/*
 * SHA1 hash implementation and interface functions
 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
 *
 * This software may be distributed under the terms of the BSD license.
 * See README for more details.
 */

#include "includes.h"

#include "common.h"
#include "sha1.h"
#include "crypto.h"


/**
 * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
 * @key: Key for HMAC operations
 * @key_len: Length of the key in bytes
 * @num_elem: Number of elements in the data vector
 * @addr: Pointers to the data areas
 * @len: Lengths of the data blocks
 * @mac: Buffer for the hash (20 bytes)
 * Returns: 0 on success, -1 on failure
 */
int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
		     const u8 *addr[], const size_t *len, u8 *mac)
{
	unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
	unsigned char tk[20];
	const u8 *_addr[6];
	size_t _len[6], i;

	if (num_elem > 5) {
		/*
		 * Fixed limit on the number of fragments to avoid having to
		 * allocate memory (which could fail).
		 */
		return -1;
	}

        /* if key is longer than 64 bytes reset it to key = SHA1(key) */
        if (key_len > 64) {
		if (sha1_vector(1, &key, &key_len, tk))
			return -1;
		key = tk;
		key_len = 20;
        }

	/* the HMAC_SHA1 transform looks like:
	 *
	 * SHA1(K XOR opad, SHA1(K XOR ipad, text))
	 *
	 * where K is an n byte key
	 * ipad is the byte 0x36 repeated 64 times
	 * opad is the byte 0x5c repeated 64 times
	 * and text is the data being protected */

	/* start out by storing key in ipad */
	os_memset(k_pad, 0, sizeof(k_pad));
	os_memcpy(k_pad, key, key_len);
	/* XOR key with ipad values */
	for (i = 0; i < 64; i++)
		k_pad[i] ^= 0x36;

	/* perform inner SHA1 */
	_addr[0] = k_pad;
	_len[0] = 64;
	for (i = 0; i < num_elem; i++) {
		_addr[i + 1] = addr[i];
		_len[i + 1] = len[i];
	}
	if (sha1_vector(1 + num_elem, _addr, _len, mac))
		return -1;

	os_memset(k_pad, 0, sizeof(k_pad));
	os_memcpy(k_pad, key, key_len);
	/* XOR key with opad values */
	for (i = 0; i < 64; i++)
		k_pad[i] ^= 0x5c;

	/* perform outer SHA1 */
	_addr[0] = k_pad;
	_len[0] = 64;
	_addr[1] = mac;
	_len[1] = SHA1_MAC_LEN;
	return sha1_vector(2, _addr, _len, mac);
}


/**
 * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
 * @key: Key for HMAC operations
 * @key_len: Length of the key in bytes
 * @data: Pointers to the data area
 * @data_len: Length of the data area
 * @mac: Buffer for the hash (20 bytes)
 * Returns: 0 on success, -1 of failure
 */
int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
	       u8 *mac)
{
	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}


/**
 * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
 * @key: Key for PRF
 * @key_len: Length of the key in bytes
 * @label: A unique label for each purpose of the PRF
 * @data: Extra data to bind into the key
 * @data_len: Length of the data
 * @buf: Buffer for the generated pseudo-random key
 * @buf_len: Number of bytes of key to generate
 * Returns: 0 on success, -1 of failure
 *
 * This function is used to derive new, cryptographically separate keys from a
 * given key (e.g., PMK in IEEE 802.11i).
 */
int sha1_prf(const u8 *key, size_t key_len, const char *label,
	     const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
{
	u8 counter = 0;
	size_t pos, plen;
	u8 hash[SHA1_MAC_LEN];
	size_t label_len = os_strlen(label) + 1;
	const unsigned char *addr[3];
	size_t len[3];

	addr[0] = (u8 *) label;
	len[0] = label_len;
	addr[1] = data;
	len[1] = data_len;
	addr[2] = &counter;
	len[2] = 1;

	pos = 0;
	while (pos < buf_len) {
		plen = buf_len - pos;
		if (plen >= SHA1_MAC_LEN) {
			if (hmac_sha1_vector(key, key_len, 3, addr, len,
					     &buf[pos]))
				return -1;
			pos += SHA1_MAC_LEN;
		} else {
			if (hmac_sha1_vector(key, key_len, 3, addr, len,
					     hash))
				return -1;
			os_memcpy(&buf[pos], hash, plen);
			break;
		}
		counter++;
	}

	return 0;
}