/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Based on Abstract AVL Tree Template v1.5 by Walt Karas * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef AVL_TREE_H_ #define AVL_TREE_H_ #include "Assertions.h" #include <wtf/FixedArray.h> namespace WTF { // Here is the reference class for BSet. // // class BSet // { // public: // // class ANY_bitref // { // public: // operator bool (); // void operator = (bool b); // }; // // // Does not have to initialize bits. // BSet(); // // // Must return a valid value for index when 0 <= index < maxDepth // ANY_bitref operator [] (unsigned index); // // // Set all bits to 1. // void set(); // // // Set all bits to 0. // void reset(); // }; template<unsigned maxDepth> class AVLTreeDefaultBSet { public: bool& operator[](unsigned i) { ASSERT(i < maxDepth); return m_data[i]; } void set() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = true; } void reset() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = false; } private: FixedArray<bool, maxDepth> m_data; }; // How to determine maxDepth: // d Minimum number of nodes // 2 2 // 3 4 // 4 7 // 5 12 // 6 20 // 7 33 // 8 54 // 9 88 // 10 143 // 11 232 // 12 376 // 13 609 // 14 986 // 15 1,596 // 16 2,583 // 17 4,180 // 18 6,764 // 19 10,945 // 20 17,710 // 21 28,656 // 22 46,367 // 23 75,024 // 24 121,392 // 25 196,417 // 26 317,810 // 27 514,228 // 28 832,039 // 29 1,346,268 // 30 2,178,308 // 31 3,524,577 // 32 5,702,886 // 33 9,227,464 // 34 14,930,351 // 35 24,157,816 // 36 39,088,168 // 37 63,245,985 // 38 102,334,154 // 39 165,580,140 // 40 267,914,295 // 41 433,494,436 // 42 701,408,732 // 43 1,134,903,169 // 44 1,836,311,902 // 45 2,971,215,072 // // E.g., if, in a particular instantiation, the maximum number of nodes in a tree instance is 1,000,000, the maximum depth should be 28. // You pick 28 because MN(28) is 832,039, which is less than or equal to 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. template <class Abstractor, unsigned maxDepth = 32, class BSet = AVLTreeDefaultBSet<maxDepth> > class AVLTree { public: typedef typename Abstractor::key key; typedef typename Abstractor::handle handle; typedef typename Abstractor::size size; enum SearchType { EQUAL = 1, LESS = 2, GREATER = 4, LESS_EQUAL = EQUAL | LESS, GREATER_EQUAL = EQUAL | GREATER }; Abstractor& abstractor() { return abs; } inline handle insert(handle h); inline handle search(key k, SearchType st = EQUAL); inline handle search_least(); inline handle search_greatest(); inline handle remove(key k); inline handle subst(handle new_node); void purge() { abs.root = null(); } bool is_empty() { return abs.root == null(); } AVLTree() { abs.root = null(); } class Iterator { public: // Initialize depth to invalid value, to indicate iterator is // invalid. (Depth is zero-base.) Iterator() { depth = ~0U; } void start_iter(AVLTree &tree, key k, SearchType st = EQUAL) { // Mask of high bit in an int. const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1); // Save the tree that we're going to iterate through in a // member variable. tree_ = &tree; int cmp, target_cmp; handle h = tree_->abs.root; unsigned d = 0; depth = ~0U; if (h == null()) // Tree is empty. return; if (st & LESS) // Key can be greater than key of starting node. target_cmp = 1; else if (st & GREATER) // Key can be less than key of starting node. target_cmp = -1; else // Key must be same as key of starting node. target_cmp = 0; for (;;) { cmp = cmp_k_n(k, h); if (cmp == 0) { if (st & EQUAL) { // Equal node was sought and found as starting node. depth = d; break; } cmp = -target_cmp; } else if (target_cmp != 0) { if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) { // cmp and target_cmp are both negative or both positive. depth = d; } } h = cmp < 0 ? get_lt(h) : get_gt(h); if (h == null()) break; branch[d] = cmp > 0; path_h[d++] = h; } } void start_iter_least(AVLTree &tree) { tree_ = &tree; handle h = tree_->abs.root; depth = ~0U; branch.reset(); while (h != null()) { if (depth != ~0U) path_h[depth] = h; depth++; h = get_lt(h); } } void start_iter_greatest(AVLTree &tree) { tree_ = &tree; handle h = tree_->abs.root; depth = ~0U; branch.set(); while (h != null()) { if (depth != ~0U) path_h[depth] = h; depth++; h = get_gt(h); } } handle operator*() { if (depth == ~0U) return null(); return depth == 0 ? tree_->abs.root : path_h[depth - 1]; } void operator++() { if (depth != ~0U) { handle h = get_gt(**this); if (h == null()) { do { if (depth == 0) { depth = ~0U; break; } depth--; } while (branch[depth]); } else { branch[depth] = true; path_h[depth++] = h; for (;;) { h = get_lt(h); if (h == null()) break; branch[depth] = false; path_h[depth++] = h; } } } } void operator--() { if (depth != ~0U) { handle h = get_lt(**this); if (h == null()) do { if (depth == 0) { depth = ~0U; break; } depth--; } while (!branch[depth]); else { branch[depth] = false; path_h[depth++] = h; for (;;) { h = get_gt(h); if (h == null()) break; branch[depth] = true; path_h[depth++] = h; } } } } void operator++(int) { ++(*this); } void operator--(int) { --(*this); } protected: // Tree being iterated over. AVLTree *tree_; // Records a path into the tree. If branch[n] is true, indicates // take greater branch from the nth node in the path, otherwise // take the less branch. branch[0] gives branch from root, and // so on. BSet branch; // Zero-based depth of path into tree. unsigned depth; // Handles of nodes in path from root to current node (returned by *). handle path_h[maxDepth - 1]; int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } int cmp_n_n(handle h1, handle h2) { return tree_->abs.compare_node_node(h1, h2); } handle get_lt(handle h) { return tree_->abs.get_less(h); } handle get_gt(handle h) { return tree_->abs.get_greater(h); } handle null() { return tree_->abs.null(); } }; template<typename fwd_iter> bool build(fwd_iter p, size num_nodes) { if (num_nodes == 0) { abs.root = null(); return true; } // Gives path to subtree being built. If branch[N] is false, branch // less from the node at depth N, if true branch greater. BSet branch; // If rem[N] is true, then for the current subtree at depth N, it's // greater subtree has one more node than it's less subtree. BSet rem; // Depth of root node of current subtree. unsigned depth = 0; // Number of nodes in current subtree. size num_sub = num_nodes; // The algorithm relies on a stack of nodes whose less subtree has // been built, but whose right subtree has not yet been built. The // stack is implemented as linked list. The nodes are linked // together by having the "greater" handle of a node set to the // next node in the list. "less_parent" is the handle of the first // node in the list. handle less_parent = null(); // h is root of current subtree, child is one of its children. handle h, child; for (;;) { while (num_sub > 2) { // Subtract one for root of subtree. num_sub--; rem[depth] = !!(num_sub & 1); branch[depth++] = false; num_sub >>= 1; } if (num_sub == 2) { // Build a subtree with two nodes, slanting to greater. // I arbitrarily chose to always have the extra node in the // greater subtree when there is an odd number of nodes to // split between the two subtrees. h = *p; p++; child = *p; p++; set_lt(child, null()); set_gt(child, null()); set_bf(child, 0); set_gt(h, child); set_lt(h, null()); set_bf(h, 1); } else { // num_sub == 1 // Build a subtree with one node. h = *p; p++; set_lt(h, null()); set_gt(h, null()); set_bf(h, 0); } while (depth) { depth--; if (!branch[depth]) // We've completed a less subtree. break; // We've completed a greater subtree, so attach it to // its parent (that is less than it). We pop the parent // off the stack of less parents. child = h; h = less_parent; less_parent = get_gt(h); set_gt(h, child); // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 num_sub <<= 1; num_sub += 1 - rem[depth]; if (num_sub & (num_sub - 1)) // num_sub is not a power of 2 set_bf(h, 0); else // num_sub is a power of 2 set_bf(h, 1); } if (num_sub == num_nodes) // We've completed the full tree. break; // The subtree we've completed is the less subtree of the // next node in the sequence. child = h; h = *p; p++; set_lt(h, child); // Put h into stack of less parents. set_gt(h, less_parent); less_parent = h; // Proceed to creating greater than subtree of h. branch[depth] = true; num_sub += rem[depth++]; } // end for (;;) abs.root = h; return true; } protected: friend class Iterator; // Create a class whose sole purpose is to take advantage of // the "empty member" optimization. struct abs_plus_root : public Abstractor { // The handle of the root element in the AVL tree. handle root; }; abs_plus_root abs; handle get_lt(handle h) { return abs.get_less(h); } void set_lt(handle h, handle lh) { abs.set_less(h, lh); } handle get_gt(handle h) { return abs.get_greater(h); } void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } int get_bf(handle h) { return abs.get_balance_factor(h); } void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } handle null() { return abs.null(); } private: // Balances subtree, returns handle of root node of subtree // after balancing. handle balance(handle bal_h) { handle deep_h; // Either the "greater than" or the "less than" subtree of // this node has to be 2 levels deeper (or else it wouldn't // need balancing). if (get_bf(bal_h) > 0) { // "Greater than" subtree is deeper. deep_h = get_gt(bal_h); if (get_bf(deep_h) < 0) { handle old_h = bal_h; bal_h = get_lt(deep_h); set_gt(old_h, get_lt(bal_h)); set_lt(deep_h, get_gt(bal_h)); set_lt(bal_h, old_h); set_gt(bal_h, deep_h); int bf = get_bf(bal_h); if (bf != 0) { if (bf > 0) { set_bf(old_h, -1); set_bf(deep_h, 0); } else { set_bf(deep_h, 1); set_bf(old_h, 0); } set_bf(bal_h, 0); } else { set_bf(old_h, 0); set_bf(deep_h, 0); } } else { set_gt(bal_h, get_lt(deep_h)); set_lt(deep_h, bal_h); if (get_bf(deep_h) == 0) { set_bf(deep_h, -1); set_bf(bal_h, 1); } else { set_bf(deep_h, 0); set_bf(bal_h, 0); } bal_h = deep_h; } } else { // "Less than" subtree is deeper. deep_h = get_lt(bal_h); if (get_bf(deep_h) > 0) { handle old_h = bal_h; bal_h = get_gt(deep_h); set_lt(old_h, get_gt(bal_h)); set_gt(deep_h, get_lt(bal_h)); set_gt(bal_h, old_h); set_lt(bal_h, deep_h); int bf = get_bf(bal_h); if (bf != 0) { if (bf < 0) { set_bf(old_h, 1); set_bf(deep_h, 0); } else { set_bf(deep_h, -1); set_bf(old_h, 0); } set_bf(bal_h, 0); } else { set_bf(old_h, 0); set_bf(deep_h, 0); } } else { set_lt(bal_h, get_gt(deep_h)); set_gt(deep_h, bal_h); if (get_bf(deep_h) == 0) { set_bf(deep_h, 1); set_bf(bal_h, -1); } else { set_bf(deep_h, 0); set_bf(bal_h, 0); } bal_h = deep_h; } } return bal_h; } }; template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) { set_lt(h, null()); set_gt(h, null()); set_bf(h, 0); if (abs.root == null()) abs.root = h; else { // Last unbalanced node encountered in search for insertion point. handle unbal = null(); // Parent of last unbalanced node. handle parent_unbal = null(); // Balance factor of last unbalanced node. int unbal_bf; // Zero-based depth in tree. unsigned depth = 0, unbal_depth = 0; // Records a path into the tree. If branch[n] is true, indicates // take greater branch from the nth node in the path, otherwise // take the less branch. branch[0] gives branch from root, and // so on. BSet branch; handle hh = abs.root; handle parent = null(); int cmp; do { if (get_bf(hh) != 0) { unbal = hh; parent_unbal = parent; unbal_depth = depth; } cmp = cmp_n_n(h, hh); if (cmp == 0) // Duplicate key. return hh; parent = hh; hh = cmp < 0 ? get_lt(hh) : get_gt(hh); branch[depth++] = cmp > 0; } while (hh != null()); // Add node to insert as leaf of tree. if (cmp < 0) set_lt(parent, h); else set_gt(parent, h); depth = unbal_depth; if (unbal == null()) hh = abs.root; else { cmp = branch[depth++] ? 1 : -1; unbal_bf = get_bf(unbal); if (cmp < 0) unbal_bf--; else // cmp > 0 unbal_bf++; hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); if ((unbal_bf != -2) && (unbal_bf != 2)) { // No rebalancing of tree is necessary. set_bf(unbal, unbal_bf); unbal = null(); } } if (hh != null()) while (h != hh) { cmp = branch[depth++] ? 1 : -1; if (cmp < 0) { set_bf(hh, -1); hh = get_lt(hh); } else { // cmp > 0 set_bf(hh, 1); hh = get_gt(hh); } } if (unbal != null()) { unbal = balance(unbal); if (parent_unbal == null()) abs.root = unbal; else { depth = unbal_depth - 1; cmp = branch[depth] ? 1 : -1; if (cmp < 0) set_lt(parent_unbal, unbal); else // cmp > 0 set_gt(parent_unbal, unbal); } } } return h; } template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::search(key k, typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) { const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1); int cmp, target_cmp; handle match_h = null(); handle h = abs.root; if (st & LESS) target_cmp = 1; else if (st & GREATER) target_cmp = -1; else target_cmp = 0; while (h != null()) { cmp = cmp_k_n(k, h); if (cmp == 0) { if (st & EQUAL) { match_h = h; break; } cmp = -target_cmp; } else if (target_cmp != 0) if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) // cmp and target_cmp are both positive or both negative. match_h = h; h = cmp < 0 ? get_lt(h) : get_gt(h); } return match_h; } template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::search_least() { handle h = abs.root, parent = null(); while (h != null()) { parent = h; h = get_lt(h); } return parent; } template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::search_greatest() { handle h = abs.root, parent = null(); while (h != null()) { parent = h; h = get_gt(h); } return parent; } template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::remove(key k) { // Zero-based depth in tree. unsigned depth = 0, rm_depth; // Records a path into the tree. If branch[n] is true, indicates // take greater branch from the nth node in the path, otherwise // take the less branch. branch[0] gives branch from root, and // so on. BSet branch; handle h = abs.root; handle parent = null(), child; int cmp, cmp_shortened_sub_with_path = 0; for (;;) { if (h == null()) // No node in tree with given key. return null(); cmp = cmp_k_n(k, h); if (cmp == 0) // Found node to remove. break; parent = h; h = cmp < 0 ? get_lt(h) : get_gt(h); branch[depth++] = cmp > 0; cmp_shortened_sub_with_path = cmp; } handle rm = h; handle parent_rm = parent; rm_depth = depth; // If the node to remove is not a leaf node, we need to get a // leaf node, or a node with a single leaf as its child, to put // in the place of the node to remove. We will get the greatest // node in the less subtree (of the node to remove), or the least // node in the greater subtree. We take the leaf node from the // deeper subtree, if there is one. if (get_bf(h) < 0) { child = get_lt(h); branch[depth] = false; cmp = -1; } else { child = get_gt(h); branch[depth] = true; cmp = 1; } depth++; if (child != null()) { cmp = -cmp; do { parent = h; h = child; if (cmp < 0) { child = get_lt(h); branch[depth] = false; } else { child = get_gt(h); branch[depth] = true; } depth++; } while (child != null()); if (parent == rm) // Only went through do loop once. Deleted node will be replaced // in the tree structure by one of its immediate children. cmp_shortened_sub_with_path = -cmp; else cmp_shortened_sub_with_path = cmp; // Get the handle of the opposite child, which may not be null. child = cmp > 0 ? get_lt(h) : get_gt(h); } if (parent == null()) // There were only 1 or 2 nodes in this tree. abs.root = child; else if (cmp_shortened_sub_with_path < 0) set_lt(parent, child); else set_gt(parent, child); // "path" is the parent of the subtree being eliminated or reduced // from a depth of 2 to 1. If "path" is the node to be removed, we // set path to the node we're about to poke into the position of the // node to be removed. handle path = parent == rm ? h : parent; if (h != rm) { // Poke in the replacement for the node to be removed. set_lt(h, get_lt(rm)); set_gt(h, get_gt(rm)); set_bf(h, get_bf(rm)); if (parent_rm == null()) abs.root = h; else { depth = rm_depth - 1; if (branch[depth]) set_gt(parent_rm, h); else set_lt(parent_rm, h); } } if (path != null()) { // Create a temporary linked list from the parent of the path node // to the root node. h = abs.root; parent = null(); depth = 0; while (h != path) { if (branch[depth++]) { child = get_gt(h); set_gt(h, parent); } else { child = get_lt(h); set_lt(h, parent); } parent = h; h = child; } // Climb from the path node to the root node using the linked // list, restoring the tree structure and rebalancing as necessary. bool reduced_depth = true; int bf; cmp = cmp_shortened_sub_with_path; for (;;) { if (reduced_depth) { bf = get_bf(h); if (cmp < 0) bf++; else // cmp > 0 bf--; if ((bf == -2) || (bf == 2)) { h = balance(h); bf = get_bf(h); } else set_bf(h, bf); reduced_depth = (bf == 0); } if (parent == null()) break; child = h; h = parent; cmp = branch[--depth] ? 1 : -1; if (cmp < 0) { parent = get_lt(h); set_lt(h, child); } else { parent = get_gt(h); set_gt(h, child); } } abs.root = h; } return rm; } template <class Abstractor, unsigned maxDepth, class BSet> inline typename AVLTree<Abstractor, maxDepth, BSet>::handle AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) { handle h = abs.root; handle parent = null(); int cmp, last_cmp; /* Search for node already in tree with same key. */ for (;;) { if (h == null()) /* No node in tree with same key as new node. */ return null(); cmp = cmp_n_n(new_node, h); if (cmp == 0) /* Found the node to substitute new one for. */ break; last_cmp = cmp; parent = h; h = cmp < 0 ? get_lt(h) : get_gt(h); } /* Copy tree housekeeping fields from node in tree to new node. */ set_lt(new_node, get_lt(h)); set_gt(new_node, get_gt(h)); set_bf(new_node, get_bf(h)); if (parent == null()) /* New node is also new root. */ abs.root = new_node; else { /* Make parent point to new node. */ if (last_cmp < 0) set_lt(parent, new_node); else set_gt(parent, new_node); } return h; } } #endif