/*
********************************************************************
* COPYRIGHT:
* Copyright (c) 1996-2010, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************
*
* uconv_bld.c:
*
* Defines functions that are used in the creation/initialization/deletion
* of converters and related structures.
* uses uconv_io.h routines to access disk information
* is used by ucnv.h to implement public API create/delete/flushCache routines
* Modification History:
*
* Date Name Description
*
* 06/20/2000 helena OS/400 port changes; mostly typecast.
* 06/29/2000 helena Major rewrite of the callback interface.
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include "unicode/putil.h"
#include "unicode/udata.h"
#include "unicode/ucnv.h"
#include "unicode/uloc.h"
#include "utracimp.h"
#include "ucnv_io.h"
#include "ucnv_bld.h"
#include "ucnvmbcs.h"
#include "ucnv_ext.h"
#include "ucnv_cnv.h"
#include "ucnv_imp.h"
#include "uhash.h"
#include "umutex.h"
#include "cstring.h"
#include "cmemory.h"
#include "ucln_cmn.h"
#include "ustr_cnv.h"
#if 0
#include <stdio.h>
extern void UCNV_DEBUG_LOG(char *what, char *who, void *p, int l);
#define UCNV_DEBUG_LOG(x,y,z) UCNV_DEBUG_LOG(x,y,z,__LINE__)
#else
# define UCNV_DEBUG_LOG(x,y,z)
#endif
static const UConverterSharedData * const
converterData[UCNV_NUMBER_OF_SUPPORTED_CONVERTER_TYPES]={
NULL, NULL,
#if UCONFIG_NO_LEGACY_CONVERSION
NULL,
#else
&_MBCSData,
#endif
&_Latin1Data,
&_UTF8Data, &_UTF16BEData, &_UTF16LEData, &_UTF32BEData, &_UTF32LEData,
NULL,
#if UCONFIG_NO_LEGACY_CONVERSION
NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
NULL,
#else
&_ISO2022Data,
&_LMBCSData1,&_LMBCSData2, &_LMBCSData3, &_LMBCSData4, &_LMBCSData5, &_LMBCSData6,
&_LMBCSData8,&_LMBCSData11,&_LMBCSData16,&_LMBCSData17,&_LMBCSData18,&_LMBCSData19,
&_HZData,
#endif
&_SCSUData,
#if UCONFIG_NO_LEGACY_CONVERSION
NULL,
#else
&_ISCIIData,
#endif
&_ASCIIData,
&_UTF7Data, &_Bocu1Data, &_UTF16Data, &_UTF32Data, &_CESU8Data, &_IMAPData,
&_CompoundTextData
};
/* Please keep this in binary sorted order for getAlgorithmicTypeFromName.
Also the name should be in lower case and all spaces, dashes and underscores
removed
*/
static struct {
const char *name;
const UConverterType type;
} const cnvNameType[] = {
{ "bocu1", UCNV_BOCU1 },
{ "cesu8", UCNV_CESU8 },
#if !UCONFIG_NO_LEGACY_CONVERSION
{ "hz",UCNV_HZ },
#endif
{ "imapmailboxname", UCNV_IMAP_MAILBOX },
#if !UCONFIG_NO_LEGACY_CONVERSION
{ "iscii", UCNV_ISCII },
{ "iso2022", UCNV_ISO_2022 },
#endif
{ "iso88591", UCNV_LATIN_1 },
#if !UCONFIG_NO_LEGACY_CONVERSION
{ "lmbcs1", UCNV_LMBCS_1 },
{ "lmbcs11",UCNV_LMBCS_11 },
{ "lmbcs16",UCNV_LMBCS_16 },
{ "lmbcs17",UCNV_LMBCS_17 },
{ "lmbcs18",UCNV_LMBCS_18 },
{ "lmbcs19",UCNV_LMBCS_19 },
{ "lmbcs2", UCNV_LMBCS_2 },
{ "lmbcs3", UCNV_LMBCS_3 },
{ "lmbcs4", UCNV_LMBCS_4 },
{ "lmbcs5", UCNV_LMBCS_5 },
{ "lmbcs6", UCNV_LMBCS_6 },
{ "lmbcs8", UCNV_LMBCS_8 },
#endif
{ "scsu", UCNV_SCSU },
{ "usascii", UCNV_US_ASCII },
{ "utf16", UCNV_UTF16 },
{ "utf16be", UCNV_UTF16_BigEndian },
{ "utf16le", UCNV_UTF16_LittleEndian },
#if U_IS_BIG_ENDIAN
{ "utf16oppositeendian", UCNV_UTF16_LittleEndian },
{ "utf16platformendian", UCNV_UTF16_BigEndian },
#else
{ "utf16oppositeendian", UCNV_UTF16_BigEndian},
{ "utf16platformendian", UCNV_UTF16_LittleEndian },
#endif
{ "utf32", UCNV_UTF32 },
{ "utf32be", UCNV_UTF32_BigEndian },
{ "utf32le", UCNV_UTF32_LittleEndian },
#if U_IS_BIG_ENDIAN
{ "utf32oppositeendian", UCNV_UTF32_LittleEndian },
{ "utf32platformendian", UCNV_UTF32_BigEndian },
#else
{ "utf32oppositeendian", UCNV_UTF32_BigEndian },
{ "utf32platformendian", UCNV_UTF32_LittleEndian },
#endif
{ "utf7", UCNV_UTF7 },
{ "utf8", UCNV_UTF8 },
{ "x11compoundtext", UCNV_COMPOUND_TEXT}
};
/*initializes some global variables */
static UHashtable *SHARED_DATA_HASHTABLE = NULL;
static UMTX cnvCacheMutex = NULL; /* Mutex for synchronizing cnv cache access. */
/* Note: the global mutex is used for */
/* reference count updates. */
static const char **gAvailableConverters = NULL;
static uint16_t gAvailableConverterCount = 0;
#if !U_CHARSET_IS_UTF8
/* This contains the resolved converter name. So no further alias lookup is needed again. */
static char gDefaultConverterNameBuffer[UCNV_MAX_CONVERTER_NAME_LENGTH + 1]; /* +1 for NULL */
static const char *gDefaultConverterName = NULL;
/*
If the default converter is an algorithmic converter, this is the cached value.
We don't cache a full UConverter and clone it because ucnv_clone doesn't have
less overhead than an algorithmic open. We don't cache non-algorithmic converters
because ucnv_flushCache must be able to unload the default converter and its table.
*/
static const UConverterSharedData *gDefaultAlgorithmicSharedData = NULL;
/* Does gDefaultConverterName have a converter option and require extra parsing? */
static UBool gDefaultConverterContainsOption;
#endif /* !U_CHARSET_IS_UTF8 */
static const char DATA_TYPE[] = "cnv";
static void
ucnv_flushAvailableConverterCache() {
if (gAvailableConverters) {
umtx_lock(&cnvCacheMutex);
gAvailableConverterCount = 0;
uprv_free((char **)gAvailableConverters);
gAvailableConverters = NULL;
umtx_unlock(&cnvCacheMutex);
}
}
/* ucnv_cleanup - delete all storage held by the converter cache, except any */
/* in use by open converters. */
/* Not thread safe. */
/* Not supported API. */
static UBool U_CALLCONV ucnv_cleanup(void) {
ucnv_flushCache();
if (SHARED_DATA_HASHTABLE != NULL && uhash_count(SHARED_DATA_HASHTABLE) == 0) {
uhash_close(SHARED_DATA_HASHTABLE);
SHARED_DATA_HASHTABLE = NULL;
}
/* Isn't called from flushCache because other threads may have preexisting references to the table. */
ucnv_flushAvailableConverterCache();
#if !U_CHARSET_IS_UTF8
gDefaultConverterName = NULL;
gDefaultConverterNameBuffer[0] = 0;
gDefaultConverterContainsOption = FALSE;
gDefaultAlgorithmicSharedData = NULL;
#endif
umtx_destroy(&cnvCacheMutex); /* Don't worry about destroying the mutex even */
/* if the hash table still exists. The mutex */
/* will lazily re-init itself if needed. */
return (SHARED_DATA_HASHTABLE == NULL);
}
static UBool U_CALLCONV
isCnvAcceptable(void *context,
const char *type, const char *name,
const UDataInfo *pInfo) {
return (UBool)(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->sizeofUChar==U_SIZEOF_UCHAR &&
pInfo->dataFormat[0]==0x63 && /* dataFormat="cnvt" */
pInfo->dataFormat[1]==0x6e &&
pInfo->dataFormat[2]==0x76 &&
pInfo->dataFormat[3]==0x74 &&
pInfo->formatVersion[0]==6); /* Everything will be version 6 */
}
/**
* Un flatten shared data from a UDATA..
*/
static UConverterSharedData*
ucnv_data_unFlattenClone(UConverterLoadArgs *pArgs, UDataMemory *pData, UErrorCode *status)
{
/* UDataInfo info; -- necessary only if some converters have different formatVersion */
const uint8_t *raw = (const uint8_t *)udata_getMemory(pData);
const UConverterStaticData *source = (const UConverterStaticData *) raw;
UConverterSharedData *data;
UConverterType type = (UConverterType)source->conversionType;
if(U_FAILURE(*status))
return NULL;
if( (uint16_t)type >= UCNV_NUMBER_OF_SUPPORTED_CONVERTER_TYPES ||
converterData[type] == NULL ||
converterData[type]->referenceCounter != 1 ||
source->structSize != sizeof(UConverterStaticData))
{
*status = U_INVALID_TABLE_FORMAT;
return NULL;
}
data = (UConverterSharedData *)uprv_malloc(sizeof(UConverterSharedData));
if(data == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
/* copy initial values from the static structure for this type */
uprv_memcpy(data, converterData[type], sizeof(UConverterSharedData));
#if 0 /* made UConverterMBCSTable part of UConverterSharedData -- markus 20031107 */
/*
* It would be much more efficient if the table were a direct member, not a pointer.
* However, that would add to the size of all UConverterSharedData objects
* even if they do not use this table (especially algorithmic ones).
* If this changes, then the static templates from converterData[type]
* need more entries.
*
* In principle, it would be cleaner if the load() function below
* allocated the table.
*/
data->table = (UConverterTable *)uprv_malloc(sizeof(UConverterTable));
if(data->table == NULL) {
uprv_free(data);
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(data->table, 0, sizeof(UConverterTable));
#endif
data->staticData = source;
data->sharedDataCached = FALSE;
/* fill in fields from the loaded data */
data->dataMemory = (void*)pData; /* for future use */
if(data->impl->load != NULL) {
data->impl->load(data, pArgs, raw + source->structSize, status);
if(U_FAILURE(*status)) {
uprv_free(data->table);
uprv_free(data);
return NULL;
}
}
return data;
}
/*Takes an alias name gets an actual converter file name
*goes to disk and opens it.
*allocates the memory and returns a new UConverter object
*/
static UConverterSharedData *createConverterFromFile(UConverterLoadArgs *pArgs, UErrorCode * err)
{
UDataMemory *data;
UConverterSharedData *sharedData;
UTRACE_ENTRY_OC(UTRACE_UCNV_LOAD);
if (U_FAILURE (*err)) {
UTRACE_EXIT_STATUS(*err);
return NULL;
}
UTRACE_DATA2(UTRACE_OPEN_CLOSE, "load converter %s from package %s", pArgs->name, pArgs->pkg);
data = udata_openChoice(pArgs->pkg, DATA_TYPE, pArgs->name, isCnvAcceptable, NULL, err);
if(U_FAILURE(*err))
{
UTRACE_EXIT_STATUS(*err);
return NULL;
}
sharedData = ucnv_data_unFlattenClone(pArgs, data, err);
if(U_FAILURE(*err))
{
udata_close(data);
UTRACE_EXIT_STATUS(*err);
return NULL;
}
/*
* TODO Store pkg in a field in the shared data so that delta-only converters
* can load base converters from the same package.
* If the pkg name is longer than the field, then either do not load the converter
* in the first place, or just set the pkg field to "".
*/
UTRACE_EXIT_PTR_STATUS(sharedData, *err);
return sharedData;
}
/*returns a converter type from a string
*/
static const UConverterSharedData *
getAlgorithmicTypeFromName(const char *realName)
{
uint32_t mid, start, limit;
uint32_t lastMid;
int result;
char strippedName[UCNV_MAX_CONVERTER_NAME_LENGTH];
/* Lower case and remove ignoreable characters. */
ucnv_io_stripForCompare(strippedName, realName);
/* do a binary search for the alias */
start = 0;
limit = sizeof(cnvNameType)/sizeof(cnvNameType[0]);
mid = limit;
lastMid = UINT32_MAX;
for (;;) {
mid = (uint32_t)((start + limit) / 2);
if (lastMid == mid) { /* Have we moved? */
break; /* We haven't moved, and it wasn't found. */
}
lastMid = mid;
result = uprv_strcmp(strippedName, cnvNameType[mid].name);
if (result < 0) {
limit = mid;
} else if (result > 0) {
start = mid;
} else {
return converterData[cnvNameType[mid].type];
}
}
return NULL;
}
/*
* Based on the number of known converters, this determines how many times larger
* the shared data hash table should be. When on small platforms, or just a couple
* of converters are used, this number should be 2. When memory is plentiful, or
* when ucnv_countAvailable is ever used with a lot of available converters,
* this should be 4.
* Larger numbers reduce the number of hash collisions, but use more memory.
*/
#define UCNV_CACHE_LOAD_FACTOR 2
/* Puts the shared data in the static hashtable SHARED_DATA_HASHTABLE */
/* Will always be called with the cnvCacheMutex alrady being held */
/* by the calling function. */
/* Stores the shared data in the SHARED_DATA_HASHTABLE
* @param data The shared data
*/
static void
ucnv_shareConverterData(UConverterSharedData * data)
{
UErrorCode err = U_ZERO_ERROR;
/*Lazy evaluates the Hashtable itself */
/*void *sanity = NULL;*/
if (SHARED_DATA_HASHTABLE == NULL)
{
SHARED_DATA_HASHTABLE = uhash_openSize(uhash_hashChars, uhash_compareChars, NULL,
ucnv_io_countKnownConverters(&err)*UCNV_CACHE_LOAD_FACTOR,
&err);
ucln_common_registerCleanup(UCLN_COMMON_UCNV, ucnv_cleanup);
if (U_FAILURE(err))
return;
}
/* ### check to see if the element is not already there! */
/*
sanity = ucnv_getSharedConverterData (data->staticData->name);
if(sanity != NULL)
{
UCNV_DEBUG_LOG("put:overwrite!",data->staticData->name,sanity);
}
UCNV_DEBUG_LOG("put:chk",data->staticData->name,sanity);
*/
/* Mark it shared */
data->sharedDataCached = TRUE;
uhash_put(SHARED_DATA_HASHTABLE,
(void*) data->staticData->name, /* Okay to cast away const as long as
keyDeleter == NULL */
data,
&err);
UCNV_DEBUG_LOG("put", data->staticData->name,data);
}
/* Look up a converter name in the shared data cache. */
/* cnvCacheMutex must be held by the caller to protect the hash table. */
/* gets the shared data from the SHARED_DATA_HASHTABLE (might return NULL if it isn't there)
* @param name The name of the shared data
* @return the shared data from the SHARED_DATA_HASHTABLE
*/
static UConverterSharedData *
ucnv_getSharedConverterData(const char *name)
{
/*special case when no Table has yet been created we return NULL */
if (SHARED_DATA_HASHTABLE == NULL)
{
return NULL;
}
else
{
UConverterSharedData *rc;
rc = (UConverterSharedData*)uhash_get(SHARED_DATA_HASHTABLE, name);
UCNV_DEBUG_LOG("get",name,rc);
return rc;
}
}
/*frees the string of memory blocks associates with a sharedConverter
*if and only if the referenceCounter == 0
*/
/* Deletes (frees) the Shared data it's passed. first it checks the referenceCounter to
* see if anyone is using it, if not it frees all the memory stemming from sharedConverterData and
* returns TRUE,
* otherwise returns FALSE
* @param sharedConverterData The shared data
* @return if not it frees all the memory stemming from sharedConverterData and
* returns TRUE, otherwise returns FALSE
*/
static UBool
ucnv_deleteSharedConverterData(UConverterSharedData * deadSharedData)
{
UTRACE_ENTRY_OC(UTRACE_UCNV_UNLOAD);
UTRACE_DATA2(UTRACE_OPEN_CLOSE, "unload converter %s shared data %p", deadSharedData->staticData->name, deadSharedData);
if (deadSharedData->referenceCounter > 0) {
UTRACE_EXIT_VALUE((int32_t)FALSE);
return FALSE;
}
if (deadSharedData->impl->unload != NULL) {
deadSharedData->impl->unload(deadSharedData);
}
if(deadSharedData->dataMemory != NULL)
{
UDataMemory *data = (UDataMemory*)deadSharedData->dataMemory;
udata_close(data);
}
if(deadSharedData->table != NULL)
{
uprv_free(deadSharedData->table);
}
#if 0
/* if the static data is actually owned by the shared data */
/* enable if we ever have this situation. */
if(deadSharedData->staticDataOwned == TRUE) /* see ucnv_bld.h */
{
uprv_free((void*)deadSharedData->staticData);
}
#endif
#if 0
/* Zap it ! */
uprv_memset(deadSharedData->0, sizeof(*deadSharedData));
#endif
uprv_free(deadSharedData);
UTRACE_EXIT_VALUE((int32_t)TRUE);
return TRUE;
}
/**
* Load a non-algorithmic converter.
* If pkg==NULL, then this function must be called inside umtx_lock(&cnvCacheMutex).
*/
UConverterSharedData *
ucnv_load(UConverterLoadArgs *pArgs, UErrorCode *err) {
UConverterSharedData *mySharedConverterData;
if(err == NULL || U_FAILURE(*err)) {
return NULL;
}
if(pArgs->pkg != NULL && *pArgs->pkg != 0) {
/* application-provided converters are not currently cached */
return createConverterFromFile(pArgs, err);
}
mySharedConverterData = ucnv_getSharedConverterData(pArgs->name);
if (mySharedConverterData == NULL)
{
/*Not cached, we need to stream it in from file */
mySharedConverterData = createConverterFromFile(pArgs, err);
if (U_FAILURE (*err) || (mySharedConverterData == NULL))
{
return NULL;
}
else if (!pArgs->onlyTestIsLoadable)
{
/* share it with other library clients */
ucnv_shareConverterData(mySharedConverterData);
}
}
else
{
/* The data for this converter was already in the cache. */
/* Update the reference counter on the shared data: one more client */
mySharedConverterData->referenceCounter++;
}
return mySharedConverterData;
}
/**
* Unload a non-algorithmic converter.
* It must be sharedData->referenceCounter != ~0
* and this function must be called inside umtx_lock(&cnvCacheMutex).
*/
void
ucnv_unload(UConverterSharedData *sharedData) {
if(sharedData != NULL) {
if (sharedData->referenceCounter > 0) {
sharedData->referenceCounter--;
}
if((sharedData->referenceCounter <= 0)&&(sharedData->sharedDataCached == FALSE)) {
ucnv_deleteSharedConverterData(sharedData);
}
}
}
void
ucnv_unloadSharedDataIfReady(UConverterSharedData *sharedData)
{
/*
Checking whether it's an algorithic converter is okay
in multithreaded applications because the value never changes.
Don't check referenceCounter for any other value.
*/
if(sharedData != NULL && sharedData->referenceCounter != ~0) {
umtx_lock(&cnvCacheMutex);
ucnv_unload(sharedData);
umtx_unlock(&cnvCacheMutex);
}
}
void
ucnv_incrementRefCount(UConverterSharedData *sharedData)
{
/*
Checking whether it's an algorithic converter is okay
in multithreaded applications because the value never changes.
Don't check referenceCounter for any other value.
*/
if(sharedData != NULL && sharedData->referenceCounter != ~0) {
umtx_lock(&cnvCacheMutex);
sharedData->referenceCounter++;
umtx_unlock(&cnvCacheMutex);
}
}
/*
* *pPieces must be initialized.
* The name without options will be copied to pPieces->cnvName.
* The locale and options will be copied to pPieces only if present in inName,
* otherwise the existing values in pPieces remain.
* *pArgs will be set to the pPieces values.
*/
static void
parseConverterOptions(const char *inName,
UConverterNamePieces *pPieces,
UConverterLoadArgs *pArgs,
UErrorCode *err)
{
char *cnvName = pPieces->cnvName;
char c;
int32_t len = 0;
pArgs->name=inName;
pArgs->locale=pPieces->locale;
pArgs->options=pPieces->options;
/* copy the converter name itself to cnvName */
while((c=*inName)!=0 && c!=UCNV_OPTION_SEP_CHAR) {
if (++len>=UCNV_MAX_CONVERTER_NAME_LENGTH) {
*err = U_ILLEGAL_ARGUMENT_ERROR; /* bad name */
pPieces->cnvName[0]=0;
return;
}
*cnvName++=c;
inName++;
}
*cnvName=0;
pArgs->name=pPieces->cnvName;
/* parse options. No more name copying should occur. */
while((c=*inName)!=0) {
if(c==UCNV_OPTION_SEP_CHAR) {
++inName;
}
/* inName is behind an option separator */
if(uprv_strncmp(inName, "locale=", 7)==0) {
/* do not modify locale itself in case we have multiple locale options */
char *dest=pPieces->locale;
/* copy the locale option value */
inName+=7;
len=0;
while((c=*inName)!=0 && c!=UCNV_OPTION_SEP_CHAR) {
++inName;
if(++len>=ULOC_FULLNAME_CAPACITY) {
*err=U_ILLEGAL_ARGUMENT_ERROR; /* bad name */
pPieces->locale[0]=0;
return;
}
*dest++=c;
}
*dest=0;
} else if(uprv_strncmp(inName, "version=", 8)==0) {
/* copy the version option value into bits 3..0 of pPieces->options */
inName+=8;
c=*inName;
if(c==0) {
pArgs->options=(pPieces->options&=~UCNV_OPTION_VERSION);
return;
} else if((uint8_t)(c-'0')<10) {
pArgs->options=pPieces->options=(pPieces->options&~UCNV_OPTION_VERSION)|(uint32_t)(c-'0');
++inName;
}
} else if(uprv_strncmp(inName, "swaplfnl", 8)==0) {
inName+=8;
pArgs->options=(pPieces->options|=UCNV_OPTION_SWAP_LFNL);
/* add processing for new options here with another } else if(uprv_strncmp(inName, "option-name=", XX)==0) { */
} else {
/* ignore any other options until we define some */
while(((c = *inName++) != 0) && (c != UCNV_OPTION_SEP_CHAR)) {
}
if(c==0) {
return;
}
}
}
}
/*Logic determines if the converter is Algorithmic AND/OR cached
*depending on that:
* -we either go to get data from disk and cache it (Data=TRUE, Cached=False)
* -Get it from a Hashtable (Data=X, Cached=TRUE)
* -Call dataConverter initializer (Data=TRUE, Cached=TRUE)
* -Call AlgorithmicConverter initializer (Data=FALSE, Cached=TRUE)
*/
UConverterSharedData *
ucnv_loadSharedData(const char *converterName,
UConverterNamePieces *pPieces,
UConverterLoadArgs *pArgs,
UErrorCode * err) {
UConverterNamePieces stackPieces;
UConverterLoadArgs stackArgs;
UConverterSharedData *mySharedConverterData = NULL;
UErrorCode internalErrorCode = U_ZERO_ERROR;
UBool mayContainOption = TRUE;
UBool checkForAlgorithmic = TRUE;
if (U_FAILURE (*err)) {
return NULL;
}
if(pPieces == NULL) {
if(pArgs != NULL) {
/*
* Bad: We may set pArgs pointers to stackPieces fields
* which will be invalid after this function returns.
*/
*err = U_INTERNAL_PROGRAM_ERROR;
return NULL;
}
pPieces = &stackPieces;
}
if(pArgs == NULL) {
uprv_memset(&stackArgs, 0, sizeof(stackArgs));
stackArgs.size = (int32_t)sizeof(stackArgs);
pArgs = &stackArgs;
}
pPieces->cnvName[0] = 0;
pPieces->locale[0] = 0;
pPieces->options = 0;
pArgs->name = converterName;
pArgs->locale = pPieces->locale;
pArgs->options = pPieces->options;
/* In case "name" is NULL we want to open the default converter. */
if (converterName == NULL) {
#if U_CHARSET_IS_UTF8
pArgs->name = "UTF-8";
return (UConverterSharedData *)converterData[UCNV_UTF8];
#else
/* Call ucnv_getDefaultName first to query the name from the OS. */
pArgs->name = ucnv_getDefaultName();
if (pArgs->name == NULL) {
*err = U_MISSING_RESOURCE_ERROR;
return NULL;
}
mySharedConverterData = (UConverterSharedData *)gDefaultAlgorithmicSharedData;
checkForAlgorithmic = FALSE;
mayContainOption = gDefaultConverterContainsOption;
/* the default converter name is already canonical */
#endif
}
else if(UCNV_FAST_IS_UTF8(converterName)) {
/* fastpath for UTF-8 */
pArgs->name = "UTF-8";
return (UConverterSharedData *)converterData[UCNV_UTF8];
}
else {
/* separate the converter name from the options */
parseConverterOptions(converterName, pPieces, pArgs, err);
if (U_FAILURE(*err)) {
/* Very bad name used. */
return NULL;
}
/* get the canonical converter name */
pArgs->name = ucnv_io_getConverterName(pArgs->name, &mayContainOption, &internalErrorCode);
if (U_FAILURE(internalErrorCode) || pArgs->name == NULL) {
/*
* set the input name in case the converter was added
* without updating the alias table, or when there is no alias table
*/
pArgs->name = pPieces->cnvName;
}
}
/* separate the converter name from the options */
if(mayContainOption && pArgs->name != pPieces->cnvName) {
parseConverterOptions(pArgs->name, pPieces, pArgs, err);
}
/* get the shared data for an algorithmic converter, if it is one */
if (checkForAlgorithmic) {
mySharedConverterData = (UConverterSharedData *)getAlgorithmicTypeFromName(pArgs->name);
}
if (mySharedConverterData == NULL)
{
/* it is a data-based converter, get its shared data. */
/* Hold the cnvCacheMutex through the whole process of checking the */
/* converter data cache, and adding new entries to the cache */
/* to prevent other threads from modifying the cache during the */
/* process. */
pArgs->nestedLoads=1;
pArgs->pkg=NULL;
umtx_lock(&cnvCacheMutex);
mySharedConverterData = ucnv_load(pArgs, err);
umtx_unlock(&cnvCacheMutex);
if (U_FAILURE (*err) || (mySharedConverterData == NULL))
{
return NULL;
}
}
return mySharedConverterData;
}
UConverter *
ucnv_createConverter(UConverter *myUConverter, const char *converterName, UErrorCode * err)
{
UConverterNamePieces stackPieces;
UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
UConverterSharedData *mySharedConverterData;
UTRACE_ENTRY_OC(UTRACE_UCNV_OPEN);
if(U_SUCCESS(*err)) {
UTRACE_DATA1(UTRACE_OPEN_CLOSE, "open converter %s", converterName);
mySharedConverterData = ucnv_loadSharedData(converterName, &stackPieces, &stackArgs, err);
myUConverter = ucnv_createConverterFromSharedData(
myUConverter, mySharedConverterData,
&stackArgs,
err);
if(U_SUCCESS(*err)) {
UTRACE_EXIT_PTR_STATUS(myUConverter, *err);
return myUConverter;
}
}
/* exit with error */
UTRACE_EXIT_STATUS(*err);
return NULL;
}
U_CFUNC UBool
ucnv_canCreateConverter(const char *converterName, UErrorCode *err) {
UConverter myUConverter;
UConverterNamePieces stackPieces;
UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
UConverterSharedData *mySharedConverterData;
UTRACE_ENTRY_OC(UTRACE_UCNV_OPEN);
if(U_SUCCESS(*err)) {
UTRACE_DATA1(UTRACE_OPEN_CLOSE, "test if can open converter %s", converterName);
stackArgs.onlyTestIsLoadable=TRUE;
mySharedConverterData = ucnv_loadSharedData(converterName, &stackPieces, &stackArgs, err);
ucnv_createConverterFromSharedData(
&myUConverter, mySharedConverterData,
&stackArgs,
err);
ucnv_unloadSharedDataIfReady(mySharedConverterData);
}
UTRACE_EXIT_STATUS(*err);
return U_SUCCESS(*err);
}
UConverter *
ucnv_createAlgorithmicConverter(UConverter *myUConverter,
UConverterType type,
const char *locale, uint32_t options,
UErrorCode *err) {
UConverter *cnv;
const UConverterSharedData *sharedData;
UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
UTRACE_ENTRY_OC(UTRACE_UCNV_OPEN_ALGORITHMIC);
UTRACE_DATA1(UTRACE_OPEN_CLOSE, "open algorithmic converter type %d", (int32_t)type);
if(type<0 || UCNV_NUMBER_OF_SUPPORTED_CONVERTER_TYPES<=type) {
*err = U_ILLEGAL_ARGUMENT_ERROR;
UTRACE_EXIT_STATUS(U_ILLEGAL_ARGUMENT_ERROR);
return NULL;
}
sharedData = converterData[type];
/*
Checking whether it's an algorithic converter is okay
in multithreaded applications because the value never changes.
Don't check referenceCounter for any other value.
*/
if(sharedData == NULL || sharedData->referenceCounter != ~0) {
/* not a valid type, or not an algorithmic converter */
*err = U_ILLEGAL_ARGUMENT_ERROR;
UTRACE_EXIT_STATUS(U_ILLEGAL_ARGUMENT_ERROR);
return NULL;
}
stackArgs.name = "";
stackArgs.options = options;
stackArgs.locale=locale;
cnv = ucnv_createConverterFromSharedData(
myUConverter, (UConverterSharedData *)sharedData,
&stackArgs, err);
UTRACE_EXIT_PTR_STATUS(cnv, *err);
return cnv;
}
UConverter*
ucnv_createConverterFromPackage(const char *packageName, const char *converterName, UErrorCode * err)
{
UConverter *myUConverter;
UConverterSharedData *mySharedConverterData;
UConverterNamePieces stackPieces;
UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
UTRACE_ENTRY_OC(UTRACE_UCNV_OPEN_PACKAGE);
if(U_FAILURE(*err)) {
UTRACE_EXIT_STATUS(*err);
return NULL;
}
UTRACE_DATA2(UTRACE_OPEN_CLOSE, "open converter %s from package %s", converterName, packageName);
/* first, get the options out of the converterName string */
stackPieces.cnvName[0] = 0;
stackPieces.locale[0] = 0;
stackPieces.options = 0;
parseConverterOptions(converterName, &stackPieces, &stackArgs, err);
if (U_FAILURE(*err)) {
/* Very bad name used. */
UTRACE_EXIT_STATUS(*err);
return NULL;
}
stackArgs.nestedLoads=1;
stackArgs.pkg=packageName;
/* open the data, unflatten the shared structure */
mySharedConverterData = createConverterFromFile(&stackArgs, err);
if (U_FAILURE(*err)) {
UTRACE_EXIT_STATUS(*err);
return NULL;
}
/* create the actual converter */
myUConverter = ucnv_createConverterFromSharedData(NULL, mySharedConverterData, &stackArgs, err);
if (U_FAILURE(*err)) {
ucnv_close(myUConverter);
UTRACE_EXIT_STATUS(*err);
return NULL;
}
UTRACE_EXIT_PTR_STATUS(myUConverter, *err);
return myUConverter;
}
UConverter*
ucnv_createConverterFromSharedData(UConverter *myUConverter,
UConverterSharedData *mySharedConverterData,
UConverterLoadArgs *pArgs,
UErrorCode *err)
{
UBool isCopyLocal;
if(U_FAILURE(*err)) {
ucnv_unloadSharedDataIfReady(mySharedConverterData);
return myUConverter;
}
if(myUConverter == NULL)
{
myUConverter = (UConverter *) uprv_malloc (sizeof (UConverter));
if(myUConverter == NULL)
{
*err = U_MEMORY_ALLOCATION_ERROR;
ucnv_unloadSharedDataIfReady(mySharedConverterData);
return NULL;
}
isCopyLocal = FALSE;
} else {
isCopyLocal = TRUE;
}
/* initialize the converter */
uprv_memset(myUConverter, 0, sizeof(UConverter));
myUConverter->isCopyLocal = isCopyLocal;
/*myUConverter->isExtraLocal = FALSE;*/ /* Set by the memset call */
myUConverter->sharedData = mySharedConverterData;
myUConverter->options = pArgs->options;
if(!pArgs->onlyTestIsLoadable) {
myUConverter->preFromUFirstCP = U_SENTINEL;
myUConverter->fromCharErrorBehaviour = UCNV_TO_U_DEFAULT_CALLBACK;
myUConverter->fromUCharErrorBehaviour = UCNV_FROM_U_DEFAULT_CALLBACK;
myUConverter->toUnicodeStatus = mySharedConverterData->toUnicodeStatus;
myUConverter->maxBytesPerUChar = mySharedConverterData->staticData->maxBytesPerChar;
myUConverter->subChar1 = mySharedConverterData->staticData->subChar1;
myUConverter->subCharLen = mySharedConverterData->staticData->subCharLen;
myUConverter->subChars = (uint8_t *)myUConverter->subUChars;
uprv_memcpy(myUConverter->subChars, mySharedConverterData->staticData->subChar, myUConverter->subCharLen);
myUConverter->toUCallbackReason = UCNV_ILLEGAL; /* default reason to invoke (*fromCharErrorBehaviour) */
}
if(mySharedConverterData->impl->open != NULL) {
mySharedConverterData->impl->open(myUConverter, pArgs, err);
if(U_FAILURE(*err) && !pArgs->onlyTestIsLoadable) {
/* don't ucnv_close() if onlyTestIsLoadable because not fully initialized */
ucnv_close(myUConverter);
return NULL;
}
}
return myUConverter;
}
/*Frees all shared immutable objects that aren't referred to (reference count = 0)
*/
U_CAPI int32_t U_EXPORT2
ucnv_flushCache ()
{
UConverterSharedData *mySharedData = NULL;
int32_t pos;
int32_t tableDeletedNum = 0;
const UHashElement *e;
/*UErrorCode status = U_ILLEGAL_ARGUMENT_ERROR;*/
int32_t i, remaining;
UTRACE_ENTRY_OC(UTRACE_UCNV_FLUSH_CACHE);
/* Close the default converter without creating a new one so that everything will be flushed. */
u_flushDefaultConverter();
/*if shared data hasn't even been lazy evaluated yet
* return 0
*/
if (SHARED_DATA_HASHTABLE == NULL) {
UTRACE_EXIT_VALUE((int32_t)0);
return 0;
}
/*creates an enumeration to iterate through every element in the
* table
*
* Synchronization: holding cnvCacheMutex will prevent any other thread from
* accessing or modifying the hash table during the iteration.
* The reference count of an entry may be decremented by
* ucnv_close while the iteration is in process, but this is
* benign. It can't be incremented (in ucnv_createConverter())
* because the sequence of looking up in the cache + incrementing
* is protected by cnvCacheMutex.
*/
umtx_lock(&cnvCacheMutex);
/*
* double loop: A delta/extension-only converter has a pointer to its base table's
* shared data; the first iteration of the outer loop may see the delta converter
* before the base converter, and unloading the delta converter may get the base
* converter's reference counter down to 0.
*/
i = 0;
do {
remaining = 0;
pos = -1;
while ((e = uhash_nextElement (SHARED_DATA_HASHTABLE, &pos)) != NULL)
{
mySharedData = (UConverterSharedData *) e->value.pointer;
/*deletes only if reference counter == 0 */
if (mySharedData->referenceCounter == 0)
{
tableDeletedNum++;
UCNV_DEBUG_LOG("del",mySharedData->staticData->name,mySharedData);
uhash_removeElement(SHARED_DATA_HASHTABLE, e);
mySharedData->sharedDataCached = FALSE;
ucnv_deleteSharedConverterData (mySharedData);
} else {
++remaining;
}
}
} while(++i == 1 && remaining > 0);
umtx_unlock(&cnvCacheMutex);
UTRACE_DATA1(UTRACE_INFO, "ucnv_flushCache() exits with %d converters remaining", remaining);
UTRACE_EXIT_VALUE(tableDeletedNum);
return tableDeletedNum;
}
/* available converters list --------------------------------------------------- */
static UBool haveAvailableConverterList(UErrorCode *pErrorCode) {
int needInit;
UMTX_CHECK(&cnvCacheMutex, (gAvailableConverters == NULL), needInit);
if (needInit) {
UConverter tempConverter;
UEnumeration *allConvEnum = NULL;
uint16_t idx;
uint16_t localConverterCount;
uint16_t allConverterCount;
UErrorCode localStatus;
const char *converterName;
const char **localConverterList;
allConvEnum = ucnv_openAllNames(pErrorCode);
allConverterCount = uenum_count(allConvEnum, pErrorCode);
if (U_FAILURE(*pErrorCode)) {
return FALSE;
}
/* We can't have more than "*converterTable" converters to open */
localConverterList = (const char **) uprv_malloc(allConverterCount * sizeof(char*));
if (!localConverterList) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
/* Open the default converter to make sure that it has first dibs in the hash table. */
localStatus = U_ZERO_ERROR;
ucnv_close(ucnv_createConverter(&tempConverter, NULL, &localStatus));
localConverterCount = 0;
for (idx = 0; idx < allConverterCount; idx++) {
localStatus = U_ZERO_ERROR;
converterName = uenum_next(allConvEnum, NULL, &localStatus);
if (ucnv_canCreateConverter(converterName, &localStatus)) {
localConverterList[localConverterCount++] = converterName;
}
}
uenum_close(allConvEnum);
umtx_lock(&cnvCacheMutex);
if (gAvailableConverters == NULL) {
gAvailableConverterCount = localConverterCount;
gAvailableConverters = localConverterList;
ucln_common_registerCleanup(UCLN_COMMON_UCNV, ucnv_cleanup);
}
else {
uprv_free((char **)localConverterList);
}
umtx_unlock(&cnvCacheMutex);
}
return TRUE;
}
U_CFUNC uint16_t
ucnv_bld_countAvailableConverters(UErrorCode *pErrorCode) {
if (haveAvailableConverterList(pErrorCode)) {
return gAvailableConverterCount;
}
return 0;
}
U_CFUNC const char *
ucnv_bld_getAvailableConverter(uint16_t n, UErrorCode *pErrorCode) {
if (haveAvailableConverterList(pErrorCode)) {
if (n < gAvailableConverterCount) {
return gAvailableConverters[n];
}
*pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR;
}
return NULL;
}
/* default converter name --------------------------------------------------- */
#if !U_CHARSET_IS_UTF8
/*
Copy the canonical converter name.
ucnv_getDefaultName must be thread safe, which can call this function.
ucnv_setDefaultName calls this function and it doesn't have to be
thread safe because there is no reliable/safe way to reset the
converter in use in all threads. If you did reset the converter, you
would not be sure that retrieving a default converter for one string
would be the same type of default converter for a successive string.
Since the name is a returned via ucnv_getDefaultName without copying,
you shouldn't be modifying or deleting the string from a separate thread.
*/
static U_INLINE void
internalSetName(const char *name, UErrorCode *status) {
UConverterNamePieces stackPieces;
UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
int32_t length=(int32_t)(uprv_strlen(name));
UBool containsOption = (UBool)(uprv_strchr(name, UCNV_OPTION_SEP_CHAR) != NULL);
const UConverterSharedData *algorithmicSharedData;
stackArgs.name = name;
if(containsOption) {
stackPieces.cnvName[0] = 0;
stackPieces.locale[0] = 0;
stackPieces.options = 0;
parseConverterOptions(name, &stackPieces, &stackArgs, status);
if(U_FAILURE(*status)) {
return;
}
}
algorithmicSharedData = getAlgorithmicTypeFromName(stackArgs.name);
umtx_lock(&cnvCacheMutex);
gDefaultAlgorithmicSharedData = algorithmicSharedData;
gDefaultConverterContainsOption = containsOption;
uprv_memcpy(gDefaultConverterNameBuffer, name, length);
gDefaultConverterNameBuffer[length]=0;
/* gDefaultConverterName MUST be the last global var set by this function. */
/* It is the variable checked in ucnv_getDefaultName() to see if initialization is required. */
gDefaultConverterName = gDefaultConverterNameBuffer;
ucln_common_registerCleanup(UCLN_COMMON_UCNV, ucnv_cleanup);
umtx_unlock(&cnvCacheMutex);
}
#endif
/*
* In order to be really thread-safe, the get function would have to take
* a buffer parameter and copy the current string inside a mutex block.
* This implementation only tries to be really thread-safe while
* setting the name.
* It assumes that setting a pointer is atomic.
*/
U_CAPI const char* U_EXPORT2
ucnv_getDefaultName() {
#if U_CHARSET_IS_UTF8
return "UTF-8";
#else
/* local variable to be thread-safe */
const char *name;
/*
Multiple calls to ucnv_getDefaultName must be thread safe,
but ucnv_setDefaultName is not thread safe.
*/
UMTX_CHECK(&cnvCacheMutex, gDefaultConverterName, name);
if(name==NULL) {
UErrorCode errorCode = U_ZERO_ERROR;
UConverter *cnv = NULL;
name = uprv_getDefaultCodepage();
/* if the name is there, test it out and get the canonical name with options */
if(name != NULL) {
cnv = ucnv_open(name, &errorCode);
if(U_SUCCESS(errorCode) && cnv != NULL) {
name = ucnv_getName(cnv, &errorCode);
}
}
if(name == NULL || name[0] == 0
|| U_FAILURE(errorCode) || cnv == NULL
|| uprv_strlen(name)>=sizeof(gDefaultConverterNameBuffer))
{
/* Panic time, let's use a fallback. */
#if (U_CHARSET_FAMILY == U_ASCII_FAMILY)
name = "US-ASCII";
/* there is no 'algorithmic' converter for EBCDIC */
#elif defined(OS390)
name = "ibm-1047_P100-1995" UCNV_SWAP_LFNL_OPTION_STRING;
#else
name = "ibm-37_P100-1995";
#endif
}
internalSetName(name, &errorCode);
/* The close may make the current name go away. */
ucnv_close(cnv);
}
return name;
#endif
}
/*
This function is not thread safe, and it can't be thread safe.
See internalSetName or the API reference for details.
*/
U_CAPI void U_EXPORT2
ucnv_setDefaultName(const char *converterName) {
#if !U_CHARSET_IS_UTF8
if(converterName==NULL) {
/* reset to the default codepage */
gDefaultConverterName=NULL;
} else {
UErrorCode errorCode = U_ZERO_ERROR;
UConverter *cnv = NULL;
const char *name = NULL;
/* if the name is there, test it out and get the canonical name with options */
cnv = ucnv_open(converterName, &errorCode);
if(U_SUCCESS(errorCode) && cnv != NULL) {
name = ucnv_getName(cnv, &errorCode);
}
if(U_SUCCESS(errorCode) && name!=NULL) {
internalSetName(name, &errorCode);
}
/* else this converter is bad to use. Don't change it to a bad value. */
/* The close may make the current name go away. */
ucnv_close(cnv);
/* reset the converter cache */
u_flushDefaultConverter();
}
#endif
}
/* data swapping ------------------------------------------------------------ */
/* most of this might belong more properly into ucnvmbcs.c, but that is so large */
#if !UCONFIG_NO_LEGACY_CONVERSION
U_CAPI int32_t U_EXPORT2
ucnv_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
int32_t headerSize;
const uint8_t *inBytes;
uint8_t *outBytes;
uint32_t offset, count, staticDataSize;
int32_t size;
const UConverterStaticData *inStaticData;
UConverterStaticData *outStaticData;
const _MBCSHeader *inMBCSHeader;
_MBCSHeader *outMBCSHeader;
_MBCSHeader mbcsHeader;
uint32_t mbcsHeaderLength;
UBool noFromU=FALSE;
uint8_t outputType;
int32_t maxFastUChar, mbcsIndexLength;
const int32_t *inExtIndexes;
int32_t extOffset;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
if(!(
pInfo->dataFormat[0]==0x63 && /* dataFormat="cnvt" */
pInfo->dataFormat[1]==0x6e &&
pInfo->dataFormat[2]==0x76 &&
pInfo->dataFormat[3]==0x74 &&
pInfo->formatVersion[0]==6 &&
pInfo->formatVersion[1]>=2
)) {
udata_printError(ds, "ucnv_swap(): data format %02x.%02x.%02x.%02x (format version %02x.%02x) is not recognized as an ICU .cnv conversion table\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0], pInfo->formatVersion[1]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
inBytes=(const uint8_t *)inData+headerSize;
outBytes=(uint8_t *)outData+headerSize;
/* read the initial UConverterStaticData structure after the UDataInfo header */
inStaticData=(const UConverterStaticData *)inBytes;
outStaticData=(UConverterStaticData *)outBytes;
if(length<0) {
staticDataSize=ds->readUInt32(inStaticData->structSize);
} else {
length-=headerSize;
if( length<sizeof(UConverterStaticData) ||
(uint32_t)length<(staticDataSize=ds->readUInt32(inStaticData->structSize))
) {
udata_printError(ds, "ucnv_swap(): too few bytes (%d after header) for an ICU .cnv conversion table\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
if(length>=0) {
/* swap the static data */
if(inStaticData!=outStaticData) {
uprv_memcpy(outStaticData, inStaticData, staticDataSize);
}
ds->swapArray32(ds, &inStaticData->structSize, 4,
&outStaticData->structSize, pErrorCode);
ds->swapArray32(ds, &inStaticData->codepage, 4,
&outStaticData->codepage, pErrorCode);
ds->swapInvChars(ds, inStaticData->name, (int32_t)uprv_strlen(inStaticData->name),
outStaticData->name, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ucnv_swap(): error swapping converter name\n");
return 0;
}
}
inBytes+=staticDataSize;
outBytes+=staticDataSize;
if(length>=0) {
length-=(int32_t)staticDataSize;
}
/* check for supported conversionType values */
if(inStaticData->conversionType==UCNV_MBCS) {
/* swap MBCS data */
inMBCSHeader=(const _MBCSHeader *)inBytes;
outMBCSHeader=(_MBCSHeader *)outBytes;
if(0<=length && length<sizeof(_MBCSHeader)) {
udata_printError(ds, "ucnv_swap(): too few bytes (%d after headers) for an ICU MBCS .cnv conversion table\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
if(inMBCSHeader->version[0]==4 && inMBCSHeader->version[1]>=1) {
mbcsHeaderLength=MBCS_HEADER_V4_LENGTH;
} else if(inMBCSHeader->version[0]==5 && inMBCSHeader->version[1]>=3 &&
((mbcsHeader.options=ds->readUInt32(inMBCSHeader->options))&
MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0
) {
mbcsHeaderLength=mbcsHeader.options&MBCS_OPT_LENGTH_MASK;
noFromU=(UBool)((mbcsHeader.options&MBCS_OPT_NO_FROM_U)!=0);
} else {
udata_printError(ds, "ucnv_swap(): unsupported _MBCSHeader.version %d.%d\n",
inMBCSHeader->version[0], inMBCSHeader->version[1]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
uprv_memcpy(mbcsHeader.version, inMBCSHeader->version, 4);
mbcsHeader.countStates= ds->readUInt32(inMBCSHeader->countStates);
mbcsHeader.countToUFallbacks= ds->readUInt32(inMBCSHeader->countToUFallbacks);
mbcsHeader.offsetToUCodeUnits= ds->readUInt32(inMBCSHeader->offsetToUCodeUnits);
mbcsHeader.offsetFromUTable= ds->readUInt32(inMBCSHeader->offsetFromUTable);
mbcsHeader.offsetFromUBytes= ds->readUInt32(inMBCSHeader->offsetFromUBytes);
mbcsHeader.flags= ds->readUInt32(inMBCSHeader->flags);
mbcsHeader.fromUBytesLength= ds->readUInt32(inMBCSHeader->fromUBytesLength);
/* mbcsHeader.options have been read above */
extOffset=(int32_t)(mbcsHeader.flags>>8);
outputType=(uint8_t)mbcsHeader.flags;
if(noFromU && outputType==MBCS_OUTPUT_1) {
udata_printError(ds, "ucnv_swap(): unsupported combination of makeconv --small with SBCS\n");
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
/* make sure that the output type is known */
switch(outputType) {
case MBCS_OUTPUT_1:
case MBCS_OUTPUT_2:
case MBCS_OUTPUT_3:
case MBCS_OUTPUT_4:
case MBCS_OUTPUT_3_EUC:
case MBCS_OUTPUT_4_EUC:
case MBCS_OUTPUT_2_SISO:
case MBCS_OUTPUT_EXT_ONLY:
/* OK */
break;
default:
udata_printError(ds, "ucnv_swap(): unsupported MBCS output type 0x%x\n",
outputType);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
/* calculate the length of the MBCS data */
/*
* utf8Friendly MBCS files (mbcsHeader.version 4.3)
* contain an additional mbcsIndex table:
* uint16_t[(maxFastUChar+1)>>6];
* where maxFastUChar=((mbcsHeader.version[2]<<8)|0xff).
*/
maxFastUChar=0;
mbcsIndexLength=0;
if( outputType!=MBCS_OUTPUT_EXT_ONLY && outputType!=MBCS_OUTPUT_1 &&
mbcsHeader.version[1]>=3 && (maxFastUChar=mbcsHeader.version[2])!=0
) {
maxFastUChar=(maxFastUChar<<8)|0xff;
mbcsIndexLength=((maxFastUChar+1)>>6)*2; /* number of bytes */
}
if(extOffset==0) {
size=(int32_t)(mbcsHeader.offsetFromUBytes+mbcsIndexLength);
if(!noFromU) {
size+=(int32_t)mbcsHeader.fromUBytesLength;
}
/* avoid compiler warnings - not otherwise necessary, and the value does not matter */
inExtIndexes=NULL;
} else {
/* there is extension data after the base data, see ucnv_ext.h */
if(length>=0 && length<(extOffset+UCNV_EXT_INDEXES_MIN_LENGTH*4)) {
udata_printError(ds, "ucnv_swap(): too few bytes (%d after headers) for an ICU MBCS .cnv conversion table with extension data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
inExtIndexes=(const int32_t *)(inBytes+extOffset);
size=extOffset+udata_readInt32(ds, inExtIndexes[UCNV_EXT_SIZE]);
}
if(length>=0) {
if(length<size) {
udata_printError(ds, "ucnv_swap(): too few bytes (%d after headers) for an ICU MBCS .cnv conversion table\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/* copy the data for inaccessible bytes */
if(inBytes!=outBytes) {
uprv_memcpy(outBytes, inBytes, size);
}
/* swap the MBCSHeader, except for the version field */
count=mbcsHeaderLength*4;
ds->swapArray32(ds, &inMBCSHeader->countStates, count-4,
&outMBCSHeader->countStates, pErrorCode);
if(outputType==MBCS_OUTPUT_EXT_ONLY) {
/*
* extension-only file,
* contains a base name instead of normal base table data
*/
/* swap the base name, between the header and the extension data */
const char *inBaseName=(const char *)inBytes+count;
char *outBaseName=(char *)outBytes+count;
ds->swapInvChars(ds, inBaseName, (int32_t)uprv_strlen(inBaseName),
outBaseName, pErrorCode);
} else {
/* normal file with base table data */
/* swap the state table, 1kB per state */
offset=count;
count=mbcsHeader.countStates*1024;
ds->swapArray32(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
/* swap the toUFallbacks[] */
offset+=count;
count=mbcsHeader.countToUFallbacks*8;
ds->swapArray32(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
/* swap the unicodeCodeUnits[] */
offset=mbcsHeader.offsetToUCodeUnits;
count=mbcsHeader.offsetFromUTable-offset;
ds->swapArray16(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
/* offset to the stage 1 table, independent of the outputType */
offset=mbcsHeader.offsetFromUTable;
if(outputType==MBCS_OUTPUT_1) {
/* SBCS: swap the fromU tables, all 16 bits wide */
count=(mbcsHeader.offsetFromUBytes-offset)+mbcsHeader.fromUBytesLength;
ds->swapArray16(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
} else {
/* otherwise: swap the stage tables separately */
/* stage 1 table: uint16_t[0x440 or 0x40] */
if(inStaticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
count=0x440*2; /* for all of Unicode */
} else {
count=0x40*2; /* only BMP */
}
ds->swapArray16(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
/* stage 2 table: uint32_t[] */
offset+=count;
count=mbcsHeader.offsetFromUBytes-offset;
ds->swapArray32(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
/* stage 3/result bytes: sometimes uint16_t[] or uint32_t[] */
offset=mbcsHeader.offsetFromUBytes;
count= noFromU ? 0 : mbcsHeader.fromUBytesLength;
switch(outputType) {
case MBCS_OUTPUT_2:
case MBCS_OUTPUT_3_EUC:
case MBCS_OUTPUT_2_SISO:
ds->swapArray16(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
break;
case MBCS_OUTPUT_4:
ds->swapArray32(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
break;
default:
/* just uint8_t[], nothing to swap */
break;
}
if(mbcsIndexLength!=0) {
offset+=count;
count=mbcsIndexLength;
ds->swapArray16(ds, inBytes+offset, (int32_t)count,
outBytes+offset, pErrorCode);
}
}
}
if(extOffset!=0) {
/* swap the extension data */
inBytes+=extOffset;
outBytes+=extOffset;
/* swap toUTable[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_TO_U_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_TO_U_LENGTH]);
ds->swapArray32(ds, inBytes+offset, length*4, outBytes+offset, pErrorCode);
/* swap toUUChars[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_TO_U_UCHARS_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_TO_U_UCHARS_LENGTH]);
ds->swapArray16(ds, inBytes+offset, length*2, outBytes+offset, pErrorCode);
/* swap fromUTableUChars[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_UCHARS_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_LENGTH]);
ds->swapArray16(ds, inBytes+offset, length*2, outBytes+offset, pErrorCode);
/* swap fromUTableValues[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_VALUES_INDEX]);
/* same length as for fromUTableUChars[] */
ds->swapArray32(ds, inBytes+offset, length*4, outBytes+offset, pErrorCode);
/* no need to swap fromUBytes[] */
/* swap fromUStage12[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]);
ds->swapArray16(ds, inBytes+offset, length*2, outBytes+offset, pErrorCode);
/* swap fromUStage3[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]);
ds->swapArray16(ds, inBytes+offset, length*2, outBytes+offset, pErrorCode);
/* swap fromUStage3b[] */
offset=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]);
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]);
ds->swapArray32(ds, inBytes+offset, length*4, outBytes+offset, pErrorCode);
/* swap indexes[] */
length=udata_readInt32(ds, inExtIndexes[UCNV_EXT_INDEXES_LENGTH]);
ds->swapArray32(ds, inBytes, length*4, outBytes, pErrorCode);
}
}
} else {
udata_printError(ds, "ucnv_swap(): unknown conversionType=%d!=UCNV_MBCS\n",
inStaticData->conversionType);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
return headerSize+(int32_t)staticDataSize+size;
}
#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
#endif