/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include <stdlib.h> #include <stdint.h> #include <sys/types.h> #include <SkCanvas.h> #include <SkPathMeasure.h> #include <SkTypeface.h> #include <utils/Log.h> #include <utils/StopWatch.h> #include <private/hwui/DrawGlInfo.h> #include <ui/Rect.h> #include "OpenGLRenderer.h" #include "DisplayListRenderer.h" #include "Vector.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// #define RAD_TO_DEG (180.0f / 3.14159265f) #define MIN_ANGLE 0.001f // TODO: This should be set in properties #define ALPHA_THRESHOLD (0x7f / PANEL_BIT_DEPTH) #define FILTER(paint) (paint && paint->isFilterBitmap() ? GL_LINEAR : GL_NEAREST) /////////////////////////////////////////////////////////////////////////////// // Globals /////////////////////////////////////////////////////////////////////////////// /** * Structure mapping Skia xfermodes to OpenGL blending factors. */ struct Blender { SkXfermode::Mode mode; GLenum src; GLenum dst; }; // struct Blender // In this array, the index of each Blender equals the value of the first // entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode] static const Blender gBlends[] = { { SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kDst_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kMultiply_Mode, GL_ZERO, GL_SRC_COLOR }, { SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR } }; // This array contains the swapped version of each SkXfermode. For instance // this array's SrcOver blending mode is actually DstOver. You can refer to // createLayer() for more information on the purpose of this array. static const Blender gBlendsSwap[] = { { SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kDst_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kMultiply_Mode, GL_DST_COLOR, GL_ZERO }, { SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE } }; /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// OpenGLRenderer::OpenGLRenderer(): mCaches(Caches::getInstance()) { mShader = NULL; mColorFilter = NULL; mHasShadow = false; mHasDrawFilter = false; memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices)); mFirstSnapshot = new Snapshot; } OpenGLRenderer::~OpenGLRenderer() { // The context has already been destroyed at this point, do not call // GL APIs. All GL state should be kept in Caches.h } /////////////////////////////////////////////////////////////////////////////// // Debug /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::startMark(const char* name) const { mCaches.startMark(0, name); } void OpenGLRenderer::endMark() const { mCaches.endMark(); } /////////////////////////////////////////////////////////////////////////////// // Setup /////////////////////////////////////////////////////////////////////////////// uint32_t OpenGLRenderer::getStencilSize() { return STENCIL_BUFFER_SIZE; } bool OpenGLRenderer::isDeferred() { return false; } void OpenGLRenderer::setViewport(int width, int height) { mOrthoMatrix.loadOrtho(0, width, height, 0, -1, 1); mWidth = width; mHeight = height; mFirstSnapshot->height = height; mFirstSnapshot->viewport.set(0, 0, width, height); glDisable(GL_DITHER); glEnable(GL_SCISSOR_TEST); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glEnableVertexAttribArray(Program::kBindingPosition); } int OpenGLRenderer::prepare(bool opaque) { return prepareDirty(0.0f, 0.0f, mWidth, mHeight, opaque); } int OpenGLRenderer::prepareDirty(float left, float top, float right, float bottom, bool opaque) { mCaches.clearGarbage(); mSnapshot = new Snapshot(mFirstSnapshot, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); mSnapshot->fbo = getTargetFbo(); mSaveCount = 1; mSnapshot->setClip(left, top, right, bottom); mDirtyClip = opaque; syncState(); if (!opaque) { mCaches.setScissor(left, mSnapshot->height - bottom, right - left, bottom - top); glClear(GL_COLOR_BUFFER_BIT); return DrawGlInfo::kStatusDrew; } else { mCaches.resetScissor(); } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::syncState() { glViewport(0, 0, mWidth, mHeight); if (mCaches.blend) { glEnable(GL_BLEND); } else { glDisable(GL_BLEND); } } void OpenGLRenderer::finish() { #if DEBUG_OPENGL GLenum status = GL_NO_ERROR; while ((status = glGetError()) != GL_NO_ERROR) { ALOGD("GL error from OpenGLRenderer: 0x%x", status); switch (status) { case GL_INVALID_ENUM: ALOGE(" GL_INVALID_ENUM"); break; case GL_INVALID_VALUE: ALOGE(" GL_INVALID_VALUE"); break; case GL_INVALID_OPERATION: ALOGE(" GL_INVALID_OPERATION"); break; case GL_OUT_OF_MEMORY: ALOGE(" Out of memory!"); break; } } #endif #if DEBUG_MEMORY_USAGE mCaches.dumpMemoryUsage(); #else if (mCaches.getDebugLevel() & kDebugMemory) { mCaches.dumpMemoryUsage(); } #endif } void OpenGLRenderer::interrupt() { if (mCaches.currentProgram) { if (mCaches.currentProgram->isInUse()) { mCaches.currentProgram->remove(); mCaches.currentProgram = NULL; } } mCaches.unbindMeshBuffer(); mCaches.unbindIndicesBuffer(); mCaches.resetVertexPointers(); mCaches.disbaleTexCoordsVertexArray(); } void OpenGLRenderer::resume() { sp<Snapshot> snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot; glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight()); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glEnable(GL_SCISSOR_TEST); mCaches.resetScissor(); dirtyClip(); mCaches.activeTexture(0); glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo); mCaches.blend = true; glEnable(GL_BLEND); glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode); glBlendEquation(GL_FUNC_ADD); } void OpenGLRenderer::detachFunctor(Functor* functor) { mFunctors.remove(functor); } void OpenGLRenderer::attachFunctor(Functor* functor) { mFunctors.add(functor); } status_t OpenGLRenderer::invokeFunctors(Rect& dirty) { status_t result = DrawGlInfo::kStatusDone; size_t count = mFunctors.size(); if (count > 0) { SortedVector<Functor*> functors(mFunctors); mFunctors.clear(); DrawGlInfo info; info.clipLeft = 0; info.clipTop = 0; info.clipRight = 0; info.clipBottom = 0; info.isLayer = false; info.width = 0; info.height = 0; memset(info.transform, 0, sizeof(float) * 16); for (size_t i = 0; i < count; i++) { Functor* f = functors.itemAt(i); result |= (*f)(DrawGlInfo::kModeProcess, &info); if (result & DrawGlInfo::kStatusDraw) { Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom); dirty.unionWith(localDirty); } if (result & DrawGlInfo::kStatusInvoke) { mFunctors.add(f); } } } mCaches.activeTexture(0); return result; } status_t OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) { interrupt(); detachFunctor(functor); if (mDirtyClip) { setScissorFromClip(); } Rect clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); #if RENDER_LAYERS_AS_REGIONS // Since we don't know what the functor will draw, let's dirty // tne entire clip region if (hasLayer()) { dirtyLayerUnchecked(clip, getRegion()); } #endif DrawGlInfo info; info.clipLeft = clip.left; info.clipTop = clip.top; info.clipRight = clip.right; info.clipBottom = clip.bottom; info.isLayer = hasLayer(); info.width = getSnapshot()->viewport.getWidth(); info.height = getSnapshot()->height; getSnapshot()->transform->copyTo(&info.transform[0]); status_t result = (*functor)(DrawGlInfo::kModeDraw, &info) | DrawGlInfo::kStatusDrew; if (result != DrawGlInfo::kStatusDone) { Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom); dirty.unionWith(localDirty); if (result & DrawGlInfo::kStatusInvoke) { mFunctors.add(functor); } } resume(); return result; } /////////////////////////////////////////////////////////////////////////////// // State management /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::getSaveCount() const { return mSaveCount; } int OpenGLRenderer::save(int flags) { return saveSnapshot(flags); } void OpenGLRenderer::restore() { if (mSaveCount > 1) { restoreSnapshot(); } } void OpenGLRenderer::restoreToCount(int saveCount) { if (saveCount < 1) saveCount = 1; while (mSaveCount > saveCount) { restoreSnapshot(); } } int OpenGLRenderer::saveSnapshot(int flags) { mSnapshot = new Snapshot(mSnapshot, flags); return mSaveCount++; } bool OpenGLRenderer::restoreSnapshot() { bool restoreClip = mSnapshot->flags & Snapshot::kFlagClipSet; bool restoreLayer = mSnapshot->flags & Snapshot::kFlagIsLayer; bool restoreOrtho = mSnapshot->flags & Snapshot::kFlagDirtyOrtho; sp<Snapshot> current = mSnapshot; sp<Snapshot> previous = mSnapshot->previous; if (restoreOrtho) { Rect& r = previous->viewport; glViewport(r.left, r.top, r.right, r.bottom); mOrthoMatrix.load(current->orthoMatrix); } mSaveCount--; mSnapshot = previous; if (restoreClip) { dirtyClip(); } if (restoreLayer) { composeLayer(current, previous); } return restoreClip; } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom, SkPaint* p, int flags) { const GLuint previousFbo = mSnapshot->fbo; const int count = saveSnapshot(flags); if (!mSnapshot->isIgnored()) { int alpha = 255; SkXfermode::Mode mode; if (p) { alpha = p->getAlpha(); if (!mCaches.extensions.hasFramebufferFetch()) { const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode); if (!isMode) { // Assume SRC_OVER mode = SkXfermode::kSrcOver_Mode; } } else { mode = getXfermode(p->getXfermode()); } } else { mode = SkXfermode::kSrcOver_Mode; } createLayer(mSnapshot, left, top, right, bottom, alpha, mode, flags, previousFbo); } return count; } int OpenGLRenderer::saveLayerAlpha(float left, float top, float right, float bottom, int alpha, int flags) { if (alpha >= 255 - ALPHA_THRESHOLD) { return saveLayer(left, top, right, bottom, NULL, flags); } else { SkPaint paint; paint.setAlpha(alpha); return saveLayer(left, top, right, bottom, &paint, flags); } } /** * Layers are viewed by Skia are slightly different than layers in image editing * programs (for instance.) When a layer is created, previously created layers * and the frame buffer still receive every drawing command. For instance, if a * layer is created and a shape intersecting the bounds of the layers and the * framebuffer is draw, the shape will be drawn on both (unless the layer was * created with the SkCanvas::kClipToLayer_SaveFlag flag.) * * A way to implement layers is to create an FBO for each layer, backed by an RGBA * texture. Unfortunately, this is inefficient as it requires every primitive to * be drawn n + 1 times, where n is the number of active layers. In practice this * means, for every primitive: * - Switch active frame buffer * - Change viewport, clip and projection matrix * - Issue the drawing * * Switching rendering target n + 1 times per drawn primitive is extremely costly. * To avoid this, layers are implemented in a different way here, at least in the * general case. FBOs are used, as an optimization, when the "clip to layer" flag * is set. When this flag is set we can redirect all drawing operations into a * single FBO. * * This implementation relies on the frame buffer being at least RGBA 8888. When * a layer is created, only a texture is created, not an FBO. The content of the * frame buffer contained within the layer's bounds is copied into this texture * using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame * buffer and drawing continues as normal. This technique therefore treats the * frame buffer as a scratch buffer for the layers. * * To compose the layers back onto the frame buffer, each layer texture * (containing the original frame buffer data) is drawn as a simple quad over * the frame buffer. The trick is that the quad is set as the composition * destination in the blending equation, and the frame buffer becomes the source * of the composition. * * Drawing layers with an alpha value requires an extra step before composition. * An empty quad is drawn over the layer's region in the frame buffer. This quad * is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the * quad is used to multiply the colors in the frame buffer. This is achieved by * changing the GL blend functions for the GL_FUNC_ADD blend equation to * GL_ZERO, GL_SRC_ALPHA. * * Because glCopyTexImage2D() can be slow, an alternative implementation might * be use to draw a single clipped layer. The implementation described above * is correct in every case. * * (1) The frame buffer is actually not cleared right away. To allow the GPU * to potentially optimize series of calls to glCopyTexImage2D, the frame * buffer is left untouched until the first drawing operation. Only when * something actually gets drawn are the layers regions cleared. */ bool OpenGLRenderer::createLayer(sp<Snapshot> snapshot, float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags, GLuint previousFbo) { LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top); LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize()); const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag; // Window coordinates of the layer Rect bounds(left, top, right, bottom); if (!fboLayer) { mSnapshot->transform->mapRect(bounds); // Layers only make sense if they are in the framebuffer's bounds if (bounds.intersect(*snapshot->clipRect)) { // We cannot work with sub-pixels in this case bounds.snapToPixelBoundaries(); // When the layer is not an FBO, we may use glCopyTexImage so we // need to make sure the layer does not extend outside the bounds // of the framebuffer if (!bounds.intersect(snapshot->previous->viewport)) { bounds.setEmpty(); } } else { bounds.setEmpty(); } } if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize || bounds.getHeight() > mCaches.maxTextureSize) { snapshot->empty = fboLayer; } else { snapshot->invisible = snapshot->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer); } // Bail out if we won't draw in this snapshot if (snapshot->invisible || snapshot->empty) { return false; } mCaches.activeTexture(0); Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight()); if (!layer) { return false; } layer->setAlpha(alpha, mode); layer->layer.set(bounds); layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()), bounds.getWidth() / float(layer->getWidth()), 0.0f); layer->setColorFilter(mColorFilter); layer->setBlend(true); // Save the layer in the snapshot snapshot->flags |= Snapshot::kFlagIsLayer; snapshot->layer = layer; if (fboLayer) { return createFboLayer(layer, bounds, snapshot, previousFbo); } else { // Copy the framebuffer into the layer layer->bindTexture(); if (!bounds.isEmpty()) { if (layer->isEmpty()) { glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bounds.left, snapshot->height - bounds.bottom, layer->getWidth(), layer->getHeight(), 0); layer->setEmpty(false); } else { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left, snapshot->height - bounds.bottom, bounds.getWidth(), bounds.getHeight()); } // Enqueue the buffer coordinates to clear the corresponding region later mLayers.push(new Rect(bounds)); } } return true; } bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, sp<Snapshot> snapshot, GLuint previousFbo) { layer->setFbo(mCaches.fboCache.get()); #if RENDER_LAYERS_AS_REGIONS snapshot->region = &snapshot->layer->region; snapshot->flags |= Snapshot::kFlagFboTarget; #endif Rect clip(bounds); snapshot->transform->mapRect(clip); clip.intersect(*snapshot->clipRect); clip.snapToPixelBoundaries(); clip.intersect(snapshot->previous->viewport); mat4 inverse; inverse.loadInverse(*mSnapshot->transform); inverse.mapRect(clip); clip.snapToPixelBoundaries(); clip.intersect(bounds); clip.translate(-bounds.left, -bounds.top); snapshot->flags |= Snapshot::kFlagIsFboLayer; snapshot->fbo = layer->getFbo(); snapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); snapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom); snapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight()); snapshot->height = bounds.getHeight(); snapshot->flags |= Snapshot::kFlagDirtyOrtho; snapshot->orthoMatrix.load(mOrthoMatrix); // Bind texture to FBO glBindFramebuffer(GL_FRAMEBUFFER, layer->getFbo()); layer->bindTexture(); // Initialize the texture if needed if (layer->isEmpty()) { layer->allocateTexture(GL_RGBA, GL_UNSIGNED_BYTE); layer->setEmpty(false); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, layer->getTexture(), 0); #if DEBUG_LAYERS_AS_REGIONS GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { ALOGE("Framebuffer incomplete (GL error code 0x%x)", status); glBindFramebuffer(GL_FRAMEBUFFER, previousFbo); layer->deleteTexture(); mCaches.fboCache.put(layer->getFbo()); delete layer; return false; } #endif // Clear the FBO, expand the clear region by 1 to get nice bilinear filtering mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f, clip.getWidth() + 2.0f, clip.getHeight() + 2.0f); glClear(GL_COLOR_BUFFER_BIT); dirtyClip(); // Change the ortho projection glViewport(0, 0, bounds.getWidth(), bounds.getHeight()); mOrthoMatrix.loadOrtho(0.0f, bounds.getWidth(), bounds.getHeight(), 0.0f, -1.0f, 1.0f); return true; } /** * Read the documentation of createLayer() before doing anything in this method. */ void OpenGLRenderer::composeLayer(sp<Snapshot> current, sp<Snapshot> previous) { if (!current->layer) { ALOGE("Attempting to compose a layer that does not exist"); return; } const bool fboLayer = current->flags & Snapshot::kFlagIsFboLayer; if (fboLayer) { // Detach the texture from the FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); // Unbind current FBO and restore previous one glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo); } Layer* layer = current->layer; const Rect& rect = layer->layer; if (!fboLayer && layer->getAlpha() < 255) { drawColorRect(rect.left, rect.top, rect.right, rect.bottom, layer->getAlpha() << 24, SkXfermode::kDstIn_Mode, true); // Required below, composeLayerRect() will divide by 255 layer->setAlpha(255); } mCaches.unbindMeshBuffer(); mCaches.activeTexture(0); // When the layer is stored in an FBO, we can save a bit of fillrate by // drawing only the dirty region if (fboLayer) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *previous->transform); if (layer->getColorFilter()) { setupColorFilter(layer->getColorFilter()); } composeLayerRegion(layer, rect); if (layer->getColorFilter()) { resetColorFilter(); } } else if (!rect.isEmpty()) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom); composeLayerRect(layer, rect, true); } if (fboLayer) { // Note: No need to use glDiscardFramebufferEXT() since we never // create/compose layers that are not on screen with this // code path // See LayerRenderer::destroyLayer(Layer*) // Put the FBO name back in the cache, if it doesn't fit, it will be destroyed mCaches.fboCache.put(current->fbo); layer->setFbo(0); } dirtyClip(); // Failing to add the layer to the cache should happen only if the layer is too large if (!mCaches.layerCache.put(layer)) { LAYER_LOGD("Deleting layer"); layer->deleteTexture(); delete layer; } } void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) { float alpha = layer->getAlpha() / 255.0f; mat4& transform = layer->getTransform(); if (!transform.isIdentity()) { save(0); mSnapshot->transform->multiply(transform); } setupDraw(); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawWithTexture(); } else { setupDrawWithExternalTexture(); } setupDrawTextureTransform(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode()); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawTexture(layer->getTexture()); } else { setupDrawExternalTexture(layer->getTexture()); } if (mSnapshot->transform->isPureTranslate() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight()) { const float x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelView(x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelView(rect.left, rect.top, rect.right, rect.bottom); } setupDrawTextureTransformUniforms(layer->getTexTransform()); setupDrawMesh(&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0]); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); finishDrawTexture(); if (!transform.isIdentity()) { restore(); } } void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) { if (!layer->isTextureLayer()) { const Rect& texCoords = layer->texCoords; resetDrawTextureTexCoords(texCoords.left, texCoords.top, texCoords.right, texCoords.bottom); float x = rect.left; float y = rect.top; bool simpleTransform = mSnapshot->transform->isPureTranslate() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight(); if (simpleTransform) { // When we're swapping, the layer is already in screen coordinates if (!swap) { x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f); y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f); } layer->setFilter(GL_NEAREST, true); } else { layer->setFilter(GL_LINEAR, true); } drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(), layer->getTexture(), layer->getAlpha() / 255.0f, layer->getMode(), layer->isBlend(), &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } else { resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f); drawTextureLayer(layer, rect); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } } void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) { #if RENDER_LAYERS_AS_REGIONS if (layer->region.isRect()) { layer->setRegionAsRect(); composeLayerRect(layer, layer->regionRect); layer->region.clear(); return; } // TODO: See LayerRenderer.cpp::generateMesh() for important // information about this implementation if (CC_LIKELY(!layer->region.isEmpty())) { size_t count; const android::Rect* rects = layer->region.getArray(&count); const float alpha = layer->getAlpha() / 255.0f; const float texX = 1.0f / float(layer->getWidth()); const float texY = 1.0f / float(layer->getHeight()); const float height = rect.getHeight(); TextureVertex* mesh = mCaches.getRegionMesh(); GLsizei numQuads = 0; setupDraw(); setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode(), false); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawTexture(layer->getTexture()); if (mSnapshot->transform->isPureTranslate()) { const float x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelViewTranslate(x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelViewTranslate(rect.left, rect.top, rect.right, rect.bottom); } setupDrawMeshIndices(&mesh[0].position[0], &mesh[0].texture[0]); for (size_t i = 0; i < count; i++) { const android::Rect* r = &rects[i]; const float u1 = r->left * texX; const float v1 = (height - r->top) * texY; const float u2 = r->right * texX; const float v2 = (height - r->bottom) * texY; // TODO: Reject quads outside of the clip TextureVertex::set(mesh++, r->left, r->top, u1, v1); TextureVertex::set(mesh++, r->right, r->top, u2, v1); TextureVertex::set(mesh++, r->left, r->bottom, u1, v2); TextureVertex::set(mesh++, r->right, r->bottom, u2, v2); numQuads++; if (numQuads >= REGION_MESH_QUAD_COUNT) { glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL); numQuads = 0; mesh = mCaches.getRegionMesh(); } } if (numQuads > 0) { glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL); } finishDrawTexture(); #if DEBUG_LAYERS_AS_REGIONS drawRegionRects(layer->region); #endif layer->region.clear(); } #else composeLayerRect(layer, rect); #endif } void OpenGLRenderer::drawRegionRects(const Region& region) { #if DEBUG_LAYERS_AS_REGIONS size_t count; const android::Rect* rects = region.getArray(&count); uint32_t colors[] = { 0x7fff0000, 0x7f00ff00, 0x7f0000ff, 0x7fff00ff, }; int offset = 0; int32_t top = rects[0].top; for (size_t i = 0; i < count; i++) { if (top != rects[i].top) { offset ^= 0x2; top = rects[i].top; } Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom); drawColorRect(r.left, r.top, r.right, r.bottom, colors[offset + (i & 0x1)], SkXfermode::kSrcOver_Mode); } #endif } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom, const mat4 transform) { #if RENDER_LAYERS_AS_REGIONS if (hasLayer()) { Rect bounds(left, top, right, bottom); transform.mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } #endif } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom) { #if RENDER_LAYERS_AS_REGIONS if (hasLayer()) { Rect bounds(left, top, right, bottom); dirtyLayerUnchecked(bounds, getRegion()); } #endif } void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) { #if RENDER_LAYERS_AS_REGIONS if (bounds.intersect(*mSnapshot->clipRect)) { bounds.snapToPixelBoundaries(); android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom); if (!dirty.isEmpty()) { region->orSelf(dirty); } } #endif } void OpenGLRenderer::clearLayerRegions() { const size_t count = mLayers.size(); if (count == 0) return; if (!mSnapshot->isIgnored()) { // Doing several glScissor/glClear here can negatively impact // GPUs with a tiler architecture, instead we draw quads with // the Clear blending mode // The list contains bounds that have already been clipped // against their initial clip rect, and the current clip // is likely different so we need to disable clipping here glDisable(GL_SCISSOR_TEST); Vertex mesh[count * 6]; Vertex* vertex = mesh; for (uint32_t i = 0; i < count; i++) { Rect* bounds = mLayers.itemAt(i); Vertex::set(vertex++, bounds->left, bounds->bottom); Vertex::set(vertex++, bounds->left, bounds->top); Vertex::set(vertex++, bounds->right, bounds->top); Vertex::set(vertex++, bounds->left, bounds->bottom); Vertex::set(vertex++, bounds->right, bounds->top); Vertex::set(vertex++, bounds->right, bounds->bottom); delete bounds; } setupDraw(false); setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f); setupDrawBlending(true, SkXfermode::kClear_Mode); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawModelViewTranslate(0.0f, 0.0f, 0.0f, 0.0f, true); setupDrawVertices(&mesh[0].position[0]); glDrawArrays(GL_TRIANGLES, 0, count * 6); glEnable(GL_SCISSOR_TEST); } else { for (uint32_t i = 0; i < count; i++) { delete mLayers.itemAt(i); } } mLayers.clear(); } /////////////////////////////////////////////////////////////////////////////// // Transforms /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::translate(float dx, float dy) { mSnapshot->transform->translate(dx, dy, 0.0f); } void OpenGLRenderer::rotate(float degrees) { mSnapshot->transform->rotate(degrees, 0.0f, 0.0f, 1.0f); } void OpenGLRenderer::scale(float sx, float sy) { mSnapshot->transform->scale(sx, sy, 1.0f); } void OpenGLRenderer::skew(float sx, float sy) { mSnapshot->transform->skew(sx, sy); } void OpenGLRenderer::setMatrix(SkMatrix* matrix) { if (matrix) { mSnapshot->transform->load(*matrix); } else { mSnapshot->transform->loadIdentity(); } } void OpenGLRenderer::getMatrix(SkMatrix* matrix) { mSnapshot->transform->copyTo(*matrix); } void OpenGLRenderer::concatMatrix(SkMatrix* matrix) { SkMatrix transform; mSnapshot->transform->copyTo(transform); transform.preConcat(*matrix); mSnapshot->transform->load(transform); } /////////////////////////////////////////////////////////////////////////////// // Clipping /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setScissorFromClip() { Rect clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); mCaches.setScissor(clip.left, mSnapshot->height - clip.bottom, clip.getWidth(), clip.getHeight()); mDirtyClip = false; } const Rect& OpenGLRenderer::getClipBounds() { return mSnapshot->getLocalClip(); } bool OpenGLRenderer::quickReject(float left, float top, float right, float bottom) { if (mSnapshot->isIgnored()) { return true; } Rect r(left, top, right, bottom); mSnapshot->transform->mapRect(r); r.snapToPixelBoundaries(); Rect clipRect(*mSnapshot->clipRect); clipRect.snapToPixelBoundaries(); return !clipRect.intersects(r); } bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) { bool clipped = mSnapshot->clip(left, top, right, bottom, op); if (clipped) { dirtyClip(); } return !mSnapshot->clipRect->isEmpty(); } Rect* OpenGLRenderer::getClipRect() { return mSnapshot->clipRect; } /////////////////////////////////////////////////////////////////////////////// // Drawing commands /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setupDraw(bool clear) { if (clear) clearLayerRegions(); if (mDirtyClip) { setScissorFromClip(); } mDescription.reset(); mSetShaderColor = false; mColorSet = false; mColorA = mColorR = mColorG = mColorB = 0.0f; mTextureUnit = 0; mTrackDirtyRegions = true; } void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) { mDescription.hasTexture = true; mDescription.hasAlpha8Texture = isAlpha8; } void OpenGLRenderer::setupDrawWithExternalTexture() { mDescription.hasExternalTexture = true; } void OpenGLRenderer::setupDrawNoTexture() { mCaches.disbaleTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawAALine() { mDescription.isAA = true; } void OpenGLRenderer::setupDrawPoint(float pointSize) { mDescription.isPoint = true; mDescription.pointSize = pointSize; } void OpenGLRenderer::setupDrawColor(int color) { setupDrawColor(color, (color >> 24) & 0xFF); } void OpenGLRenderer::setupDrawColor(int color, int alpha) { mColorA = alpha / 255.0f; mColorA *= mSnapshot->alpha; // Second divide of a by 255 is an optimization, allowing us to simply multiply // the rgb values by a instead of also dividing by 255 const float a = mColorA / 255.0f; mColorR = a * ((color >> 16) & 0xFF); mColorG = a * ((color >> 8) & 0xFF); mColorB = a * ((color ) & 0xFF); mColorSet = true; mSetShaderColor = mDescription.setColor(mColorR, mColorG, mColorB, mColorA); } void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) { mColorA = alpha / 255.0f; // Double-divide of a by 255 is an optimization, allowing us to simply multiply // the rgb values by a instead of also dividing by 255 const float a = mColorA / 255.0f; mColorR = a * ((color >> 16) & 0xFF); mColorG = a * ((color >> 8) & 0xFF); mColorB = a * ((color ) & 0xFF); mColorSet = true; mSetShaderColor = mDescription.setAlpha8Color(mColorR, mColorG, mColorB, mColorA); } void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) { mColorA = a; mColorR = r; mColorG = g; mColorB = b; mColorSet = true; mSetShaderColor = mDescription.setColor(r, g, b, a); } void OpenGLRenderer::setupDrawAlpha8Color(float r, float g, float b, float a) { mColorA = a; mColorR = r; mColorG = g; mColorB = b; mColorSet = true; mSetShaderColor = mDescription.setAlpha8Color(r, g, b, a); } void OpenGLRenderer::setupDrawShader() { if (mShader) { mShader->describe(mDescription, mCaches.extensions); } } void OpenGLRenderer::setupDrawColorFilter() { if (mColorFilter) { mColorFilter->describe(mDescription, mCaches.extensions); } } void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) { if (mColorSet && mode == SkXfermode::kClear_Mode) { mColorA = 1.0f; mColorR = mColorG = mColorB = 0.0f; mSetShaderColor = mDescription.modulate = true; } } void OpenGLRenderer::setupDrawBlending(SkXfermode::Mode mode, bool swapSrcDst) { // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); chooseBlending((mColorSet && mColorA < 1.0f) || (mShader && mShader->blend()), mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawBlending(bool blend, SkXfermode::Mode mode, bool swapSrcDst) { // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); chooseBlending(blend || (mColorSet && mColorA < 1.0f) || (mShader && mShader->blend()), mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawProgram() { useProgram(mCaches.programCache.get(mDescription)); } void OpenGLRenderer::setupDrawDirtyRegionsDisabled() { mTrackDirtyRegions = false; } void OpenGLRenderer::setupDrawModelViewTranslate(float left, float top, float right, float bottom, bool ignoreTransform) { mModelView.loadTranslate(left, top, 0.0f); if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom, *mSnapshot->transform); } else { mCaches.currentProgram->set(mOrthoMatrix, mModelView, mIdentity); if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom); } } void OpenGLRenderer::setupDrawModelViewIdentity(bool offset) { mCaches.currentProgram->set(mOrthoMatrix, mIdentity, *mSnapshot->transform, offset); } void OpenGLRenderer::setupDrawModelView(float left, float top, float right, float bottom, bool ignoreTransform, bool ignoreModelView) { if (!ignoreModelView) { mModelView.loadTranslate(left, top, 0.0f); mModelView.scale(right - left, bottom - top, 1.0f); } else { mModelView.loadIdentity(); } bool dirty = right - left > 0.0f && bottom - top > 0.0f; if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); if (mTrackDirtyRegions && dirty) { dirtyLayer(left, top, right, bottom, *mSnapshot->transform); } } else { mCaches.currentProgram->set(mOrthoMatrix, mModelView, mIdentity); if (mTrackDirtyRegions && dirty) dirtyLayer(left, top, right, bottom); } } void OpenGLRenderer::setupDrawPointUniforms() { int slot = mCaches.currentProgram->getUniform("pointSize"); glUniform1f(slot, mDescription.pointSize); } void OpenGLRenderer::setupDrawColorUniforms() { if ((mColorSet && !mShader) || (mShader && mSetShaderColor)) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawPureColorUniforms() { if (mSetShaderColor) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawShaderUniforms(bool ignoreTransform) { if (mShader) { if (ignoreTransform) { mModelView.loadInverse(*mSnapshot->transform); } mShader->setupProgram(mCaches.currentProgram, mModelView, *mSnapshot, &mTextureUnit); } } void OpenGLRenderer::setupDrawShaderIdentityUniforms() { if (mShader) { mShader->setupProgram(mCaches.currentProgram, mIdentity, *mSnapshot, &mTextureUnit); } } void OpenGLRenderer::setupDrawColorFilterUniforms() { if (mColorFilter) { mColorFilter->setupProgram(mCaches.currentProgram); } } void OpenGLRenderer::setupDrawSimpleMesh() { bool force = mCaches.bindMeshBuffer(); mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, 0); mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawTexture(GLuint texture) { bindTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) { bindExternalTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawTextureTransform() { mDescription.hasTextureTransform = true; } void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) { glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1, GL_FALSE, &transform.data[0]); } void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLuint vbo) { bool force = false; if (!vertices) { force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { force = mCaches.unbindMeshBuffer(); } mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, mCaches.currentProgram->texCoords, texCoords); } mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawMeshIndices(GLvoid* vertices, GLvoid* texCoords) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, mCaches.currentProgram->texCoords, texCoords); } } void OpenGLRenderer::setupDrawVertices(GLvoid* vertices) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices, gVertexStride); mCaches.unbindIndicesBuffer(); } /** * Sets up the shader to draw an AA line. We draw AA lines with quads, where there is an * outer boundary that fades out to 0. The variables set in the shader define the proportion of * the width and length of the primitive occupied by the AA region. The vtxWidth and vtxLength * attributes (one per vertex) are values from zero to one that tells the fragment * shader where the fragment is in relation to the line width/length overall; these values are * then used to compute the proper color, based on whether the fragment lies in the fading AA * region of the line. * Note that we only pass down the width values in this setup function. The length coordinates * are set up for each individual segment. */ void OpenGLRenderer::setupDrawAALine(GLvoid* vertices, GLvoid* widthCoords, GLvoid* lengthCoords, float boundaryWidthProportion, int& widthSlot, int& lengthSlot) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices, gAAVertexStride); mCaches.resetTexCoordsVertexPointer(); mCaches.unbindIndicesBuffer(); widthSlot = mCaches.currentProgram->getAttrib("vtxWidth"); glEnableVertexAttribArray(widthSlot); glVertexAttribPointer(widthSlot, 1, GL_FLOAT, GL_FALSE, gAAVertexStride, widthCoords); lengthSlot = mCaches.currentProgram->getAttrib("vtxLength"); glEnableVertexAttribArray(lengthSlot); glVertexAttribPointer(lengthSlot, 1, GL_FLOAT, GL_FALSE, gAAVertexStride, lengthCoords); int boundaryWidthSlot = mCaches.currentProgram->getUniform("boundaryWidth"); glUniform1f(boundaryWidthSlot, boundaryWidthProportion); // Setting the inverse value saves computations per-fragment in the shader int inverseBoundaryWidthSlot = mCaches.currentProgram->getUniform("inverseBoundaryWidth"); glUniform1f(inverseBoundaryWidthSlot, 1.0f / boundaryWidthProportion); } void OpenGLRenderer::finishDrawAALine(const int widthSlot, const int lengthSlot) { glDisableVertexAttribArray(widthSlot); glDisableVertexAttribArray(lengthSlot); } void OpenGLRenderer::finishDrawTexture() { } /////////////////////////////////////////////////////////////////////////////// // Drawing /////////////////////////////////////////////////////////////////////////////// status_t OpenGLRenderer::drawDisplayList(DisplayList* displayList, Rect& dirty, int32_t flags, uint32_t level) { // All the usual checks and setup operations (quickReject, setupDraw, etc.) // will be performed by the display list itself if (displayList && displayList->isRenderable()) { return displayList->replay(*this, dirty, flags, level); } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::outputDisplayList(DisplayList* displayList, uint32_t level) { if (displayList) { displayList->output(*this, level); } } void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); float x = left; float y = top; GLenum filter = GL_LINEAR; bool ignoreTransform = false; if (mSnapshot->transform->isPureTranslate()) { x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f); y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f); ignoreTransform = true; filter = GL_NEAREST; } else { filter = FILTER(paint); } setupDraw(); setupDrawWithTexture(true); if (paint) { setupDrawAlpha8Color(paint->getColor(), alpha); } setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(x, y, x + texture->width, y + texture->height, ignoreTransform); setupDrawTexture(texture->id); texture->setWrap(GL_CLAMP_TO_EDGE); texture->setFilter(filter); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); finishDrawTexture(); } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, left, top, paint); } else { drawTextureRect(left, top, right, bottom, texture, paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) { Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height()); const mat4 transform(*matrix); transform.mapRect(r); if (quickReject(r.left, r.top, r.right, r.bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); // This could be done in a cheaper way, all we need is pass the matrix // to the vertex shader. The save/restore is a bit overkill. save(SkCanvas::kMatrix_SaveFlag); concatMatrix(matrix); drawTextureRect(0.0f, 0.0f, bitmap->width(), bitmap->height(), texture, paint); restore(); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapData(SkBitmap* bitmap, float left, float top, SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.getTransient(bitmap); const AutoTexture autoCleanup(texture); drawTextureRect(left, top, right, bottom, texture, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapMesh(SkBitmap* bitmap, int meshWidth, int meshHeight, float* vertices, int* colors, SkPaint* paint) { // TODO: Do a quickReject if (!vertices || mSnapshot->isIgnored()) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(FILTER(paint), true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); const uint32_t count = meshWidth * meshHeight * 6; float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; #if RENDER_LAYERS_AS_REGIONS const bool hasActiveLayer = hasLayer(); #else const bool hasActiveLayer = false; #endif // TODO: Support the colors array TextureVertex mesh[count]; TextureVertex* vertex = mesh; for (int32_t y = 0; y < meshHeight; y++) { for (int32_t x = 0; x < meshWidth; x++) { uint32_t i = (y * (meshWidth + 1) + x) * 2; float u1 = float(x) / meshWidth; float u2 = float(x + 1) / meshWidth; float v1 = float(y) / meshHeight; float v2 = float(y + 1) / meshHeight; int ax = i + (meshWidth + 1) * 2; int ay = ax + 1; int bx = i; int by = bx + 1; int cx = i + 2; int cy = cx + 1; int dx = i + (meshWidth + 1) * 2 + 2; int dy = dx + 1; TextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2); TextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1); TextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1); TextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2); TextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1); TextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2); #if RENDER_LAYERS_AS_REGIONS if (hasActiveLayer) { // TODO: This could be optimized to avoid unnecessary ops left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx]))); top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy]))); right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx]))); bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy]))); } #endif } } #if RENDER_LAYERS_AS_REGIONS if (hasActiveLayer) { dirtyLayer(left, top, right, bottom, *mSnapshot->transform); } #endif drawTextureMesh(0.0f, 0.0f, 1.0f, 1.0f, texture->id, alpha / 255.0f, mode, texture->blend, &mesh[0].position[0], &mesh[0].texture[0], GL_TRIANGLES, count, false, false, 0, false, false); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom, float dstLeft, float dstTop, float dstRight, float dstBottom, SkPaint* paint) { if (quickReject(dstLeft, dstTop, dstRight, dstBottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float width = texture->width; const float height = texture->height; const float u1 = fmax(0.0f, srcLeft / width); const float v1 = fmax(0.0f, srcTop / height); const float u2 = fmin(1.0f, srcRight / width); const float v2 = fmin(1.0f, srcBottom / height); mCaches.unbindMeshBuffer(); resetDrawTextureTexCoords(u1, v1, u2, v2); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); texture->setWrap(GL_CLAMP_TO_EDGE, true); if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) { const float x = (int) floorf(dstLeft + mSnapshot->transform->getTranslateX() + 0.5f); const float y = (int) floorf(dstTop + mSnapshot->transform->getTranslateY() + 0.5f); GLenum filter = GL_NEAREST; // Enable linear filtering if the source rectangle is scaled if (srcRight - srcLeft != dstRight - dstLeft || srcBottom - srcTop != dstBottom - dstTop) { filter = FILTER(paint); } texture->setFilter(filter, true); drawTextureMesh(x, y, x + (dstRight - dstLeft), y + (dstBottom - dstTop), texture->id, alpha / 255.0f, mode, texture->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, false, true); } else { texture->setFilter(FILTER(paint), true); drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, alpha / 255.0f, mode, texture->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount); } resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs, const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors, float left, float top, float right, float bottom, SkPaint* paint) { if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(GL_LINEAR, true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); const Patch* mesh = mCaches.patchCache.get(bitmap->width(), bitmap->height(), right - left, bottom - top, xDivs, yDivs, colors, width, height, numColors); if (CC_LIKELY(mesh && mesh->verticesCount > 0)) { const bool pureTranslate = mSnapshot->transform->isPureTranslate(); #if RENDER_LAYERS_AS_REGIONS // Mark the current layer dirty where we are going to draw the patch if (hasLayer() && mesh->hasEmptyQuads) { const float offsetX = left + mSnapshot->transform->getTranslateX(); const float offsetY = top + mSnapshot->transform->getTranslateY(); const size_t count = mesh->quads.size(); for (size_t i = 0; i < count; i++) { const Rect& bounds = mesh->quads.itemAt(i); if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(bounds.left + offsetX + 0.5f); const float y = (int) floorf(bounds.top + offsetY + 0.5f); dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight()); } else { dirtyLayer(left + bounds.left, top + bounds.top, left + bounds.right, top + bounds.bottom, *mSnapshot->transform); } } } #endif if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f); const float y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f); drawTextureMesh(x, y, x + right - left, y + bottom - top, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, GL_TRIANGLES, mesh->verticesCount, false, true, mesh->meshBuffer, true, !mesh->hasEmptyQuads); } else { drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, GL_TRIANGLES, mesh->verticesCount, false, false, mesh->meshBuffer, true, !mesh->hasEmptyQuads); } } return DrawGlInfo::kStatusDrew; } /** * This function uses a similar approach to that of AA lines in the drawLines() function. * We expand the rectangle by a half pixel in screen space on all sides, and use a fragment * shader to compute the translucency of the color, determined by whether a given pixel is * within that boundary region and how far into the region it is. */ void OpenGLRenderer::drawAARect(float left, float top, float right, float bottom, int color, SkXfermode::Mode mode) { float inverseScaleX = 1.0f; float inverseScaleY = 1.0f; // The quad that we use needs to account for scaling. if (CC_UNLIKELY(!mSnapshot->transform->isPureTranslate())) { Matrix4 *mat = mSnapshot->transform; float m00 = mat->data[Matrix4::kScaleX]; float m01 = mat->data[Matrix4::kSkewY]; float m02 = mat->data[2]; float m10 = mat->data[Matrix4::kSkewX]; float m11 = mat->data[Matrix4::kScaleX]; float m12 = mat->data[6]; float scaleX = sqrt(m00 * m00 + m01 * m01); float scaleY = sqrt(m10 * m10 + m11 * m11); inverseScaleX = (scaleX != 0) ? (inverseScaleX / scaleX) : 0; inverseScaleY = (scaleY != 0) ? (inverseScaleY / scaleY) : 0; } setupDraw(); setupDrawNoTexture(); setupDrawAALine(); setupDrawColor(color); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelViewIdentity(true); setupDrawColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderIdentityUniforms(); AAVertex rects[4]; AAVertex* aaVertices = &rects[0]; void* widthCoords = ((GLbyte*) aaVertices) + gVertexAAWidthOffset; void* lengthCoords = ((GLbyte*) aaVertices) + gVertexAALengthOffset; float boundarySizeX = .5 * inverseScaleX; float boundarySizeY = .5 * inverseScaleY; // Adjust the rect by the AA boundary padding left -= boundarySizeX; right += boundarySizeX; top -= boundarySizeY; bottom += boundarySizeY; float width = right - left; float height = bottom - top; int widthSlot; int lengthSlot; float boundaryWidthProportion = (width != 0) ? (2 * boundarySizeX) / width : 0; float boundaryHeightProportion = (height != 0) ? (2 * boundarySizeY) / height : 0; setupDrawAALine((void*) aaVertices, widthCoords, lengthCoords, boundaryWidthProportion, widthSlot, lengthSlot); int boundaryLengthSlot = mCaches.currentProgram->getUniform("boundaryLength"); int inverseBoundaryLengthSlot = mCaches.currentProgram->getUniform("inverseBoundaryLength"); glUniform1f(boundaryLengthSlot, boundaryHeightProportion); glUniform1f(inverseBoundaryLengthSlot, (1.0f / boundaryHeightProportion)); if (!quickReject(left, top, right, bottom)) { AAVertex::set(aaVertices++, left, bottom, 1, 1); AAVertex::set(aaVertices++, left, top, 1, 0); AAVertex::set(aaVertices++, right, bottom, 0, 1); AAVertex::set(aaVertices++, right, top, 0, 0); dirtyLayer(left, top, right, bottom, *mSnapshot->transform); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } finishDrawAALine(widthSlot, lengthSlot); } /** * We draw lines as quads (tristrips). Using GL_LINES can be difficult because the rasterization * rules for those lines produces some unexpected results, and may vary between hardware devices. * The basics of lines-as-quads is easy; we simply find the normal to the line and position the * corners of the quads on either side of each line endpoint, separated by the strokeWidth * of the line. Hairlines are more involved because we need to account for transform scaling * to end up with a one-pixel-wide line in screen space.. * Anti-aliased lines add another factor to the approach. We use a specialized fragment shader * in combination with values that we calculate and pass down in this method. The basic approach * is that the quad we create contains both the core line area plus a bounding area in which * the translucent/AA pixels are drawn. The values we calculate tell the shader what * proportion of the width and the length of a given segment is represented by the boundary * region. The quad ends up being exactly .5 pixel larger in all directions than the non-AA quad. * The bounding region is actually 1 pixel wide on all sides (half pixel on the outside, half pixel * on the inside). This ends up giving the result we want, with pixels that are completely * 'inside' the line area being filled opaquely and the other pixels being filled according to * how far into the boundary region they are, which is determined by shader interpolation. */ status_t OpenGLRenderer::drawLines(float* points, int count, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; const bool isAA = paint->isAntiAlias(); // We use half the stroke width here because we're going to position the quad // corner vertices half of the width away from the line endpoints float halfStrokeWidth = paint->getStrokeWidth() * 0.5f; // A stroke width of 0 has a special meaning in Skia: // it draws a line 1 px wide regardless of current transform bool isHairLine = paint->getStrokeWidth() == 0.0f; float inverseScaleX = 1.0f; float inverseScaleY = 1.0f; bool scaled = false; int alpha; SkXfermode::Mode mode; int generatedVerticesCount = 0; int verticesCount = count; if (count > 4) { // Polyline: account for extra vertices needed for continuous tri-strip verticesCount += (count - 4); } if (isHairLine || isAA) { // The quad that we use for AA and hairlines needs to account for scaling. For hairlines // the line on the screen should always be one pixel wide regardless of scale. For // AA lines, we only want one pixel of translucent boundary around the quad. if (CC_UNLIKELY(!mSnapshot->transform->isPureTranslate())) { Matrix4 *mat = mSnapshot->transform; float m00 = mat->data[Matrix4::kScaleX]; float m01 = mat->data[Matrix4::kSkewY]; float m02 = mat->data[2]; float m10 = mat->data[Matrix4::kSkewX]; float m11 = mat->data[Matrix4::kScaleX]; float m12 = mat->data[6]; float scaleX = sqrtf(m00 * m00 + m01 * m01); float scaleY = sqrtf(m10 * m10 + m11 * m11); inverseScaleX = (scaleX != 0) ? (inverseScaleX / scaleX) : 0; inverseScaleY = (scaleY != 0) ? (inverseScaleY / scaleY) : 0; if (inverseScaleX != 1.0f || inverseScaleY != 1.0f) { scaled = true; } } } getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawNoTexture(); if (isAA) { setupDrawAALine(); } setupDrawColor(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(isAA, mode); setupDrawProgram(); setupDrawModelViewIdentity(true); setupDrawColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderIdentityUniforms(); if (isHairLine) { // Set a real stroke width to be used in quad construction halfStrokeWidth = isAA? 1 : .5; } else if (isAA && !scaled) { // Expand boundary to enable AA calculations on the quad border halfStrokeWidth += .5f; } int widthSlot; int lengthSlot; Vertex lines[verticesCount]; Vertex* vertices = &lines[0]; AAVertex wLines[verticesCount]; AAVertex* aaVertices = &wLines[0]; if (CC_UNLIKELY(!isAA)) { setupDrawVertices(vertices); } else { void* widthCoords = ((GLbyte*) aaVertices) + gVertexAAWidthOffset; void* lengthCoords = ((GLbyte*) aaVertices) + gVertexAALengthOffset; // innerProportion is the ratio of the inner (non-AA) part of the line to the total // AA stroke width (the base stroke width expanded by a half pixel on either side). // This value is used in the fragment shader to determine how to fill fragments. // We will need to calculate the actual width proportion on each segment for // scaled non-hairlines, since the boundary proportion may differ per-axis when scaled. float boundaryWidthProportion = 1 / (2 * halfStrokeWidth); setupDrawAALine((void*) aaVertices, widthCoords, lengthCoords, boundaryWidthProportion, widthSlot, lengthSlot); } AAVertex* prevAAVertex = NULL; Vertex* prevVertex = NULL; int boundaryLengthSlot = -1; int inverseBoundaryLengthSlot = -1; int boundaryWidthSlot = -1; int inverseBoundaryWidthSlot = -1; for (int i = 0; i < count; i += 4) { // a = start point, b = end point vec2 a(points[i], points[i + 1]); vec2 b(points[i + 2], points[i + 3]); float length = 0; float boundaryLengthProportion = 0; float boundaryWidthProportion = 0; // Find the normal to the line vec2 n = (b - a).copyNormalized() * halfStrokeWidth; if (isHairLine) { if (isAA) { float wideningFactor; if (fabs(n.x) >= fabs(n.y)) { wideningFactor = fabs(1.0f / n.x); } else { wideningFactor = fabs(1.0f / n.y); } n *= wideningFactor; } if (scaled) { n.x *= inverseScaleX; n.y *= inverseScaleY; } } else if (scaled) { // Extend n by .5 pixel on each side, post-transform vec2 extendedN = n.copyNormalized(); extendedN /= 2; extendedN.x *= inverseScaleX; extendedN.y *= inverseScaleY; float extendedNLength = extendedN.length(); // We need to set this value on the shader prior to drawing boundaryWidthProportion = extendedNLength / (halfStrokeWidth + extendedNLength); n += extendedN; } float x = n.x; n.x = -n.y; n.y = x; // aa lines expand the endpoint vertices to encompass the AA boundary if (isAA) { vec2 abVector = (b - a); length = abVector.length(); abVector.normalize(); if (scaled) { abVector.x *= inverseScaleX; abVector.y *= inverseScaleY; float abLength = abVector.length(); boundaryLengthProportion = abLength / (length + abLength); } else { boundaryLengthProportion = .5 / (length + 1); } abVector /= 2; a -= abVector; b += abVector; } // Four corners of the rectangle defining a thick line vec2 p1 = a - n; vec2 p2 = a + n; vec2 p3 = b + n; vec2 p4 = b - n; const float left = fmin(p1.x, fmin(p2.x, fmin(p3.x, p4.x))); const float right = fmax(p1.x, fmax(p2.x, fmax(p3.x, p4.x))); const float top = fmin(p1.y, fmin(p2.y, fmin(p3.y, p4.y))); const float bottom = fmax(p1.y, fmax(p2.y, fmax(p3.y, p4.y))); if (!quickReject(left, top, right, bottom)) { if (!isAA) { if (prevVertex != NULL) { // Issue two repeat vertices to create degenerate triangles to bridge // between the previous line and the new one. This is necessary because // we are creating a single triangle_strip which will contain // potentially discontinuous line segments. Vertex::set(vertices++, prevVertex->position[0], prevVertex->position[1]); Vertex::set(vertices++, p1.x, p1.y); generatedVerticesCount += 2; } Vertex::set(vertices++, p1.x, p1.y); Vertex::set(vertices++, p2.x, p2.y); Vertex::set(vertices++, p4.x, p4.y); Vertex::set(vertices++, p3.x, p3.y); prevVertex = vertices - 1; generatedVerticesCount += 4; } else { if (!isHairLine && scaled) { // Must set width proportions per-segment for scaled non-hairlines to use the // correct AA boundary dimensions if (boundaryWidthSlot < 0) { boundaryWidthSlot = mCaches.currentProgram->getUniform("boundaryWidth"); inverseBoundaryWidthSlot = mCaches.currentProgram->getUniform("inverseBoundaryWidth"); } glUniform1f(boundaryWidthSlot, boundaryWidthProportion); glUniform1f(inverseBoundaryWidthSlot, (1 / boundaryWidthProportion)); } if (boundaryLengthSlot < 0) { boundaryLengthSlot = mCaches.currentProgram->getUniform("boundaryLength"); inverseBoundaryLengthSlot = mCaches.currentProgram->getUniform("inverseBoundaryLength"); } glUniform1f(boundaryLengthSlot, boundaryLengthProportion); glUniform1f(inverseBoundaryLengthSlot, (1 / boundaryLengthProportion)); if (prevAAVertex != NULL) { // Issue two repeat vertices to create degenerate triangles to bridge // between the previous line and the new one. This is necessary because // we are creating a single triangle_strip which will contain // potentially discontinuous line segments. AAVertex::set(aaVertices++,prevAAVertex->position[0], prevAAVertex->position[1], prevAAVertex->width, prevAAVertex->length); AAVertex::set(aaVertices++, p4.x, p4.y, 1, 1); generatedVerticesCount += 2; } AAVertex::set(aaVertices++, p4.x, p4.y, 1, 1); AAVertex::set(aaVertices++, p1.x, p1.y, 1, 0); AAVertex::set(aaVertices++, p3.x, p3.y, 0, 1); AAVertex::set(aaVertices++, p2.x, p2.y, 0, 0); prevAAVertex = aaVertices - 1; generatedVerticesCount += 4; } dirtyLayer(a.x == b.x ? left - 1 : left, a.y == b.y ? top - 1 : top, a.x == b.x ? right: right, a.y == b.y ? bottom: bottom, *mSnapshot->transform); } } if (generatedVerticesCount > 0) { glDrawArrays(GL_TRIANGLE_STRIP, 0, generatedVerticesCount); } if (isAA) { finishDrawAALine(widthSlot, lengthSlot); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPoints(float* points, int count, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; // TODO: The paint's cap style defines whether the points are square or circular // TODO: Handle AA for round points // A stroke width of 0 has a special meaning in Skia: // it draws an unscaled 1px point float strokeWidth = paint->getStrokeWidth(); const bool isHairLine = paint->getStrokeWidth() == 0.0f; if (isHairLine) { // Now that we know it's hairline, we can set the effective width, to be used later strokeWidth = 1.0f; } const float halfWidth = strokeWidth / 2; int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); int verticesCount = count >> 1; int generatedVerticesCount = 0; TextureVertex pointsData[verticesCount]; TextureVertex* vertex = &pointsData[0]; setupDraw(); setupDrawNoTexture(); setupDrawPoint(strokeWidth); setupDrawColor(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(mode); setupDrawProgram(); setupDrawModelViewIdentity(true); setupDrawColorUniforms(); setupDrawColorFilterUniforms(); setupDrawPointUniforms(); setupDrawShaderIdentityUniforms(); setupDrawMesh(vertex); for (int i = 0; i < count; i += 2) { TextureVertex::set(vertex++, points[i], points[i + 1], 0.0f, 0.0f); generatedVerticesCount++; float left = points[i] - halfWidth; float right = points[i] + halfWidth; float top = points[i + 1] - halfWidth; float bottom = points [i + 1] + halfWidth; dirtyLayer(left, top, right, bottom, *mSnapshot->transform); } glDrawArrays(GL_POINTS, 0, generatedVerticesCount); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) { // No need to check against the clip, we fill the clip region if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; Rect& clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); drawColorRect(clip.left, clip.top, clip.right, clip.bottom, color, mode, true); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture, SkPaint* paint) { if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = left + texture->left - texture->offset; const float y = top + texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom, float rx, float ry, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.roundRectShapeCache.getRoundRect( right - left, bottom - top, rx, ry, paint); return drawShape(left, top, texture, paint); } status_t OpenGLRenderer::drawCircle(float x, float y, float radius, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.circleShapeCache.getCircle(radius, paint); return drawShape(x - radius, y - radius, texture, paint); } status_t OpenGLRenderer::drawOval(float left, float top, float right, float bottom, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.ovalShapeCache.getOval(right - left, bottom - top, paint); return drawShape(left, top, texture, paint); } status_t OpenGLRenderer::drawArc(float left, float top, float right, float bottom, float startAngle, float sweepAngle, bool useCenter, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; if (fabs(sweepAngle) >= 360.0f) { return drawOval(left, top, right, bottom, paint); } mCaches.activeTexture(0); const PathTexture* texture = mCaches.arcShapeCache.getArc(right - left, bottom - top, startAngle, sweepAngle, useCenter, paint); return drawShape(left, top, texture, paint); } status_t OpenGLRenderer::drawRectAsShape(float left, float top, float right, float bottom, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.rectShapeCache.getRect(right - left, bottom - top, paint); return drawShape(left, top, texture, paint); } status_t OpenGLRenderer::drawRect(float left, float top, float right, float bottom, SkPaint* p) { if (p->getStyle() != SkPaint::kFill_Style) { return drawRectAsShape(left, top, right, bottom, p); } if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } SkXfermode::Mode mode; if (!mCaches.extensions.hasFramebufferFetch()) { const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode); if (!isMode) { // Assume SRC_OVER mode = SkXfermode::kSrcOver_Mode; } } else { mode = getXfermode(p->getXfermode()); } int color = p->getColor(); if (p->isAntiAlias() && !mSnapshot->transform->isSimple()) { drawAARect(left, top, right, bottom, color, mode); } else { drawColorRect(left, top, right, bottom, color, mode); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count, const float* positions, SkPaint* paint) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || (paint->getAlpha() == 0 && paint->getXfermode() == NULL)) { return DrawGlInfo::kStatusDone; } // NOTE: Skia does not support perspective transform on drawPosText yet if (!mSnapshot->transform->isSimple()) { return DrawGlInfo::kStatusDone; } float x = 0.0f; float y = 0.0f; const bool pureTranslate = mSnapshot->transform->isPureTranslate(); if (pureTranslate) { x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f); y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f); } FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint); fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()), paint->getTextSize()); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); // Pick the appropriate texture filtering bool linearFilter = mSnapshot->transform->changesBounds(); if (pureTranslate && !linearFilter) { linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; } mCaches.activeTexture(0); setupDraw(); setupDrawDirtyRegionsDisabled(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(x, y, x, y, pureTranslate, true); setupDrawTexture(fontRenderer.getTexture(linearFilter)); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(pureTranslate); const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); #if RENDER_LAYERS_AS_REGIONS const bool hasActiveLayer = hasLayer(); #else const bool hasActiveLayer = false; #endif if (fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &bounds : NULL)) { #if RENDER_LAYERS_AS_REGIONS if (hasActiveLayer) { if (!pureTranslate) { mSnapshot->transform->mapRect(bounds); } dirtyLayerUnchecked(bounds, getRegion()); } #endif } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y, SkPaint* paint, float length) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || (paint->getAlpha() == 0 && paint->getXfermode() == NULL)) { return DrawGlInfo::kStatusDone; } if (length < 0.0f) length = paint->measureText(text, bytesCount); switch (paint->getTextAlign()) { case SkPaint::kCenter_Align: x -= length / 2.0f; break; case SkPaint::kRight_Align: x -= length; break; default: break; } SkPaint::FontMetrics metrics; paint->getFontMetrics(&metrics, 0.0f); if (quickReject(x, y + metrics.fTop, x + length, y + metrics.fBottom)) { return DrawGlInfo::kStatusDone; } const float oldX = x; const float oldY = y; const bool pureTranslate = mSnapshot->transform->isPureTranslate(); if (CC_LIKELY(pureTranslate)) { x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f); y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f); } #if DEBUG_GLYPHS ALOGD("OpenGLRenderer drawText() with FontID=%d", SkTypeface::UniqueID(paint->getTypeface())); #endif FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint); fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()), paint->getTextSize()); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); if (CC_UNLIKELY(mHasShadow)) { mCaches.activeTexture(0); mCaches.dropShadowCache.setFontRenderer(fontRenderer); const ShadowTexture* shadow = mCaches.dropShadowCache.get( paint, text, bytesCount, count, mShadowRadius); const AutoTexture autoCleanup(shadow); const float sx = oldX - shadow->left + mShadowDx; const float sy = oldY - shadow->top + mShadowDy; const int shadowAlpha = ((mShadowColor >> 24) & 0xFF); int shadowColor = mShadowColor; if (mShader) { shadowColor = 0xffffffff; } setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(shadowColor, shadowAlpha < 255 ? shadowAlpha : alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(sx, sy, sx + shadow->width, sy + shadow->height); setupDrawTexture(shadow->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } // Pick the appropriate texture filtering bool linearFilter = mSnapshot->transform->changesBounds(); if (pureTranslate && !linearFilter) { linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; } // The font renderer will always use texture unit 0 mCaches.activeTexture(0); setupDraw(); setupDrawDirtyRegionsDisabled(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(x, y, x, y, pureTranslate, true); // See comment above; the font renderer must use texture unit 0 // assert(mTextureUnit == 0) setupDrawTexture(fontRenderer.getTexture(linearFilter)); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(pureTranslate); const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); #if RENDER_LAYERS_AS_REGIONS const bool hasActiveLayer = hasLayer(); #else const bool hasActiveLayer = false; #endif if (fontRenderer.renderText(paint, clip, text, 0, bytesCount, count, x, y, hasActiveLayer ? &bounds : NULL)) { #if RENDER_LAYERS_AS_REGIONS if (hasActiveLayer) { if (!pureTranslate) { mSnapshot->transform->mapRect(bounds); } dirtyLayerUnchecked(bounds, getRegion()); } #endif } drawTextDecorations(text, bytesCount, length, oldX, oldY, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count, SkPath* path, float hOffset, float vOffset, SkPaint* paint) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || (paint->getAlpha() == 0 && paint->getXfermode() == NULL)) { return DrawGlInfo::kStatusDone; } FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint); fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()), paint->getTextSize()); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); mCaches.activeTexture(0); setupDraw(); setupDrawDirtyRegionsDisabled(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(0.0f, 0.0f, 0.0f, 0.0f, false, true); setupDrawTexture(fontRenderer.getTexture(true)); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(false); const Rect* clip = &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); #if RENDER_LAYERS_AS_REGIONS const bool hasActiveLayer = hasLayer(); #else const bool hasActiveLayer = false; #endif if (fontRenderer.renderTextOnPath(paint, clip, text, 0, bytesCount, count, path, hOffset, vOffset, hasActiveLayer ? &bounds : NULL)) { #if RENDER_LAYERS_AS_REGIONS if (hasActiveLayer) { mSnapshot->transform->mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } #endif } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPath(SkPath* path, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); // TODO: Perform early clip test before we rasterize the path const PathTexture* texture = mCaches.pathCache.get(path, paint); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = texture->left - texture->offset; const float y = texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawLayer(Layer* layer, float x, float y, SkPaint* paint) { if (!layer || quickReject(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight())) { return DrawGlInfo::kStatusDone; } if (layer->deferredUpdateScheduled && layer->renderer && layer->displayList) { OpenGLRenderer* renderer = layer->renderer; Rect& dirty = layer->dirtyRect; interrupt(); renderer->setViewport(layer->layer.getWidth(), layer->layer.getHeight()); renderer->prepareDirty(dirty.left, dirty.top, dirty.right, dirty.bottom, !layer->isBlend()); renderer->drawDisplayList(layer->displayList, dirty, DisplayList::kReplayFlag_ClipChildren); renderer->finish(); resume(); dirty.setEmpty(); layer->deferredUpdateScheduled = false; layer->renderer = NULL; layer->displayList = NULL; } mCaches.activeTexture(0); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); layer->setAlpha(alpha, mode); #if RENDER_LAYERS_AS_REGIONS if (CC_LIKELY(!layer->region.isEmpty())) { if (layer->region.isRect()) { composeLayerRect(layer, layer->regionRect); } else if (layer->mesh) { const float a = alpha / 255.0f; const Rect& rect = layer->layer; setupDraw(); setupDrawWithTexture(); setupDrawColor(a, a, a, a); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || a < 1.0f, layer->getMode(), false); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawTexture(layer->getTexture()); if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) { x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f); y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelViewTranslate(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelViewTranslate(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight()); } setupDrawMesh(&layer->mesh[0].position[0], &layer->mesh[0].texture[0]); glDrawElements(GL_TRIANGLES, layer->meshElementCount, GL_UNSIGNED_SHORT, layer->meshIndices); finishDrawTexture(); #if DEBUG_LAYERS_AS_REGIONS drawRegionRects(layer->region); #endif } } #else const Rect r(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight()); composeLayerRect(layer, r); #endif return DrawGlInfo::kStatusDrew; } /////////////////////////////////////////////////////////////////////////////// // Shaders /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShader() { mShader = NULL; } void OpenGLRenderer::setupShader(SkiaShader* shader) { mShader = shader; if (mShader) { mShader->set(&mCaches.textureCache, &mCaches.gradientCache); } } /////////////////////////////////////////////////////////////////////////////// // Color filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetColorFilter() { mColorFilter = NULL; } void OpenGLRenderer::setupColorFilter(SkiaColorFilter* filter) { mColorFilter = filter; } /////////////////////////////////////////////////////////////////////////////// // Drop shadow /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShadow() { mHasShadow = false; } void OpenGLRenderer::setupShadow(float radius, float dx, float dy, int color) { mHasShadow = true; mShadowRadius = radius; mShadowDx = dx; mShadowDy = dy; mShadowColor = color; } /////////////////////////////////////////////////////////////////////////////// // Draw filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetPaintFilter() { mHasDrawFilter = false; } void OpenGLRenderer::setupPaintFilter(int clearBits, int setBits) { mHasDrawFilter = true; mPaintFilterClearBits = clearBits & SkPaint::kAllFlags; mPaintFilterSetBits = setBits & SkPaint::kAllFlags; } SkPaint* OpenGLRenderer::filterPaint(SkPaint* paint) { if (CC_LIKELY(!mHasDrawFilter || !paint)) return paint; uint32_t flags = paint->getFlags(); mFilteredPaint = *paint; mFilteredPaint.setFlags((flags & ~mPaintFilterClearBits) | mPaintFilterSetBits); return &mFilteredPaint; } /////////////////////////////////////////////////////////////////////////////// // Drawing implementation /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::drawPathTexture(const PathTexture* texture, float x, float y, SkPaint* paint) { if (quickReject(x, y, x + texture->width, y + texture->height)) { return; } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(x, y, x + texture->width, y + texture->height); setupDrawTexture(texture->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); finishDrawTexture(); } // Same values used by Skia #define kStdStrikeThru_Offset (-6.0f / 21.0f) #define kStdUnderline_Offset (1.0f / 9.0f) #define kStdUnderline_Thickness (1.0f / 18.0f) void OpenGLRenderer::drawTextDecorations(const char* text, int bytesCount, float length, float x, float y, SkPaint* paint) { // Handle underline and strike-through uint32_t flags = paint->getFlags(); if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { SkPaint paintCopy(*paint); float underlineWidth = length; // If length is > 0.0f, we already measured the text for the text alignment if (length <= 0.0f) { underlineWidth = paintCopy.measureText(text, bytesCount); } float offsetX = 0; switch (paintCopy.getTextAlign()) { case SkPaint::kCenter_Align: offsetX = underlineWidth * 0.5f; break; case SkPaint::kRight_Align: offsetX = underlineWidth; break; default: break; } if (CC_LIKELY(underlineWidth > 0.0f)) { const float textSize = paintCopy.getTextSize(); const float strokeWidth = fmax(textSize * kStdUnderline_Thickness, 1.0f); const float left = x - offsetX; float top = 0.0f; int linesCount = 0; if (flags & SkPaint::kUnderlineText_Flag) linesCount++; if (flags & SkPaint::kStrikeThruText_Flag) linesCount++; const int pointsCount = 4 * linesCount; float points[pointsCount]; int currentPoint = 0; if (flags & SkPaint::kUnderlineText_Flag) { top = y + textSize * kStdUnderline_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } if (flags & SkPaint::kStrikeThruText_Flag) { top = y + textSize * kStdStrikeThru_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } paintCopy.setStrokeWidth(strokeWidth); drawLines(&points[0], pointsCount, &paintCopy); } } } void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom, int color, SkXfermode::Mode mode, bool ignoreTransform) { // If a shader is set, preserve only the alpha if (mShader) { color |= 0x00ffffff; } setupDraw(); setupDrawNoTexture(); setupDrawColor(color); setupDrawShader(); setupDrawColorFilter(); setupDrawBlending(mode); setupDrawProgram(); setupDrawModelView(left, top, right, bottom, ignoreTransform); setupDrawColorUniforms(); setupDrawShaderUniforms(ignoreTransform); setupDrawColorFilterUniforms(); setupDrawSimpleMesh(); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, Texture* texture, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); texture->setWrap(GL_CLAMP_TO_EDGE, true); if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) { const float x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f); const float y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f); texture->setFilter(GL_NEAREST, true); drawTextureMesh(x, y, x + texture->width, y + texture->height, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount, false, true); } else { texture->setFilter(FILTER(paint), true); drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend) { drawTextureMesh(left, top, right, bottom, texture, alpha, mode, blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool swapSrcDst, bool ignoreTransform, GLuint vbo, bool ignoreScale, bool dirty) { setupDraw(); setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(blend, mode, swapSrcDst); setupDrawProgram(); if (!dirty) { setupDrawDirtyRegionsDisabled(); } if (!ignoreScale) { setupDrawModelView(left, top, right, bottom, ignoreTransform); } else { setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform); } setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawTexture(texture); setupDrawMesh(vertices, texCoords, vbo); glDrawArrays(drawMode, 0, elementsCount); finishDrawTexture(); } void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode, ProgramDescription& description, bool swapSrcDst) { blend = blend || mode != SkXfermode::kSrcOver_Mode; if (blend) { // These blend modes are not supported by OpenGL directly and have // to be implemented using shaders. Since the shader will perform // the blending, turn blending off here // If the blend mode cannot be implemented using shaders, fall // back to the default SrcOver blend mode instead if CC_UNLIKELY((mode > SkXfermode::kScreen_Mode)) { if (CC_UNLIKELY(mCaches.extensions.hasFramebufferFetch())) { description.framebufferMode = mode; description.swapSrcDst = swapSrcDst; if (mCaches.blend) { glDisable(GL_BLEND); mCaches.blend = false; } return; } else { mode = SkXfermode::kSrcOver_Mode; } } if (!mCaches.blend) { glEnable(GL_BLEND); } GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src; GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst; if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) { glBlendFunc(sourceMode, destMode); mCaches.lastSrcMode = sourceMode; mCaches.lastDstMode = destMode; } } else if (mCaches.blend) { glDisable(GL_BLEND); } mCaches.blend = blend; } bool OpenGLRenderer::useProgram(Program* program) { if (!program->isInUse()) { if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove(); program->use(); mCaches.currentProgram = program; return false; } return true; } void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) { TextureVertex* v = &mMeshVertices[0]; TextureVertex::setUV(v++, u1, v1); TextureVertex::setUV(v++, u2, v1); TextureVertex::setUV(v++, u1, v2); TextureVertex::setUV(v++, u2, v2); } void OpenGLRenderer::getAlphaAndMode(SkPaint* paint, int* alpha, SkXfermode::Mode* mode) { if (paint) { *mode = getXfermode(paint->getXfermode()); // Skia draws using the color's alpha channel if < 255 // Otherwise, it uses the paint's alpha int color = paint->getColor(); *alpha = (color >> 24) & 0xFF; if (*alpha == 255) { *alpha = paint->getAlpha(); } } else { *mode = SkXfermode::kSrcOver_Mode; *alpha = 255; } *alpha *= mSnapshot->alpha; } SkXfermode::Mode OpenGLRenderer::getXfermode(SkXfermode* mode) { SkXfermode::Mode resultMode; if (!SkXfermode::AsMode(mode, &resultMode)) { resultMode = SkXfermode::kSrcOver_Mode; } return resultMode; } }; // namespace uirenderer }; // namespace android