/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "AudioResampler" //#define LOG_NDEBUG 0 #include <stdint.h> #include <stdlib.h> #include <sys/types.h> #include <cutils/log.h> #include <cutils/properties.h> #include "AudioResampler.h" #if 0 #include "AudioResamplerSinc.h" #include "AudioResamplerCubic.h" #endif #ifdef __arm__ #include <machine/cpu-features.h> #endif namespace android { #ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1 #endif // __ARM_HAVE_HALFWORD_MULTIPLY // ---------------------------------------------------------------------------- class AudioResamplerOrder1 : public AudioResampler { public: AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) : AudioResampler(bitDepth, inChannelCount, sampleRate), mX0L(0), mX0R(0) { } virtual void resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); private: // number of bits used in interpolation multiply - 15 bits avoids overflow static const int kNumInterpBits = 15; // bits to shift the phase fraction down to avoid overflow static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits; void init() {} void resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); void resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement); void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement); #endif // ASM_ARM_RESAMP1 static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) { return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits); } static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) { *frac += inc; *index += (size_t)(*frac >> kNumPhaseBits); *frac &= kPhaseMask; } int mX0L; int mX0R; }; // ---------------------------------------------------------------------------- AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount, int32_t sampleRate, int quality) { // can only create low quality resample now AudioResampler* resampler; char value[PROPERTY_VALUE_MAX]; if (property_get("af.resampler.quality", value, 0)) { quality = atoi(value); ALOGD("forcing AudioResampler quality to %d", quality); } if (quality == DEFAULT) quality = LOW_QUALITY; switch (quality) { default: case LOW_QUALITY: ALOGV("Create linear Resampler"); resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate); break; #if 0 case MED_QUALITY: ALOGV("Create cubic Resampler"); resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate); break; case HIGH_QUALITY: ALOGV("Create sinc Resampler"); resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate); break; #endif } // initialize resampler resampler->init(); return resampler; } AudioResampler::AudioResampler(int bitDepth, int inChannelCount, int32_t sampleRate) : mBitDepth(bitDepth), mChannelCount(inChannelCount), mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0), mPhaseFraction(0), mLocalTimeFreq(0), mPTS(AudioBufferProvider::kInvalidPTS) { // sanity check on format if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) { ALOGE("Unsupported sample format, %d bits, %d channels", bitDepth, inChannelCount); // ALOG_ASSERT(0); } // initialize common members mVolume[0] = mVolume[1] = 0; mBuffer.frameCount = 0; } AudioResampler::~AudioResampler() { } void AudioResampler::setSampleRate(int32_t inSampleRate) { mInSampleRate = inSampleRate; mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate); } void AudioResampler::setVolume(int16_t left, int16_t right) { // TODO: Implement anti-zipper filter mVolume[0] = left; mVolume[1] = right; } void AudioResampler::setLocalTimeFreq(uint64_t freq) { mLocalTimeFreq = freq; } void AudioResampler::setPTS(int64_t pts) { mPTS = pts; } int64_t AudioResampler::calculateOutputPTS(int outputFrameIndex) { if (mPTS == AudioBufferProvider::kInvalidPTS) { return AudioBufferProvider::kInvalidPTS; } else { return mPTS + ((outputFrameIndex * mLocalTimeFreq) / mSampleRate); } } void AudioResampler::reset() { mInputIndex = 0; mPhaseFraction = 0; mBuffer.frameCount = 0; } // ---------------------------------------------------------------------------- void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { // should never happen, but we overflow if it does // ALOG_ASSERT(outFrameCount < 32767); // select the appropriate resampler switch (mChannelCount) { case 1: resampleMono16(out, outFrameCount, provider); break; case 2: resampleStereo16(out, outFrameCount, provider); break; } } void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate; // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one while (mBuffer.frameCount == 0) { mBuffer.frameCount = inFrameCount; provider->getNextBuffer(&mBuffer, calculateOutputPTS(outputIndex / 2)); if (mBuffer.raw == NULL) { goto resampleStereo16_exit; } // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); if (mBuffer.frameCount > inputIndex) break; inputIndex -= mBuffer.frameCount; mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; provider->releaseBuffer(&mBuffer); // mBuffer.frameCount == 0 now so we reload a new buffer } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // ALOGE("boundary case"); out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) break; } // process input samples // ALOGE("general case"); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 if (inputIndex + 2 < mBuffer.frameCount) { int32_t* maxOutPt; int32_t maxInIdx; maxOutPt = out + (outputSampleCount - 2); // 2 because 2 frames per loop maxInIdx = mBuffer.frameCount - 2; AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, phaseFraction, phaseIncrement); } #endif // ASM_ARM_RESAMP1 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { out[outputIndex++] += vl * Interp(in[inputIndex*2-2], in[inputIndex*2], phaseFraction); out[outputIndex++] += vr * Interp(in[inputIndex*2-1], in[inputIndex*2+1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); } // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // ALOGE("buffer done, new input index %d", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer resets the buffer frameCount // ALOG_ASSERT(mBuffer.frameCount == 0); } } // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); resampleStereo16_exit: // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; } void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate; // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one while (mBuffer.frameCount == 0) { mBuffer.frameCount = inFrameCount; provider->getNextBuffer(&mBuffer, calculateOutputPTS(outputIndex / 2)); if (mBuffer.raw == NULL) { mInputIndex = inputIndex; mPhaseFraction = phaseFraction; goto resampleMono16_exit; } // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount); if (mBuffer.frameCount > inputIndex) break; inputIndex -= mBuffer.frameCount; mX0L = mBuffer.i16[mBuffer.frameCount-1]; provider->releaseBuffer(&mBuffer); // mBuffer.frameCount == 0 now so we reload a new buffer } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // ALOGE("boundary case"); int32_t sample = Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) break; } // process input samples // ALOGE("general case"); #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 if (inputIndex + 2 < mBuffer.frameCount) { int32_t* maxOutPt; int32_t maxInIdx; maxOutPt = out + (outputSampleCount - 2); maxInIdx = (int32_t)mBuffer.frameCount - 2; AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr, phaseFraction, phaseIncrement); } #endif // ASM_ARM_RESAMP1 while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) { int32_t sample = Interp(in[inputIndex-1], in[inputIndex], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); } // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // ALOGE("buffer done, new input index %d", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer resets the buffer frameCount // ALOG_ASSERT(mBuffer.frameCount == 0); } } // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex); resampleMono16_exit: // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; } #ifdef ASM_ARM_RESAMP1 // asm optimisation for ResamplerOrder1 /******************************************************************* * * AsmMono16Loop * asm optimized monotonic loop version; one loop is 2 frames * Input: * in : pointer on input samples * maxOutPt : pointer on first not filled * maxInIdx : index on first not used * outputIndex : pointer on current output index * out : pointer on output buffer * inputIndex : pointer on current input index * vl, vr : left and right gain * phaseFraction : pointer on current phase fraction * phaseIncrement * Ouput: * outputIndex : * out : updated buffer * inputIndex : index of next to use * phaseFraction : phase fraction for next interpolation * *******************************************************************/ __attribute__((noinline)) void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement) { #define MO_PARAM5 "36" // offset of parameter 5 (outputIndex) asm( "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n" // get parameters " ldr r6, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction " ldr r6, [r6]\n" // phaseFraction " ldr r7, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex " ldr r7, [r7]\n" // inputIndex " ldr r8, [sp, #" MO_PARAM5 " + 4]\n" // out " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex " ldr r0, [r0]\n" // outputIndex " add r8, r0, asl #2\n" // curOut " ldr r9, [sp, #" MO_PARAM5 " + 24]\n" // phaseIncrement " ldr r10, [sp, #" MO_PARAM5 " + 12]\n" // vl " ldr r11, [sp, #" MO_PARAM5 " + 16]\n" // vr // r0 pin, x0, Samp // r1 in // r2 maxOutPt // r3 maxInIdx // r4 x1, i1, i3, Out1 // r5 out0 // r6 frac // r7 inputIndex // r8 curOut // r9 inc // r10 vl // r11 vr // r12 // r13 sp // r14 // the following loop works on 2 frames "1:\n" " cmp r8, r2\n" // curOut - maxCurOut " bcs 2f\n" #define MO_ONE_FRAME \ " add r0, r1, r7, asl #1\n" /* in + inputIndex */\ " ldrsh r4, [r0]\n" /* in[inputIndex] */\ " ldr r5, [r8]\n" /* out[outputIndex] */\ " ldrsh r0, [r0, #-2]\n" /* in[inputIndex-1] */\ " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ " sub r4, r4, r0\n" /* in[inputIndex] - in[inputIndex-1] */\ " mov r4, r4, lsl #2\n" /* <<2 */\ " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ " add r0, r0, r4\n" /* x0 - (..) */\ " mla r5, r0, r10, r5\n" /* vl*interp + out[] */\ " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ " mla r4, r0, r11, r4\n" /* vr*interp + out[] */\ " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */\ " str r4, [r8], #4\n" /* out[outputIndex++] = ... */ MO_ONE_FRAME // frame 1 MO_ONE_FRAME // frame 2 " cmp r7, r3\n" // inputIndex - maxInIdx " bcc 1b\n" "2:\n" " bic r6, r6, #0xC0000000\n" // phaseFraction & ... // save modified values " ldr r0, [sp, #" MO_PARAM5 " + 20]\n" // &phaseFraction " str r6, [r0]\n" // phaseFraction " ldr r0, [sp, #" MO_PARAM5 " + 8]\n" // &inputIndex " str r7, [r0]\n" // inputIndex " ldr r0, [sp, #" MO_PARAM5 " + 4]\n" // out " sub r8, r0\n" // curOut - out " asr r8, #2\n" // new outputIndex " ldr r0, [sp, #" MO_PARAM5 " + 0]\n" // &outputIndex " str r8, [r0]\n" // save outputIndex " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n" ); } /******************************************************************* * * AsmStereo16Loop * asm optimized stereo loop version; one loop is 2 frames * Input: * in : pointer on input samples * maxOutPt : pointer on first not filled * maxInIdx : index on first not used * outputIndex : pointer on current output index * out : pointer on output buffer * inputIndex : pointer on current input index * vl, vr : left and right gain * phaseFraction : pointer on current phase fraction * phaseIncrement * Ouput: * outputIndex : * out : updated buffer * inputIndex : index of next to use * phaseFraction : phase fraction for next interpolation * *******************************************************************/ __attribute__((noinline)) void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx, size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr, uint32_t &phaseFraction, uint32_t phaseIncrement) { #define ST_PARAM5 "40" // offset of parameter 5 (outputIndex) asm( "stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n" // get parameters " ldr r6, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction " ldr r6, [r6]\n" // phaseFraction " ldr r7, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex " ldr r7, [r7]\n" // inputIndex " ldr r8, [sp, #" ST_PARAM5 " + 4]\n" // out " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex " ldr r0, [r0]\n" // outputIndex " add r8, r0, asl #2\n" // curOut " ldr r9, [sp, #" ST_PARAM5 " + 24]\n" // phaseIncrement " ldr r10, [sp, #" ST_PARAM5 " + 12]\n" // vl " ldr r11, [sp, #" ST_PARAM5 " + 16]\n" // vr // r0 pin, x0, Samp // r1 in // r2 maxOutPt // r3 maxInIdx // r4 x1, i1, i3, out1 // r5 out0 // r6 frac // r7 inputIndex // r8 curOut // r9 inc // r10 vl // r11 vr // r12 temporary // r13 sp // r14 "3:\n" " cmp r8, r2\n" // curOut - maxCurOut " bcs 4f\n" #define ST_ONE_FRAME \ " bic r6, r6, #0xC0000000\n" /* phaseFraction & ... */\ \ " add r0, r1, r7, asl #2\n" /* in + 2*inputIndex */\ \ " ldrsh r4, [r0]\n" /* in[2*inputIndex] */\ " ldr r5, [r8]\n" /* out[outputIndex] */\ " ldrsh r12, [r0, #-4]\n" /* in[2*inputIndex-2] */\ " sub r4, r4, r12\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ " mov r4, r4, lsl #2\n" /* <<2 */\ " smulwt r4, r4, r6\n" /* (x1-x0)*.. */\ " add r12, r12, r4\n" /* x0 - (..) */\ " mla r5, r12, r10, r5\n" /* vl*interp + out[] */\ " ldr r4, [r8, #4]\n" /* out[outputIndex+1] */\ " str r5, [r8], #4\n" /* out[outputIndex++] = ... */\ \ " ldrsh r12, [r0, #+2]\n" /* in[2*inputIndex+1] */\ " ldrsh r0, [r0, #-2]\n" /* in[2*inputIndex-1] */\ " sub r12, r12, r0\n" /* in[2*InputIndex] - in[2*InputIndex-2] */\ " mov r12, r12, lsl #2\n" /* <<2 */\ " smulwt r12, r12, r6\n" /* (x1-x0)*.. */\ " add r12, r0, r12\n" /* x0 - (..) */\ " mla r4, r12, r11, r4\n" /* vr*interp + out[] */\ " str r4, [r8], #4\n" /* out[outputIndex++] = ... */\ \ " add r6, r6, r9\n" /* phaseFraction + phaseIncrement */\ " add r7, r7, r6, lsr #30\n" /* inputIndex + phaseFraction>>30 */ ST_ONE_FRAME // frame 1 ST_ONE_FRAME // frame 1 " cmp r7, r3\n" // inputIndex - maxInIdx " bcc 3b\n" "4:\n" " bic r6, r6, #0xC0000000\n" // phaseFraction & ... // save modified values " ldr r0, [sp, #" ST_PARAM5 " + 20]\n" // &phaseFraction " str r6, [r0]\n" // phaseFraction " ldr r0, [sp, #" ST_PARAM5 " + 8]\n" // &inputIndex " str r7, [r0]\n" // inputIndex " ldr r0, [sp, #" ST_PARAM5 " + 4]\n" // out " sub r8, r0\n" // curOut - out " asr r8, #2\n" // new outputIndex " ldr r0, [sp, #" ST_PARAM5 " + 0]\n" // &outputIndex " str r8, [r0]\n" // save outputIndex " ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n" ); } #endif // ASM_ARM_RESAMP1 // ---------------------------------------------------------------------------- } // namespace android