/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #include "r_local.h" #define MAX_PARTICLES 2048 // default max # of particles at one // time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's // on the command line int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; particle_t *active_particles, *free_particles; particle_t *particles; int r_numparticles; vec3_t r_pright, r_pup, r_ppn; /* =============== R_InitParticles =============== */ void R_InitParticles (void) { int i; i = COM_CheckParm ("-particles"); if (i) { r_numparticles = (int)(Q_atoi(com_argv[i+1])); if (r_numparticles < ABSOLUTE_MIN_PARTICLES) r_numparticles = ABSOLUTE_MIN_PARTICLES; } else { r_numparticles = MAX_PARTICLES; } particles = (particle_t *) Hunk_AllocName (r_numparticles * sizeof(particle_t), "particles"); } #ifdef QUAKE2 void R_DarkFieldParticles (entity_t *ent) { int i, j, k; particle_t *p; float vel; vec3_t dir; vec3_t org; org[0] = ent->origin[0]; org[1] = ent->origin[1]; org[2] = ent->origin[2]; for (i=-16 ; i<16 ; i+=8) for (j=-16 ; j<16 ; j+=8) for (k=0 ; k<32 ; k+=8) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand()&7) * 0.02; p->color = 150 + rand()%6; p->type = pt_slowgrav; dir[0] = j*8; dir[1] = i*8; dir[2] = k*8; p->org[0] = org[0] + i + (rand()&3); p->org[1] = org[1] + j + (rand()&3); p->org[2] = org[2] + k + (rand()&3); VectorNormalize (dir); vel = 50 + (rand()&63); VectorScale (dir, vel, p->vel); } } #endif /* =============== R_EntityParticles =============== */ #define NUMVERTEXNORMALS 162 extern float r_avertexnormals[NUMVERTEXNORMALS][3]; vec3_t avelocities[NUMVERTEXNORMALS]; float beamlength = 16; vec3_t avelocity = {23, 7, 3}; float partstep = 0.01; float timescale = 0.01; void R_EntityParticles (entity_t *ent) { int count; int i; particle_t *p; float angle; float sr, sp, sy, cr, cp, cy; vec3_t forward; float dist; dist = 64; count = 50; if (!avelocities[0][0]) { for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++) avelocities[0][i] = (rand()&255) * 0.01; } for (i=0 ; i<NUMVERTEXNORMALS ; i++) { angle = cl.time * avelocities[i][0]; sy = sin(angle); cy = cos(angle); angle = cl.time * avelocities[i][1]; sp = sin(angle); cp = cos(angle); angle = cl.time * avelocities[i][2]; sr = sin(angle); cr = cos(angle); forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.01; p->color = 0x6f; p->type = pt_explode; p->org[0] = ent->origin[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength; p->org[1] = ent->origin[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength; p->org[2] = ent->origin[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength; } } /* =============== R_ClearParticles =============== */ void R_ClearParticles (void) { int i; free_particles = &particles[0]; active_particles = NULL; for (i=0 ;i<r_numparticles ; i++) particles[i].next = &particles[i+1]; particles[r_numparticles-1].next = NULL; } void R_ReadPointFile_f (void) { FILE *f; vec3_t org; int r; int c; particle_t *p; char name[MAX_OSPATH]; sprintf (name,"maps/%s.pts", sv.name); COM_FOpenFile (name, &f); if (!f) { Con_Printf ("couldn't open %s\n", name); return; } Con_Printf ("Reading %s...\n", name); c = 0; for ( ;; ) { r = fscanf (f,"%f %f %f\n", &org[0], &org[1], &org[2]); if (r != 3) break; c++; if (!free_particles) { Con_Printf ("Not enough free particles\n"); break; } p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = 99999; p->color = (-c)&15; p->type = pt_static; VectorCopy (vec3_origin, p->vel); VectorCopy (org, p->org); } fclose (f); Con_Printf ("%i points read\n", c); } /* =============== R_ParseParticleEffect Parse an effect out of the server message =============== */ void R_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; for (i=0 ; i<3 ; i++) org[i] = MSG_ReadCoord (); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar () * (1.0/16); msgcount = MSG_ReadByte (); color = MSG_ReadByte (); if (msgcount == 255) count = 1024; else count = msgcount; R_RunParticleEffect (org, dir, color, count); } /* =============== R_ParticleExplosion =============== */ void R_ParticleExplosion (vec3_t org) { int i, j; particle_t *p; for (i=0 ; i<1024 ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand()&3; if (i & 1) { p->type = pt_explode; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_explode2; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } } /* =============== R_ParticleExplosion2 =============== */ void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, j; particle_t *p; int colorMod = 0; for (i=0; i<512; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.3; p->color = colorStart + (colorMod % colorLength); colorMod++; p->type = pt_blob; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } /* =============== R_BlobExplosion =============== */ void R_BlobExplosion (vec3_t org) { int i, j; particle_t *p; for (i=0 ; i<1024 ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 1 + (rand()&8)*0.05; if (i & 1) { p->type = pt_blob; p->color = 66 + rand()%6; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_blob2; p->color = 150 + rand()%6; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } } /* =============== R_RunParticleEffect =============== */ void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int i, j; particle_t *p; for (i=0 ; i<count ; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; if (count == 1024) { // rocket explosion p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand()&3; if (i & 1) { p->type = pt_explode; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } else { p->type = pt_explode2; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } else { p->die = cl.time + 0.1*(rand()%5); p->color = (color&~7) + (rand()&7); p->type = pt_slowgrav; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()&15)-8); p->vel[j] = dir[j]*15;// + (rand()%300)-150; } } } } /* =============== R_LavaSplash =============== */ void R_LavaSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i=-16 ; i<16 ; i++) for (j=-16 ; j<16 ; j++) for (k=0 ; k<1 ; k++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 2 + (rand()&31) * 0.02; p->color = 224 + (rand()&7); p->type = pt_slowgrav; dir[0] = j*8 + (rand()&7); dir[1] = i*8 + (rand()&7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand()&63); VectorNormalize (dir); vel = 50 + (rand()&63); VectorScale (dir, vel, p->vel); } } /* =============== R_TeleportSplash =============== */ void R_TeleportSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i=-16 ; i<16 ; i+=4) for (j=-16 ; j<16 ; j+=4) for (k=-24 ; k<32 ; k+=4) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand()&7) * 0.02; p->color = 7 + (rand()&7); p->type = pt_slowgrav; dir[0] = j*8; dir[1] = i*8; dir[2] = k*8; p->org[0] = org[0] + i + (rand()&3); p->org[1] = org[1] + j + (rand()&3); p->org[2] = org[2] + k + (rand()&3); VectorNormalize (dir); vel = 50 + (rand()&63); VectorScale (dir, vel, p->vel); } } void R_RocketTrail (vec3_t start, vec3_t end, int type) { vec3_t vec; float len; int j; particle_t *p; int dec; static int tracercount; VectorSubtract (end, start, vec); len = VectorNormalize (vec); if (type < 128) dec = 3; else { dec = 1; type -= 128; } while (len > 0) { len -= dec; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorCopy (vec3_origin, p->vel); p->die = cl.time + 2; switch (type) { case 0: // rocket trail p->ramp = (rand()&3); p->color = ramp3[(int)p->ramp]; p->type = pt_fire; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 1: // smoke smoke p->ramp = (rand()&3) + 2; p->color = ramp3[(int)p->ramp]; p->type = pt_fire; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 2: // blood p->type = pt_grav; p->color = 67 + (rand()&3); for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); break; case 3: case 5: // tracer p->die = cl.time + 0.5; p->type = pt_static; if (type == 3) p->color = 52 + ((tracercount&4)<<1); else p->color = 230 + ((tracercount&4)<<1); tracercount++; VectorCopy (start, p->org); if (tracercount & 1) { p->vel[0] = 30*vec[1]; p->vel[1] = 30*-vec[0]; } else { p->vel[0] = 30*-vec[1]; p->vel[1] = 30*vec[0]; } break; case 4: // slight blood p->type = pt_grav; p->color = 67 + (rand()&3); for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()%6)-3); len -= 3; break; case 6: // voor trail p->color = 9*16 + 8 + (rand()&3); p->type = pt_static; p->die = cl.time + 0.3; for (j=0 ; j<3 ; j++) p->org[j] = start[j] + ((rand()&15)-8); break; } VectorAdd (start, vec, start); } } /* =============== R_DrawParticles =============== */ extern cvar_t sv_gravity; void R_DrawParticles (void) { particle_t *p, *kill; float grav; int i; float time2, time3; float time1; float dvel; float frametime; #ifdef USE_OPENGLES float* pPos = gVertexBuffer; unsigned char* pColor = (unsigned char*) gColorBuffer; unsigned char* pUV = (unsigned char*) gTexCoordBuffer; int particleIndex = 0; int maxParticleIndex = (int) sizeof(gVertexBuffer) / (sizeof(float) * 3) - 3; #endif #ifdef GLQUAKE vec3_t up, right; float scale; GL_Bind(particletexture); glEnable (GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); #ifdef USE_OPENGLES glEnableClientState(GL_COLOR_ARRAY); glVertexPointer(3, GL_FLOAT, 0, gVertexBuffer); glTexCoordPointer(2, GL_BYTE, 0, gTexCoordBuffer); glColorPointer(4, GL_UNSIGNED_BYTE, 0, gColorBuffer); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST); #else glBegin (GL_TRIANGLES); #endif VectorScale (vup, 1.5, up); VectorScale (vright, 1.5, right); #else D_StartParticles (); VectorScale (vright, xscaleshrink, r_pright); VectorScale (vup, yscaleshrink, r_pup); VectorCopy (vpn, r_ppn); #endif frametime = cl.time - cl.oldtime; time3 = frametime * 15; time2 = frametime * 10; // 15; time1 = frametime * 5; grav = frametime * sv_gravity.value * 0.05; dvel = 4*frametime; for ( ;; ) { kill = active_particles; if (kill && kill->die < cl.time) { active_particles = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } for (p=active_particles ; p ; p=p->next) { for ( ;; ) { kill = p->next; if (kill && kill->die < cl.time) { p->next = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } #ifdef GLQUAKE // hack a scale up to keep particles from disapearing scale = (p->org[0] - r_origin[0])*vpn[0] + (p->org[1] - r_origin[1])*vpn[1] + (p->org[2] - r_origin[2])*vpn[2]; if (scale < 20) scale = 1; else scale = 1 + scale * 0.004; #ifdef USE_OPENGLES if(particleIndex >= maxParticleIndex) { glDrawArrays(GL_TRIANGLES, 0, particleIndex); particleIndex = 0; pPos = gVertexBuffer; pColor = (unsigned char*) gColorBuffer; pUV = (unsigned char*) gTexCoordBuffer; } memcpy(pColor, (byte *)&d_8to24table[(int)p->color], 3); pColor[3] = 255; pColor += 4; *pUV++ = 0; *pUV++ = 0; *pPos++ = p->org[0]; *pPos++ = p->org[1]; *pPos++ = p->org[2]; memcpy(pColor, (byte *)&d_8to24table[(int)p->color], 3); pColor[3] = 255; pColor += 4; *pUV++ = 1; *pUV++ = 0; *pPos++ = p->org[0] + up[0]*scale; *pPos++ = p->org[1] + up[1]*scale; *pPos++ = p->org[2] + up[2]*scale; memcpy(pColor, (byte *)&d_8to24table[(int)p->color], 3); pColor[3] = 255; pColor += 4; *pUV++ = 0; *pUV++ = 1; *pPos++ = p->org[0] + right[0]*scale; *pPos++ = p->org[1] + right[1]*scale; *pPos++ = p->org[2] + right[2]*scale; particleIndex += 3; #else glColor3ubv ((byte *)&d_8to24table[(int)p->color]); glTexCoord2f (0,0); glVertex3fv (p->org); glTexCoord2f (1,0); glVertex3f (p->org[0] + up[0]*scale, p->org[1] + up[1]*scale, p->org[2] + up[2]*scale); glTexCoord2f (0,1); glVertex3f (p->org[0] + right[0]*scale, p->org[1] + right[1]*scale, p->org[2] + right[2]*scale); #endif // !USE_OPENGLES #else D_DrawParticle (p); #endif p->org[0] += p->vel[0]*frametime; p->org[1] += p->vel[1]*frametime; p->org[2] += p->vel[2]*frametime; switch (p->type) { case pt_static: break; case pt_fire: p->ramp += time1; if (p->ramp >= 6) p->die = -1; else p->color = ramp3[(int)p->ramp]; p->vel[2] += grav; break; case pt_explode: p->ramp += time2; if (p->ramp >=8) p->die = -1; else p->color = ramp1[(int)p->ramp]; for (i=0 ; i<3 ; i++) p->vel[i] += p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_explode2: p->ramp += time3; if (p->ramp >=8) p->die = -1; else p->color = ramp2[(int)p->ramp]; for (i=0 ; i<3 ; i++) p->vel[i] -= p->vel[i]*frametime; p->vel[2] -= grav; break; case pt_blob: for (i=0 ; i<3 ; i++) p->vel[i] += p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_blob2: for (i=0 ; i<2 ; i++) p->vel[i] -= p->vel[i]*dvel; p->vel[2] -= grav; break; case pt_grav: #ifdef QUAKE2 p->vel[2] -= grav * 20; break; #endif case pt_slowgrav: p->vel[2] -= grav; break; default: break; } } #ifdef GLQUAKE #ifdef USE_OPENGLES glDrawArrays(GL_TRIANGLES, 0, particleIndex); glDisableClientState(GL_COLOR_ARRAY); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); #else glEnd (); #endif glDisable (GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); #else D_EndParticles (); #endif }