// Copyright 2006-2007 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Tested by search_test.cc. // // Prog::SearchNFA, an NFA search. // This is an actual NFA like the theorists talk about, // not the pseudo-NFA found in backtracking regexp implementations. // // IMPLEMENTATION // // This algorithm is a variant of one that appeared in Rob Pike's sam editor, // which is a variant of the one described in Thompson's 1968 CACM paper. // See http://swtch.com/~rsc/regexp/ for various history. The main feature // over the DFA implementation is that it tracks submatch boundaries. // // When the choice of submatch boundaries is ambiguous, this particular // implementation makes the same choices that traditional backtracking // implementations (in particular, Perl and PCRE) do. // Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential // time in the length of the input. // // Like Thompson's original machine and like the DFA implementation, this // implementation notices a match only once it is one byte past it. #include "re2/prog.h" #include "re2/regexp.h" #include "util/sparse_array.h" #include "util/sparse_set.h" namespace re2 { class NFA { public: NFA(Prog* prog); ~NFA(); // Searches for a matching string. // * If anchored is true, only considers matches starting at offset. // Otherwise finds lefmost match at or after offset. // * If longest is true, returns the longest match starting // at the chosen start point. Otherwise returns the so-called // left-biased match, the one traditional backtracking engines // (like Perl and PCRE) find. // Records submatch boundaries in submatch[1..nsubmatch-1]. // Submatch[0] is the entire match. When there is a choice in // which text matches each subexpression, the submatch boundaries // are chosen to match what a backtracking implementation would choose. bool Search(const StringPiece& text, const StringPiece& context, bool anchored, bool longest, StringPiece* submatch, int nsubmatch); static const int Debug = 0; private: struct Thread { union { int id; Thread* next; // when on free list }; const char** capture; }; // State for explicit stack in AddToThreadq. struct AddState { int id; // Inst to process int j; const char* cap_j; // if j>=0, set capture[j] = cap_j before processing ip AddState() : id(0), j(-1), cap_j(NULL) {} explicit AddState(int id) : id(id), j(-1), cap_j(NULL) {} AddState(int id, const char* cap_j, int j) : id(id), j(j), cap_j(cap_j) {} }; // Threadq is a list of threads. The list is sorted by the order // in which Perl would explore that particular state -- the earlier // choices appear earlier in the list. typedef SparseArray<Thread*> Threadq; inline Thread* AllocThread(); inline void FreeThread(Thread*); // Add r (or its children, following unlabeled arrows) // to the workqueue q with associated capture info. void AddToThreadq(Threadq* q, int id, int flag, const char* p, const char** capture); // Run runq on byte c, appending new states to nextq. // Updates matched_ and match_ as new, better matches are found. // p is position of the next byte (the one after c) // in the input string, used when processing capturing parens. // flag is the bitwise or of Bol, Eol, etc., specifying whether // ^, $ and \b match the current input point (after c). inline int Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p); // Returns text version of capture information, for debugging. string FormatCapture(const char** capture); inline void CopyCapture(const char** dst, const char** src); // Computes whether all matches must begin with the same first // byte, and if so, returns that byte. If not, returns -1. int ComputeFirstByte(); Prog* prog_; // underlying program int start_; // start instruction in program int ncapture_; // number of submatches to track bool longest_; // whether searching for longest match bool endmatch_; // whether match must end at text.end() const char* btext_; // beginning of text being matched (for FormatSubmatch) const char* etext_; // end of text being matched (for endmatch_) Threadq q0_, q1_; // pre-allocated for Search. const char** match_; // best match so far bool matched_; // any match so far? AddState* astack_; // pre-allocated for AddToThreadq int nastack_; int first_byte_; // required first byte for match, or -1 if none Thread* free_threads_; // free list DISALLOW_EVIL_CONSTRUCTORS(NFA); }; NFA::NFA(Prog* prog) { prog_ = prog; start_ = prog->start(); ncapture_ = 0; longest_ = false; endmatch_ = false; btext_ = NULL; etext_ = NULL; q0_.resize(prog_->size()); q1_.resize(prog_->size()); nastack_ = 2*prog_->size(); astack_ = new AddState[nastack_]; match_ = NULL; matched_ = false; free_threads_ = NULL; first_byte_ = ComputeFirstByte(); } NFA::~NFA() { delete[] match_; delete[] astack_; Thread* next; for (Thread* t = free_threads_; t; t = next) { next = t->next; delete[] t->capture; delete t; } } void NFA::FreeThread(Thread *t) { if (t == NULL) return; t->next = free_threads_; free_threads_ = t; } NFA::Thread* NFA::AllocThread() { Thread* t = free_threads_; if (t == NULL) { t = new Thread; t->capture = new const char*[ncapture_]; return t; } free_threads_ = t->next; return t; } void NFA::CopyCapture(const char** dst, const char** src) { for (int i = 0; i < ncapture_; i+=2) { dst[i] = src[i]; dst[i+1] = src[i+1]; } } // Follows all empty arrows from r and enqueues all the states reached. // The bits in flag (Bol, Eol, etc.) specify whether ^, $ and \b match. // The pointer p is the current input position, and m is the // current set of match boundaries. void NFA::AddToThreadq(Threadq* q, int id0, int flag, const char* p, const char** capture) { if (id0 == 0) return; // Astack_ is pre-allocated to avoid resize operations. // It has room for 2*prog_->size() entries, which is enough: // Each inst in prog can be processed at most once, // pushing at most two entries on stk. int nstk = 0; AddState* stk = astack_; stk[nstk++] = AddState(id0); while (nstk > 0) { DCHECK_LE(nstk, nastack_); const AddState& a = stk[--nstk]; if (a.j >= 0) capture[a.j] = a.cap_j; int id = a.id; if (id == 0) continue; if (q->has_index(id)) { if (Debug) fprintf(stderr, " [%d%s]\n", id, FormatCapture(capture).c_str()); continue; } // Create entry in q no matter what. We might fill it in below, // or we might not. Even if not, it is necessary to have it, // so that we don't revisit r during the recursion. q->set_new(id, NULL); Thread** tp = &q->find(id)->second; int j; Thread* t; Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { default: LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq"; break; case kInstFail: break; case kInstAltMatch: // Save state; will pick up at next byte. t = AllocThread(); t->id = id; CopyCapture(t->capture, capture); *tp = t; // fall through case kInstAlt: // Explore alternatives. stk[nstk++] = AddState(ip->out1()); stk[nstk++] = AddState(ip->out()); break; case kInstNop: // Continue on. stk[nstk++] = AddState(ip->out()); break; case kInstCapture: if ((j=ip->cap()) < ncapture_) { // Push a dummy whose only job is to restore capture[j] // once we finish exploring this possibility. stk[nstk++] = AddState(0, capture[j], j); // Record capture. capture[j] = p; } stk[nstk++] = AddState(ip->out()); break; case kInstMatch: case kInstByteRange: // Save state; will pick up at next byte. t = AllocThread(); t->id = id; CopyCapture(t->capture, capture); *tp = t; if (Debug) fprintf(stderr, " + %d%s [%p]\n", id, FormatCapture(t->capture).c_str(), t); break; case kInstEmptyWidth: // Continue on if we have all the right flag bits. if (ip->empty() & ~flag) break; stk[nstk++] = AddState(ip->out()); break; } } } // Run runq on byte c, appending new states to nextq. // Updates match as new, better matches are found. // p is position of the byte c in the input string, // used when processing capturing parens. // flag is the bitwise or of Bol, Eol, etc., specifying whether // ^, $ and \b match the current input point (after c). // Frees all the threads on runq. // If there is a shortcut to the end, returns that shortcut. int NFA::Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p) { nextq->clear(); for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { Thread* t = i->second; if (t == NULL) continue; if (longest_) { // Can skip any threads started after our current best match. if (matched_ && match_[0] < t->capture[0]) { FreeThread(t); continue; } } int id = t->id; Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { default: // Should only see the values handled below. LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step"; break; case kInstByteRange: if (ip->Matches(c)) AddToThreadq(nextq, ip->out(), flag, p+1, t->capture); break; case kInstAltMatch: if (i != runq->begin()) break; // The match is ours if we want it. if (ip->greedy(prog_) || longest_) { CopyCapture((const char**)match_, t->capture); FreeThread(t); for (++i; i != runq->end(); ++i) FreeThread(i->second); runq->clear(); matched_ = true; if (ip->greedy(prog_)) return ip->out1(); return ip->out(); } break; case kInstMatch: if (endmatch_ && p != etext_) break; const char* old = t->capture[1]; // previous end pointer t->capture[1] = p; if (longest_) { // Leftmost-longest mode: save this match only if // it is either farther to the left or at the same // point but longer than an existing match. if (!matched_ || t->capture[0] < match_[0] || (t->capture[0] == match_[0] && t->capture[1] > match_[1])) CopyCapture((const char**)match_, t->capture); } else { // Leftmost-biased mode: this match is by definition // better than what we've already found (see next line). CopyCapture((const char**)match_, t->capture); // Cut off the threads that can only find matches // worse than the one we just found: don't run the // rest of the current Threadq. t->capture[0] = old; FreeThread(t); for (++i; i != runq->end(); ++i) FreeThread(i->second); runq->clear(); matched_ = true; return 0; } t->capture[0] = old; matched_ = true; break; } FreeThread(t); } runq->clear(); return 0; } string NFA::FormatCapture(const char** capture) { string s; for (int i = 0; i < ncapture_; i+=2) { if (capture[i] == NULL) StringAppendF(&s, "(?,?)"); else if (capture[i+1] == NULL) StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_)); else StringAppendF(&s, "(%d,%d)", (int)(capture[i] - btext_), (int)(capture[i+1] - btext_)); } return s; } // Returns whether haystack contains needle's memory. static bool StringPieceContains(const StringPiece haystack, const StringPiece needle) { return haystack.begin() <= needle.begin() && haystack.end() >= needle.end(); } bool NFA::Search(const StringPiece& text, const StringPiece& const_context, bool anchored, bool longest, StringPiece* submatch, int nsubmatch) { if (start_ == 0) return false; StringPiece context = const_context; if (context.begin() == NULL) context = text; if (!StringPieceContains(context, text)) { LOG(FATAL) << "Bad args: context does not contain text " << reinterpret_cast<const void*>(context.begin()) << "+" << context.size() << " " << reinterpret_cast<const void*>(text.begin()) << "+" << text.size(); return false; } if (prog_->anchor_start() && context.begin() != text.begin()) return false; if (prog_->anchor_end() && context.end() != text.end()) return false; anchored |= prog_->anchor_start(); if (prog_->anchor_end()) { longest = true; endmatch_ = true; etext_ = text.end(); } if (nsubmatch < 0) { LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch; return false; } // Save search parameters. ncapture_ = 2*nsubmatch; longest_ = longest; if (nsubmatch == 0) { // We need to maintain match[0], both to distinguish the // longest match (if longest is true) and also to tell // whether we've seen any matches at all. ncapture_ = 2; } match_ = new const char*[ncapture_]; matched_ = false; memset(match_, 0, ncapture_*sizeof match_[0]); // For debugging prints. btext_ = context.begin(); if (Debug) { fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n", text.as_string().c_str(), context.as_string().c_str(), anchored, longest); } // Set up search. Threadq* runq = &q0_; Threadq* nextq = &q1_; runq->clear(); nextq->clear(); memset(&match_[0], 0, ncapture_*sizeof match_[0]); const char* bp = context.begin(); int c = -1; int wasword = 0; if (text.begin() > context.begin()) { c = text.begin()[-1] & 0xFF; wasword = Prog::IsWordChar(c); } // Loop over the text, stepping the machine. for (const char* p = text.begin();; p++) { // Check for empty-width specials. int flag = 0; // ^ and \A if (p == context.begin()) flag |= kEmptyBeginText | kEmptyBeginLine; else if (p <= context.end() && p[-1] == '\n') flag |= kEmptyBeginLine; // $ and \z if (p == context.end()) flag |= kEmptyEndText | kEmptyEndLine; else if (p < context.end() && p[0] == '\n') flag |= kEmptyEndLine; // \b and \B int isword = 0; if (p < context.end()) isword = Prog::IsWordChar(p[0] & 0xFF); if (isword != wasword) flag |= kEmptyWordBoundary; else flag |= kEmptyNonWordBoundary; if (Debug) { fprintf(stderr, "%c[%#x/%d/%d]:", p > text.end() ? '$' : p == bp ? '^' : c, flag, isword, wasword); for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { Thread* t = i->second; if (t == NULL) continue; fprintf(stderr, " %d%s", t->id, FormatCapture((const char**)t->capture).c_str()); } fprintf(stderr, "\n"); } // Process previous character (waited until now to avoid // repeating the flag computation above). // This is a no-op the first time around the loop, because // runq is empty. int id = Step(runq, nextq, c, flag, p-1); DCHECK_EQ(runq->size(), 0); swap(nextq, runq); nextq->clear(); if (id != 0) { // We're done: full match ahead. p = text.end(); for (;;) { Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { default: LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode(); break; case kInstCapture: match_[ip->cap()] = p; id = ip->out(); continue; case kInstNop: id = ip->out(); continue; case kInstMatch: match_[1] = p; matched_ = true; break; case kInstEmptyWidth: if (ip->empty() & ~(kEmptyEndLine|kEmptyEndText)) { LOG(DFATAL) << "Unexpected empty-width in short circuit: " << ip->empty(); break; } id = ip->out(); continue; } break; } break; } if (p > text.end()) break; // Start a new thread if there have not been any matches. // (No point in starting a new thread if there have been // matches, since it would be to the right of the match // we already found.) if (!matched_ && (!anchored || p == text.begin())) { // If there's a required first byte for an unanchored search // and we're not in the middle of any possible matches, // use memchr to search for the byte quickly. if (!anchored && first_byte_ >= 0 && runq->size() == 0 && p < text.end() && (p[0] & 0xFF) != first_byte_) { p = reinterpret_cast<const char*>(memchr(p, first_byte_, text.end() - p)); if (p == NULL) { p = text.end(); isword = 0; } else { isword = Prog::IsWordChar(p[0] & 0xFF); } flag = Prog::EmptyFlags(context, p); } // Steal match storage (cleared but unused as of yet) // temporarily to hold match boundaries for new thread. match_[0] = p; AddToThreadq(runq, start_, flag, p, match_); match_[0] = NULL; } // If all the threads have died, stop early. if (runq->size() == 0) { if (Debug) fprintf(stderr, "dead\n"); break; } if (p == text.end()) c = 0; else c = *p & 0xFF; wasword = isword; // Will run step(runq, nextq, c, ...) on next iteration. See above. } for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) FreeThread(i->second); if (matched_) { for (int i = 0; i < nsubmatch; i++) submatch[i].set(match_[2*i], match_[2*i+1] - match_[2*i]); if (Debug) fprintf(stderr, "match (%d,%d)\n", static_cast<int>(match_[0] - btext_), static_cast<int>(match_[1] - btext_)); return true; } VLOG(1) << "No matches found"; return false; } // Computes whether all successful matches have a common first byte, // and if so, returns that byte. If not, returns -1. int NFA::ComputeFirstByte() { if (start_ == 0) return -1; int b = -1; // first byte, not yet computed typedef SparseSet Workq; Workq q(prog_->size()); q.insert(start_); for (Workq::iterator it = q.begin(); it != q.end(); ++it) { int id = *it; Prog::Inst* ip = prog_->inst(id); switch (ip->opcode()) { default: LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte"; break; case kInstMatch: // The empty string matches: no first byte. return -1; case kInstByteRange: // Must match only a single byte if (ip->lo() != ip->hi()) return -1; if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z') return -1; // If we haven't seen any bytes yet, record it; // otherwise must match the one we saw before. if (b == -1) b = ip->lo(); else if (b != ip->lo()) return -1; break; case kInstNop: case kInstCapture: case kInstEmptyWidth: // Continue on. // Ignore ip->empty() flags for kInstEmptyWidth // in order to be as conservative as possible // (assume all possible empty-width flags are true). if (ip->out()) q.insert(ip->out()); break; case kInstAlt: case kInstAltMatch: // Explore alternatives. if (ip->out()) q.insert(ip->out()); if (ip->out1()) q.insert(ip->out1()); break; case kInstFail: break; } } return b; } bool Prog::SearchNFA(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match, int nmatch) { if (NFA::Debug) Dump(); NFA nfa(this); StringPiece sp; if (kind == kFullMatch) { anchor = kAnchored; if (nmatch == 0) { match = &sp; nmatch = 1; } } if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch)) return false; if (kind == kFullMatch && match[0].end() != text.end()) return false; return true; } } // namespace re2