/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <string.h> #include <stdint.h> #include <keystore.h> #include <hardware/hardware.h> #include <hardware/keymaster.h> #include <openssl/evp.h> #include <openssl/bio.h> #include <openssl/rsa.h> #include <openssl/err.h> #include <openssl/x509.h> #include <utils/UniquePtr.h> // For debugging //#define LOG_NDEBUG 0 #define LOG_TAG "OpenSSLKeyMaster" #include <cutils/log.h> struct BIGNUM_Delete { void operator()(BIGNUM* p) const { BN_free(p); } }; typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; struct EVP_PKEY_Delete { void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } }; typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; struct PKCS8_PRIV_KEY_INFO_Delete { void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } }; typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; struct RSA_Delete { void operator()(RSA* p) const { RSA_free(p); } }; typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; typedef UniquePtr<keymaster_device_t> Unique_keymaster_device_t; /** * Many OpenSSL APIs take ownership of an argument on success but don't free the argument * on failure. This means we need to tell our scoped pointers when we've transferred ownership, * without triggering a warning by not using the result of release(). */ #define OWNERSHIP_TRANSFERRED(obj) \ typeof (obj.release()) _dummy __attribute__((unused)) = obj.release() /* * Checks this thread's OpenSSL error queue and logs if * necessary. */ static void logOpenSSLError(const char* location) { int error = ERR_get_error(); if (error != 0) { char message[256]; ERR_error_string_n(error, message, sizeof(message)); ALOGE("OpenSSL error in %s %d: %s", location, error, message); } ERR_clear_error(); ERR_remove_state(0); } static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { /* Find the length of each size */ int publicLen = i2d_PublicKey(pkey, NULL); int privateLen = i2d_PrivateKey(pkey, NULL); if (privateLen <= 0 || publicLen <= 0) { ALOGE("private or public key size was too big"); return -1; } /* int type + int size + private key data + int size + public key data */ *keyBlobLength = get_softkey_header_size() + sizeof(int) + sizeof(int) + privateLen + sizeof(int) + publicLen; UniquePtr<unsigned char[]> derData(new unsigned char[*keyBlobLength]); if (derData.get() == NULL) { ALOGE("could not allocate memory for key blob"); return -1; } unsigned char* p = derData.get(); /* Write the magic value for software keys. */ p = add_softkey_header(p, *keyBlobLength); /* Write key type to allocated buffer */ for (int i = sizeof(int) - 1; i >= 0; i--) { *p++ = (type >> (8*i)) & 0xFF; } /* Write public key to allocated buffer */ for (int i = sizeof(int) - 1; i >= 0; i--) { *p++ = (publicLen >> (8*i)) & 0xFF; } if (i2d_PublicKey(pkey, &p) != publicLen) { logOpenSSLError("wrap_key"); return -1; } /* Write private key to allocated buffer */ for (int i = sizeof(int) - 1; i >= 0; i--) { *p++ = (privateLen >> (8*i)) & 0xFF; } if (i2d_PrivateKey(pkey, &p) != privateLen) { logOpenSSLError("wrap_key"); return -1; } *keyBlob = derData.release(); return 0; } static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { long publicLen = 0; long privateLen = 0; const uint8_t* p = keyBlob; const uint8_t *const end = keyBlob + keyBlobLength; if (keyBlob == NULL) { ALOGE("supplied key blob was NULL"); return NULL; } // Should be large enough for: // int32 magic, int32 type, int32 pubLen, char* pub, int32 privLen, char* priv if (keyBlobLength < (get_softkey_header_size() + sizeof(int) + sizeof(int) + 1 + sizeof(int) + 1)) { ALOGE("key blob appears to be truncated"); return NULL; } if (!is_softkey(p, keyBlobLength)) { ALOGE("cannot read key; it was not made by this keymaster"); return NULL; } p += get_softkey_header_size(); int type = 0; for (size_t i = 0; i < sizeof(int); i++) { type = (type << 8) | *p++; } Unique_EVP_PKEY pkey(EVP_PKEY_new()); if (pkey.get() == NULL) { logOpenSSLError("unwrap_key"); return NULL; } for (size_t i = 0; i < sizeof(int); i++) { publicLen = (publicLen << 8) | *p++; } if (p + publicLen > end) { ALOGE("public key length encoding error: size=%ld, end=%d", publicLen, end - p); return NULL; } EVP_PKEY* tmp = pkey.get(); d2i_PublicKey(type, &tmp, &p, publicLen); if (end - p < 2) { ALOGE("private key truncated"); return NULL; } for (size_t i = 0; i < sizeof(int); i++) { privateLen = (privateLen << 8) | *p++; } if (p + privateLen > end) { ALOGE("private key length encoding error: size=%ld, end=%d", privateLen, end - p); return NULL; } d2i_PrivateKey(type, &tmp, &p, privateLen); return pkey.release(); } static int openssl_generate_keypair(const keymaster_device_t* dev, const keymaster_keypair_t key_type, const void* key_params, uint8_t** keyBlob, size_t* keyBlobLength) { ssize_t privateLen, publicLen; if (key_type != TYPE_RSA) { ALOGW("Unsupported key type %d", key_type); return -1; } else if (key_params == NULL) { ALOGW("key_params == null"); return -1; } keymaster_rsa_keygen_params_t* rsa_params = (keymaster_rsa_keygen_params_t*) key_params; Unique_BIGNUM bn(BN_new()); if (bn.get() == NULL) { logOpenSSLError("openssl_generate_keypair"); return -1; } if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { logOpenSSLError("openssl_generate_keypair"); return -1; } /* initialize RSA */ Unique_RSA rsa(RSA_new()); if (rsa.get() == NULL) { logOpenSSLError("openssl_generate_keypair"); return -1; } if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) || RSA_check_key(rsa.get()) < 0) { logOpenSSLError("openssl_generate_keypair"); return -1; } /* assign to EVP */ Unique_EVP_PKEY pkey(EVP_PKEY_new()); if (pkey.get() == NULL) { logOpenSSLError("openssl_generate_keypair"); return -1; } if (EVP_PKEY_assign_RSA(pkey.get(), rsa.get()) == 0) { logOpenSSLError("openssl_generate_keypair"); return -1; } OWNERSHIP_TRANSFERRED(rsa); if (wrap_key(pkey.get(), EVP_PKEY_RSA, keyBlob, keyBlobLength)) { return -1; } return 0; } static int openssl_import_keypair(const keymaster_device_t* dev, const uint8_t* key, const size_t key_length, uint8_t** key_blob, size_t* key_blob_length) { int response = -1; if (key == NULL) { ALOGW("input key == NULL"); return -1; } else if (key_blob == NULL || key_blob_length == NULL) { ALOGW("output key blob or length == NULL"); return -1; } Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); if (pkcs8.get() == NULL) { logOpenSSLError("openssl_import_keypair"); return -1; } /* assign to EVP */ Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); if (pkey.get() == NULL) { logOpenSSLError("openssl_import_keypair"); return -1; } OWNERSHIP_TRANSFERRED(pkcs8); if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { return -1; } return 0; } static int openssl_get_keypair_public(const struct keymaster_device* dev, const uint8_t* key_blob, const size_t key_blob_length, uint8_t** x509_data, size_t* x509_data_length) { if (x509_data == NULL || x509_data_length == NULL) { ALOGW("output public key buffer == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); if (pkey.get() == NULL) { return -1; } int len = i2d_PUBKEY(pkey.get(), NULL); if (len <= 0) { logOpenSSLError("openssl_get_keypair_public"); return -1; } UniquePtr<uint8_t> key(static_cast<uint8_t*>(malloc(len))); if (key.get() == NULL) { ALOGE("Could not allocate memory for public key data"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); if (i2d_PUBKEY(pkey.get(), &tmp) != len) { logOpenSSLError("openssl_get_keypair_public"); return -1; } ALOGV("Length of x509 data is %d", len); *x509_data_length = len; *x509_data = key.release(); return 0; } static int openssl_sign_data(const keymaster_device_t* dev, const void* params, const uint8_t* keyBlob, const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { int result = -1; EVP_MD_CTX ctx; size_t maxSize; if (data == NULL) { ALOGW("input data to sign == NULL"); return -1; } else if (signedData == NULL || signedDataLength == NULL) { ALOGW("output signature buffer == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); if (pkey.get() == NULL) { return -1; } if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { ALOGW("Cannot handle non-RSA keys yet"); return -1; } keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } else if (sign_params->padding_type != PADDING_NONE) { ALOGW("Cannot handle padding type %d", sign_params->padding_type); return -1; } Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); if (rsa.get() == NULL) { logOpenSSLError("openssl_sign_data"); return -1; } UniquePtr<uint8_t> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); if (signedDataPtr.get() == NULL) { logOpenSSLError("openssl_sign_data"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { logOpenSSLError("openssl_sign_data"); return -1; } *signedDataLength = dataLength; *signedData = signedDataPtr.release(); return 0; } static int openssl_verify_data(const keymaster_device_t* dev, const void* params, const uint8_t* keyBlob, const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature, const size_t signatureLength) { if (signedData == NULL || signature == NULL) { ALOGW("data or signature buffers == NULL"); return -1; } Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); if (pkey.get() == NULL) { return -1; } if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { ALOGW("Cannot handle non-RSA keys yet"); return -1; } keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; if (sign_params->digest_type != DIGEST_NONE) { ALOGW("Cannot handle digest type %d", sign_params->digest_type); return -1; } else if (sign_params->padding_type != PADDING_NONE) { ALOGW("Cannot handle padding type %d", sign_params->padding_type); return -1; } else if (signatureLength != signedDataLength) { ALOGW("signed data length must be signature length"); return -1; } Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); if (rsa.get() == NULL) { logOpenSSLError("openssl_verify_data"); return -1; } UniquePtr<uint8_t> dataPtr(reinterpret_cast<uint8_t*>(malloc(signedDataLength))); if (dataPtr.get() == NULL) { logOpenSSLError("openssl_verify_data"); return -1; } unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { logOpenSSLError("openssl_verify_data"); return -1; } int result = 0; for (size_t i = 0; i < signedDataLength; i++) { result |= tmp[i] ^ signedData[i]; } return result == 0 ? 0 : -1; } /* Close an opened OpenSSL instance */ static int openssl_close(hw_device_t *dev) { free(dev); return 0; } /* * Generic device handling */ static int openssl_open(const hw_module_t* module, const char* name, hw_device_t** device) { if (strcmp(name, KEYSTORE_KEYMASTER) != 0) return -EINVAL; Unique_keymaster_device_t dev(new keymaster_device_t); if (dev.get() == NULL) return -ENOMEM; dev->common.tag = HARDWARE_DEVICE_TAG; dev->common.version = 1; dev->common.module = (struct hw_module_t*) module; dev->common.close = openssl_close; dev->flags = KEYMASTER_SOFTWARE_ONLY; dev->generate_keypair = openssl_generate_keypair; dev->import_keypair = openssl_import_keypair; dev->get_keypair_public = openssl_get_keypair_public; dev->delete_keypair = NULL; dev->delete_all = NULL; dev->sign_data = openssl_sign_data; dev->verify_data = openssl_verify_data; ERR_load_crypto_strings(); ERR_load_BIO_strings(); *device = reinterpret_cast<hw_device_t*>(dev.release()); return 0; } static struct hw_module_methods_t keystore_module_methods = { open: openssl_open, }; struct keystore_module HAL_MODULE_INFO_SYM __attribute__ ((visibility ("default"))) = { common: { tag: HARDWARE_MODULE_TAG, version_major: 1, version_minor: 0, id: KEYSTORE_HARDWARE_MODULE_ID, name: "Keymaster OpenSSL HAL", author: "The Android Open Source Project", methods: &keystore_module_methods, dso: 0, reserved: {}, }, };