();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->setImage(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
}
else
{
gl::TextureCubeMap *texture = context->getTextureCubeMap();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
switch (target)
{
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
texture->setImagePosX(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
texture->setImageNegX(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
texture->setImagePosY(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
texture->setImageNegY(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
texture->setImagePosZ(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
texture->setImageNegZ(level, internalformat, width, height, format, type, context->getUnpackAlignment(), pixels);
break;
default: UNREACHABLE();
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glTexParameterf(GLenum target, GLenum pname, GLfloat param)
{
glTexParameteri(target, pname, (GLint)param);
}
void __stdcall glTexParameterfv(GLenum target, GLenum pname, const GLfloat* params)
{
glTexParameteri(target, pname, (GLint)*params);
}
void __stdcall glTexParameteri(GLenum target, GLenum pname, GLint param)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint param = %d)", target, pname, param);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Texture *texture;
switch (target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
default:
return error(GL_INVALID_ENUM);
}
switch (pname)
{
case GL_TEXTURE_WRAP_S:
if (!texture->setWrapS((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_WRAP_T:
if (!texture->setWrapT((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MIN_FILTER:
if (!texture->setMinFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MAG_FILTER:
if (!texture->setMagFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glTexParameteriv(GLenum target, GLenum pname, const GLint* params)
{
glTexParameteri(target, pname, *params);
}
void __stdcall glTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLsizei width = %d, GLsizei height = %d, GLenum format = 0x%X, GLenum type = 0x%X, "
"const GLvoid* pixels = 0x%0.8p)",
target, level, xoffset, yoffset, width, height, format, type, pixels);
try
{
if (!gl::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if (level < 0 || xoffset < 0 || yoffset < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if (std::numeric_limits<GLsizei>::max() - xoffset < width || std::numeric_limits<GLsizei>::max() - yoffset < height)
{
return error(GL_INVALID_VALUE);
}
if (!gl::CheckTextureFormatType(format, type))
{
return error(GL_INVALID_ENUM);
}
if (width == 0 || height == 0 || pixels == NULL)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
if (level > context->getMaximumTextureLevel())
{
return error(GL_INVALID_VALUE);
}
if (format == GL_FLOAT)
{
if (!context->supportsFloatTextures())
{
return error(GL_INVALID_ENUM);
}
}
else if (format == GL_HALF_FLOAT_OES)
{
if (!context->supportsHalfFloatTextures())
{
return error(GL_INVALID_ENUM);
}
}
if (target == GL_TEXTURE_2D)
{
gl::Texture2D *texture = context->getTexture2D();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
if (texture->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
if (format != texture->getFormat())
{
return error(GL_INVALID_OPERATION);
}
texture->subImage(level, xoffset, yoffset, width, height, format, type, context->getUnpackAlignment(), pixels);
}
else if (gl::IsCubemapTextureTarget(target))
{
gl::TextureCubeMap *texture = context->getTextureCubeMap();
if (!texture)
{
return error(GL_INVALID_OPERATION);
}
if (texture->isCompressed())
{
return error(GL_INVALID_OPERATION);
}
if (format != texture->getFormat())
{
return error(GL_INVALID_OPERATION);
}
texture->subImage(target, level, xoffset, yoffset, width, height, format, type, context->getUnpackAlignment(), pixels);
}
else
{
UNREACHABLE();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform1f(GLint location, GLfloat x)
{
glUniform1fv(location, 1, &x);
}
void __stdcall glUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform1fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform1i(GLint location, GLint x)
{
glUniform1iv(location, 1, &x);
}
void __stdcall glUniform1iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform1iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform2f(GLint location, GLfloat x, GLfloat y)
{
GLfloat xy[2] = {x, y};
glUniform2fv(location, 1, (GLfloat*)&xy);
}
void __stdcall glUniform2fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform2fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform2i(GLint location, GLint x, GLint y)
{
GLint xy[4] = {x, y};
glUniform2iv(location, 1, (GLint*)&xy);
}
void __stdcall glUniform2iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform2iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform3f(GLint location, GLfloat x, GLfloat y, GLfloat z)
{
GLfloat xyz[3] = {x, y, z};
glUniform3fv(location, 1, (GLfloat*)&xyz);
}
void __stdcall glUniform3fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform3fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform3i(GLint location, GLint x, GLint y, GLint z)
{
GLint xyz[3] = {x, y, z};
glUniform3iv(location, 1, (GLint*)&xyz);
}
void __stdcall glUniform3iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform3iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform4f(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GLfloat xyzw[4] = {x, y, z, w};
glUniform4fv(location, 1, (GLfloat*)&xyzw);
}
void __stdcall glUniform4fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform4fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniform4i(GLint location, GLint x, GLint y, GLint z, GLint w)
{
GLint xyzw[4] = {x, y, z, w};
glUniform4iv(location, 1, (GLint*)&xyzw);
}
void __stdcall glUniform4iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if (count < 0)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniform4iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if (count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniformMatrix2fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if (count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniformMatrix3fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if (count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if (location == -1)
{
return;
}
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *program = context->getCurrentProgram();
if (!program)
{
return error(GL_INVALID_OPERATION);
}
if (!program->setUniformMatrix4fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glUseProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject && program != 0)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if (program != 0 && !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
context->useProgram(program);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glValidateProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
gl::Context *context = gl::getContext();
if (context)
{
gl::Program *programObject = context->getProgram(program);
if (!programObject)
{
if (context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
programObject->validate();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib1f(GLuint index, GLfloat x)
{
TRACE("(GLuint index = %d, GLfloat x = %f)", index, x);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { x, 0, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib1fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { values[0], 0, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib2f(GLuint index, GLfloat x, GLfloat y)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f)", index, x, y);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { x, y, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib2fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { values[0], values[1], 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib3f(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f, GLfloat z = %f)", index, x, y, z);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { x, y, z, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib3fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { values[0], values[1], values[2], 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib4f(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f, GLfloat z = %f, GLfloat w = %f)", index, x, y, z, w);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
GLfloat vals[4] = { x, y, z, w };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttrib4fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setVertexAttrib(index, values);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid* ptr)
{
TRACE("(GLuint index = %d, GLint size = %d, GLenum type = 0x%X, "
"GLboolean normalized = %d, GLsizei stride = %d, const GLvoid* ptr = 0x%0.8p)",
index, size, type, normalized, stride, ptr);
try
{
if (index >= gl::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
if (size < 1 || size > 4)
{
return error(GL_INVALID_VALUE);
}
switch (type)
{
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_FIXED:
case GL_FLOAT:
break;
default:
return error(GL_INVALID_ENUM);
}
if (stride < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setVertexAttribState(index, context->getArrayBuffer(), size, type, (normalized == GL_TRUE), stride, ptr);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glViewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", x, y, width, height);
try
{
if (width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
gl::Context *context = gl::getContext();
if (context)
{
context->setViewportParams(x, y, width, height);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glBlitFramebufferANGLE(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
TRACE("(GLint srcX0 = %d, GLint srcY0 = %d, GLint srcX1 = %d, GLint srcY1 = %d, "
"GLint dstX0 = %d, GLint dstY0 = %d, GLint dstX1 = %d, GLint dstY1 = %d, "
"GLbitfield mask = 0x%X, GLenum filter = 0x%X)",
srcX0, srcY0, srcX1, srcX1, dstX0, dstY0, dstX1, dstY1, mask, filter);
try
{
switch (filter)
{
case GL_NEAREST:
break;
default:
return error(GL_INVALID_ENUM);
}
if ((mask & ~(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) != 0)
{
return error(GL_INVALID_VALUE);
}
if (srcX1 - srcX0 != dstX1 - dstX0 || srcY1 - srcY0 != dstY1 - dstY0)
{
ERR("Scaling and flipping in BlitFramebufferANGLE not supported by this implementation");
return error(GL_INVALID_OPERATION);
}
gl::Context *context = gl::getContext();
if (context)
{
if (context->getReadFramebufferHandle() == context->getDrawFramebufferHandle())
{
ERR("Blits with the same source and destination framebuffer are not supported by this implementation.");
return error(GL_INVALID_OPERATION);
}
context->blitFramebuffer(srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void __stdcall glTexImage3DOES(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth,
GLint border, GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, "
"GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d, GLint border = %d, "
"GLenum format = 0x%X, GLenum type = 0x%x, const GLvoid* pixels = 0x%0.8p)",
target, level, internalformat, width, height, depth, border, format, type, pixels);
try
{
UNIMPLEMENTED(); // FIXME
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
__eglMustCastToProperFunctionPointerType __stdcall glGetProcAddress(const char *procname)
{
struct Extension
{
const char *name;
__eglMustCastToProperFunctionPointerType address;
};
static const Extension glExtensions[] =
{
{"glTexImage3DOES", (__eglMustCastToProperFunctionPointerType)glTexImage3DOES},
{"glBlitFramebufferANGLE", (__eglMustCastToProperFunctionPointerType)glBlitFramebufferANGLE},
{"glRenderbufferStorageMultisampleANGLE", (__eglMustCastToProperFunctionPointerType)glRenderbufferStorageMultisampleANGLE},
{"glDeleteFencesNV", (__eglMustCastToProperFunctionPointerType)glDeleteFencesNV},
{"glGenFencesNV", (__eglMustCastToProperFunctionPointerType)glGenFencesNV},
{"glIsFenceNV", (__eglMustCastToProperFunctionPointerType)glIsFenceNV},
{"glTestFenceNV", (__eglMustCastToProperFunctionPointerType)glTestFenceNV},
{"glGetFenceivNV", (__eglMustCastToProperFunctionPointerType)glGetFenceivNV},
{"glFinishFenceNV", (__eglMustCastToProperFunctionPointerType)glFinishFenceNV},
{"glSetFenceNV", (__eglMustCastToProperFunctionPointerType)glSetFenceNV},
};
for (int ext = 0; ext < sizeof(glExtensions) / sizeof(Extension); ext++)
{
if (strcmp(procname, glExtensions[ext].name) == 0)
{
return (__eglMustCastToProperFunctionPointerType)glExtensions[ext].address;
}
}
return NULL;
}
}