/* Copyright (C) 2006-2007 The Android Open Source Project ** ** This software is licensed under the terms of the GNU General Public ** License version 2, as published by the Free Software Foundation, and ** may be copied, distributed, and modified under those terms. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h> #include <inttypes.h> #include <sys/stat.h> #include <sys/types.h> #include <errno.h> #include <sys/time.h> #include <time.h> #include "cpu.h" #include "exec-all.h" #include "android-trace.h" #include "varint.h" #include "android/utils/path.h" // For tracing dynamic execution of basic blocks typedef struct TraceBB { char *filename; FILE *fstream; BBRec buffer[kMaxNumBasicBlocks]; BBRec *next; // points to next record in buffer uint64_t flush_time; // time of last buffer flush char compressed[kCompressedSize]; char *compressed_ptr; char *high_water_ptr; int64_t prev_bb_num; uint64_t prev_bb_time; uint64_t current_bb_num; uint64_t current_bb_start_time; uint64_t recnum; // counts number of trace records uint32_t current_bb_addr; int num_insns; } TraceBB; // For tracing simuation start times of instructions typedef struct TraceInsn { char *filename; FILE *fstream; InsnRec dummy; // this is here so we can use buffer[-1] InsnRec buffer[kInsnBufferSize]; InsnRec *current; uint64_t prev_time; // time of last instruction start char compressed[kCompressedSize]; char *compressed_ptr; char *high_water_ptr; } TraceInsn; // For tracing the static information about a basic block typedef struct TraceStatic { char *filename; FILE *fstream; uint32_t insns[kMaxInsnPerBB]; int next_insn; uint64_t bb_num; uint32_t bb_addr; int is_thumb; } TraceStatic; // For tracing load and store addresses typedef struct TraceAddr { char *filename; FILE *fstream; AddrRec buffer[kMaxNumAddrs]; AddrRec *next; char compressed[kCompressedSize]; char *compressed_ptr; char *high_water_ptr; uint32_t prev_addr; uint64_t prev_time; } TraceAddr; // For tracing exceptions typedef struct TraceExc { char *filename; FILE *fstream; char compressed[kCompressedSize]; char *compressed_ptr; char *high_water_ptr; uint64_t prev_time; uint64_t prev_bb_recnum; } TraceExc; // For tracing process id changes typedef struct TracePid { char *filename; FILE *fstream; char compressed[kCompressedSize]; char *compressed_ptr; uint64_t prev_time; } TracePid; // For tracing Dalvik VM method enter and exit typedef struct TraceMethod { char *filename; FILE *fstream; char compressed[kCompressedSize]; char *compressed_ptr; uint64_t prev_time; uint32_t prev_addr; int32_t prev_pid; } TraceMethod; extern TraceBB trace_bb; extern TraceInsn trace_insn; extern TraceStatic trace_static; extern TraceAddr trace_load; extern TraceAddr trace_store; extern TraceExc trace_exc; extern TracePid trace_pid; extern TraceMethod trace_method; TraceBB trace_bb; TraceInsn trace_insn; TraceStatic trace_static; TraceAddr trace_load; TraceAddr trace_store; TraceExc trace_exc; TracePid trace_pid; TraceMethod trace_method; static TraceHeader header; const char *trace_filename; int tracing; int trace_cache_miss; int trace_all_addr; // The simulation time in cpu clock cycles uint64_t sim_time = 1; // The current process id int current_pid; // The start and end (wall-clock) time in microseconds uint64_t start_time, end_time; uint64_t elapsed_usecs; // For debugging output FILE *ftrace_debug; // The maximum number of bytes consumed by an InsnRec after compression. // This is very conservative but needed to ensure no buffer overflows. #define kMaxInsnCompressed 14 // The maximum number of bytes consumed by an BBRec after compression. // This is very conservative but needed to ensure no buffer overflows. #define kMaxBBCompressed 32 // The maximum number of bytes consumed by an AddrRec after compression. // This is very conservative but needed to ensure no buffer overflows. #define kMaxAddrCompressed 14 // The maximum number of bytes consumed by a MethodRec after compression. // This is very conservative but needed to ensure no buffer overflows. #define kMaxMethodCompressed 18 // The maximum number of bytes consumed by an exception record after // compression. #define kMaxExcCompressed 38 // The maximum number of bytes consumed by a pid record for // kPidSwitch, or kPidExit after compression. #define kMaxPidCompressed 15 // The maximum number of bytes consumed by a pid record for kPidFork, // or kPidClone after compression. #define kMaxPid2Compressed 20 // The maximum number of bytes consumed by a pid record for kPidExecArgs // after compression, not counting the bytes for the args. #define kMaxExecArgsCompressed 15 // The maximum number of bytes consumed by a pid record for kPidName // after compression, not counting the bytes for the name. #define kMaxNameCompressed 20 // The maximum number of bytes consumed by a pid record for kPidMmap // after compression, not counting the bytes for the pathname. #define kMaxMmapCompressed 33 // The maximum number of bytes consumed by a pid record for kPidMunmap, // after compression. #define kMaxMunmapCompressed 28 // The maximum number of bytes consumed by a pid record for kPidSymbol // after compression, not counting the bytes for the symbol name. #define kMaxSymbolCompressed 24 // The maximum number of bytes consumed by a pid record for kPidKthreadName // after compression, not counting the bytes for the name. #define kMaxKthreadNameCompressed 25 void trace_cleanup(); // Return current time in microseconds as a 64-bit integer. uint64 Now() { struct timeval tv; gettimeofday(&tv, NULL); uint64 val = tv.tv_sec; val = val * 1000000ull + tv.tv_usec; return val; } static void create_trace_dir(const char *dirname) { int err; err = path_mkdir(dirname, 0755); if (err != 0 && errno != EEXIST) { printf("err: %d\n", err); perror(dirname); exit(1); } } static char *create_trace_path(const char *filename, const char *ext) { char *fname; const char *base_start, *base_end; int ii, len, base_len, dir_len, path_len, qtrace_len; // Handle error cases if (filename == NULL || *filename == 0 || strcmp(filename, "/") == 0) return NULL; // Ignore a trailing slash, if any len = strlen(filename); if (filename[len - 1] == '/') len -= 1; // Find the basename. We don't use basename(3) because there are // different behaviors for GNU and Posix in the case where the // last character is a slash. base_start = base_end = &filename[len]; for (ii = 0; ii < len; ++ii) { base_start -= 1; if (*base_start == '/') { base_start += 1; break; } } base_len = base_end - base_start; dir_len = len - base_len; qtrace_len = strlen("/qtrace"); // Create space for the pathname: "/dir/basename/qtrace.ext" // The "ext" string already contains the dot, so just add a byte // for the terminating zero. path_len = dir_len + base_len + qtrace_len + strlen(ext) + 1; fname = malloc(path_len); if (dir_len > 0) strncpy(fname, filename, dir_len); fname[dir_len] = 0; strncat(fname, base_start, base_len); strcat(fname, "/qtrace"); strcat(fname, ext); return fname; } void convert_secs_to_date_time(time_t secs, uint32_t *pdate, uint32_t *ptime) { struct tm *tm = localtime(&secs); uint32_t year = tm->tm_year + 1900; uint32_t thousands = year / 1000; year -= thousands * 1000; uint32_t hundreds = year / 100; year -= hundreds * 100; uint32_t tens = year / 10; year -= tens * 10; uint32_t ones = year; year = (thousands << 12) | (hundreds << 8) | (tens << 4) | ones; uint32_t mon = tm->tm_mon + 1; tens = mon / 10; ones = (mon - tens * 10); mon = (tens << 4) | ones; uint32_t day = tm->tm_mday; tens = day / 10; ones = (day - tens * 10); day = (tens << 4) | ones; *pdate = (year << 16) | (mon << 8) | day; uint32_t hour = tm->tm_hour; tens = hour / 10; ones = (hour - tens * 10); hour = (tens << 4) | ones; uint32_t min = tm->tm_min; tens = min / 10; ones = (min - tens * 10); min = (tens << 4) | ones; uint32_t sec = tm->tm_sec; tens = sec / 10; ones = (sec - tens * 10); sec = (tens << 4) | ones; *ptime = (hour << 16) | (min << 8) | sec; } void write_trace_header(TraceHeader *header) { TraceHeader swappedHeader; memcpy(&swappedHeader, header, sizeof(TraceHeader)); convert32(swappedHeader.version); convert32(swappedHeader.start_sec); convert32(swappedHeader.start_usec); convert32(swappedHeader.pdate); convert32(swappedHeader.ptime); convert32(swappedHeader.num_used_pids); convert32(swappedHeader.first_unused_pid); convert64(swappedHeader.num_static_bb); convert64(swappedHeader.num_static_insn); convert64(swappedHeader.num_dynamic_bb); convert64(swappedHeader.num_dynamic_insn); convert64(swappedHeader.elapsed_usecs); fwrite(&swappedHeader, sizeof(TraceHeader), 1, trace_static.fstream); } void create_trace_bb(const char *filename) { char *fname = create_trace_path(filename, ".bb"); trace_bb.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_bb.fstream = fstream; trace_bb.next = &trace_bb.buffer[0]; trace_bb.flush_time = 0; trace_bb.compressed_ptr = trace_bb.compressed; trace_bb.high_water_ptr = &trace_bb.compressed[kCompressedSize] - kMaxBBCompressed; trace_bb.prev_bb_num = 0; trace_bb.prev_bb_time = 0; trace_bb.num_insns = 0; trace_bb.recnum = 0; } void create_trace_insn(const char *filename) { // Create the instruction time trace file char *fname = create_trace_path(filename, ".insn"); trace_insn.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_insn.fstream = fstream; trace_insn.current = &trace_insn.dummy; trace_insn.dummy.time_diff = 0; trace_insn.dummy.repeat = 0; trace_insn.prev_time = 0; trace_insn.compressed_ptr = trace_insn.compressed; trace_insn.high_water_ptr = &trace_insn.compressed[kCompressedSize] - kMaxInsnCompressed; } void create_trace_static(const char *filename) { // Create the static basic block trace file char *fname = create_trace_path(filename, ".static"); trace_static.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_static.fstream = fstream; trace_static.next_insn = 0; trace_static.bb_num = 1; trace_static.bb_addr = 0; // Write an empty header to reserve space for it in the file. // The header will be filled in later when post-processing the // trace file. memset(&header, 0, sizeof(TraceHeader)); // Write out the version number so that tools can detect if the trace // file format is the same as what they expect. header.version = TRACE_VERSION; // Record the start time in the header now. struct timeval tv; struct timezone tz; gettimeofday(&tv, &tz); header.start_sec = tv.tv_sec; header.start_usec = tv.tv_usec; convert_secs_to_date_time(header.start_sec, &header.pdate, &header.ptime); write_trace_header(&header); // Write out the record for the unused basic block number 0. uint64_t zero = 0; fwrite(&zero, sizeof(uint64_t), 1, trace_static.fstream); // bb_num fwrite(&zero, sizeof(uint32_t), 1, trace_static.fstream); // bb_addr fwrite(&zero, sizeof(uint32_t), 1, trace_static.fstream); // num_insns } void create_trace_addr(const char *filename) { // The "qtrace.load" and "qtrace.store" files are optional trace_load.fstream = NULL; trace_store.fstream = NULL; if (trace_all_addr || trace_cache_miss) { // Create the "qtrace.load" file char *fname = create_trace_path(filename, ".load"); trace_load.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_load.fstream = fstream; trace_load.next = &trace_load.buffer[0]; trace_load.compressed_ptr = trace_load.compressed; trace_load.high_water_ptr = &trace_load.compressed[kCompressedSize] - kMaxAddrCompressed; trace_load.prev_addr = 0; trace_load.prev_time = 0; // Create the "qtrace.store" file fname = create_trace_path(filename, ".store"); trace_store.filename = fname; fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_store.fstream = fstream; trace_store.next = &trace_store.buffer[0]; trace_store.compressed_ptr = trace_store.compressed; trace_store.high_water_ptr = &trace_store.compressed[kCompressedSize] - kMaxAddrCompressed; trace_store.prev_addr = 0; trace_store.prev_time = 0; } } void create_trace_exc(const char *filename) { // Create the exception trace file char *fname = create_trace_path(filename, ".exc"); trace_exc.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_exc.fstream = fstream; trace_exc.compressed_ptr = trace_exc.compressed; trace_exc.high_water_ptr = &trace_exc.compressed[kCompressedSize] - kMaxExcCompressed; trace_exc.prev_time = 0; trace_exc.prev_bb_recnum = 0; } void create_trace_pid(const char *filename) { // Create the pid trace file char *fname = create_trace_path(filename, ".pid"); trace_pid.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_pid.fstream = fstream; trace_pid.compressed_ptr = trace_pid.compressed; trace_pid.prev_time = 0; } void create_trace_method(const char *filename) { // Create the method trace file char *fname = create_trace_path(filename, ".method"); trace_method.filename = fname; FILE *fstream = fopen(fname, "wb"); if (fstream == NULL) { perror(fname); exit(1); } trace_method.fstream = fstream; trace_method.compressed_ptr = trace_method.compressed; trace_method.prev_time = 0; trace_method.prev_addr = 0; trace_method.prev_pid = 0; } void trace_init(const char *filename) { // Create the trace files create_trace_dir(filename); create_trace_bb(filename); create_trace_insn(filename); create_trace_static(filename); create_trace_addr(filename); create_trace_exc(filename); create_trace_pid(filename); create_trace_method(filename); #if 0 char *fname = create_trace_path(filename, ".debug"); ftrace_debug = fopen(fname, "wb"); if (ftrace_debug == NULL) { perror(fname); exit(1); } #else ftrace_debug = NULL; #endif atexit(trace_cleanup); // If tracing is on, then start timing the simulator if (tracing) start_time = Now(); } /* the following array is used to deal with def-use register interlocks, which we * can compute statically (ignoring conditions), very fortunately. * * the idea is that interlock_base contains the number of cycles "executed" from * the start of a basic block. It is set to 0 in trace_bb_start, and incremented * in each call to get_insn_ticks_arm. * * interlocks[N] correspond to the value of interlock_base after which a register N * can be used by another operation, it is set each time an instruction writes to * the register in get_insn_ticks() */ static int interlocks[16]; static int interlock_base; static void _interlock_def(int reg, int delay) { if (reg >= 0) interlocks[reg] = interlock_base + delay; } static int _interlock_use(int reg) { int delay = 0; if (reg >= 0) { delay = interlocks[reg] - interlock_base; if (delay < 0) delay = 0; } return delay; } void trace_bb_start(uint32_t bb_addr) { int nn; trace_static.bb_addr = bb_addr; trace_static.is_thumb = 0; interlock_base = 0; for (nn = 0; nn < 16; nn++) interlocks[nn] = 0; } void trace_add_insn(uint32_t insn, int is_thumb) { trace_static.insns[trace_static.next_insn++] = insn; // This relies on the fact that a basic block does not contain a mix // of ARM and Thumb instructions. If that is not true, then many // software tools that read the trace will have to change. trace_static.is_thumb = is_thumb; } void trace_bb_end() { int ii, num_insns; uint32_t insn; uint64_t bb_num = hostToLE64(trace_static.bb_num); // If these are Thumb instructions, then encode that fact by setting // the low bit of the basic-block address to 1. uint32_t bb_addr = trace_static.bb_addr | trace_static.is_thumb; bb_addr = hostToLE32(bb_addr); num_insns = hostToLE32(trace_static.next_insn); fwrite(&bb_num, sizeof(bb_num), 1, trace_static.fstream); fwrite(&bb_addr, sizeof(bb_addr), 1, trace_static.fstream); fwrite(&num_insns, sizeof(num_insns), 1, trace_static.fstream); for (ii = 0; ii < trace_static.next_insn; ++ii) { insn = hostToLE32(trace_static.insns[ii]); fwrite(&insn, sizeof(insn), 1, trace_static.fstream); } trace_static.bb_num += 1; trace_static.next_insn = 0; } void trace_cleanup() { if (tracing) { end_time = Now(); elapsed_usecs += end_time - start_time; } header.elapsed_usecs = elapsed_usecs; double elapsed_secs = elapsed_usecs / 1000000.0; double cycles_per_sec = 0; if (elapsed_secs != 0) cycles_per_sec = sim_time / elapsed_secs; char *suffix = ""; if (cycles_per_sec >= 1000000) { cycles_per_sec /= 1000000.0; suffix = "M"; } else if (cycles_per_sec > 1000) { cycles_per_sec /= 1000.0; suffix = "K"; } printf("Elapsed seconds: %.2f, simulated cycles/sec: %.1f%s\n", elapsed_secs, cycles_per_sec, suffix); if (trace_bb.fstream) { BBRec *ptr; BBRec *next = trace_bb.next; char *comp_ptr = trace_bb.compressed_ptr; int64_t prev_bb_num = trace_bb.prev_bb_num; uint64_t prev_bb_time = trace_bb.prev_bb_time; for (ptr = trace_bb.buffer; ptr != next; ++ptr) { if (comp_ptr >= trace_bb.high_water_ptr) { uint32_t size = comp_ptr - trace_bb.compressed; fwrite(trace_bb.compressed, sizeof(char), size, trace_bb.fstream); comp_ptr = trace_bb.compressed; } int64_t bb_diff = ptr->bb_num - prev_bb_num; prev_bb_num = ptr->bb_num; uint64_t time_diff = ptr->start_time - prev_bb_time; prev_bb_time = ptr->start_time; comp_ptr = varint_encode_signed(bb_diff, comp_ptr); comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(ptr->repeat, comp_ptr); if (ptr->repeat) comp_ptr = varint_encode(ptr->time_diff, comp_ptr); } // Add an extra record at the end containing the ending simulation // time and a basic block number of 0. uint64_t time_diff = sim_time - prev_bb_time; if (time_diff > 0) { int64_t bb_diff = -prev_bb_num; comp_ptr = varint_encode_signed(bb_diff, comp_ptr); comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(0, comp_ptr); } uint32_t size = comp_ptr - trace_bb.compressed; if (size) fwrite(trace_bb.compressed, sizeof(char), size, trace_bb.fstream); // Terminate the file with three zeros so that we can detect // the end of file quickly. uint32_t zeros = 0; fwrite(&zeros, 3, 1, trace_bb.fstream); fclose(trace_bb.fstream); } if (trace_insn.fstream) { InsnRec *ptr; InsnRec *current = trace_insn.current + 1; char *comp_ptr = trace_insn.compressed_ptr; for (ptr = trace_insn.buffer; ptr != current; ++ptr) { if (comp_ptr >= trace_insn.high_water_ptr) { uint32_t size = comp_ptr - trace_insn.compressed; uint32_t rval = fwrite(trace_insn.compressed, sizeof(char), size, trace_insn.fstream); if (rval != size) { fprintf(stderr, "fwrite() failed\n"); perror(trace_insn.filename); exit(1); } comp_ptr = trace_insn.compressed; } comp_ptr = varint_encode(ptr->time_diff, comp_ptr); comp_ptr = varint_encode(ptr->repeat, comp_ptr); } uint32_t size = comp_ptr - trace_insn.compressed; if (size) { uint32_t rval = fwrite(trace_insn.compressed, sizeof(char), size, trace_insn.fstream); if (rval != size) { fprintf(stderr, "fwrite() failed\n"); perror(trace_insn.filename); exit(1); } } fclose(trace_insn.fstream); } if (trace_static.fstream) { fseek(trace_static.fstream, 0, SEEK_SET); write_trace_header(&header); fclose(trace_static.fstream); } if (trace_load.fstream) { AddrRec *ptr; char *comp_ptr = trace_load.compressed_ptr; AddrRec *next = trace_load.next; uint32_t prev_addr = trace_load.prev_addr; uint64_t prev_time = trace_load.prev_time; for (ptr = trace_load.buffer; ptr != next; ++ptr) { if (comp_ptr >= trace_load.high_water_ptr) { uint32_t size = comp_ptr - trace_load.compressed; fwrite(trace_load.compressed, sizeof(char), size, trace_load.fstream); comp_ptr = trace_load.compressed; } int addr_diff = ptr->addr - prev_addr; uint64_t time_diff = ptr->time - prev_time; prev_addr = ptr->addr; prev_time = ptr->time; comp_ptr = varint_encode_signed(addr_diff, comp_ptr); comp_ptr = varint_encode(time_diff, comp_ptr); } uint32_t size = comp_ptr - trace_load.compressed; if (size) { fwrite(trace_load.compressed, sizeof(char), size, trace_load.fstream); } // Terminate the file with two zeros so that we can detect // the end of file quickly. uint32_t zeros = 0; fwrite(&zeros, 2, 1, trace_load.fstream); fclose(trace_load.fstream); } if (trace_store.fstream) { AddrRec *ptr; char *comp_ptr = trace_store.compressed_ptr; AddrRec *next = trace_store.next; uint32_t prev_addr = trace_store.prev_addr; uint64_t prev_time = trace_store.prev_time; for (ptr = trace_store.buffer; ptr != next; ++ptr) { if (comp_ptr >= trace_store.high_water_ptr) { uint32_t size = comp_ptr - trace_store.compressed; fwrite(trace_store.compressed, sizeof(char), size, trace_store.fstream); comp_ptr = trace_store.compressed; } int addr_diff = ptr->addr - prev_addr; uint64_t time_diff = ptr->time - prev_time; prev_addr = ptr->addr; prev_time = ptr->time; comp_ptr = varint_encode_signed(addr_diff, comp_ptr); comp_ptr = varint_encode(time_diff, comp_ptr); } uint32_t size = comp_ptr - trace_store.compressed; if (size) { fwrite(trace_store.compressed, sizeof(char), size, trace_store.fstream); } // Terminate the file with two zeros so that we can detect // the end of file quickly. uint32_t zeros = 0; fwrite(&zeros, 2, 1, trace_store.fstream); fclose(trace_store.fstream); } if (trace_exc.fstream) { uint32_t size = trace_exc.compressed_ptr - trace_exc.compressed; if (size) { fwrite(trace_exc.compressed, sizeof(char), size, trace_exc.fstream); } // Terminate the file with 7 zeros so that we can detect // the end of file quickly. uint64_t zeros = 0; fwrite(&zeros, 7, 1, trace_exc.fstream); fclose(trace_exc.fstream); } if (trace_pid.fstream) { uint32_t size = trace_pid.compressed_ptr - trace_pid.compressed; if (size) { fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); } // Terminate the file with 2 zeros so that we can detect // the end of file quickly. uint64_t zeros = 0; fwrite(&zeros, 2, 1, trace_pid.fstream); fclose(trace_pid.fstream); } if (trace_method.fstream) { uint32_t size = trace_method.compressed_ptr - trace_method.compressed; if (size) { fwrite(trace_method.compressed, sizeof(char), size, trace_method.fstream); } // Terminate the file with 2 zeros so that we can detect // the end of file quickly. uint64_t zeros = 0; fwrite(&zeros, 2, 1, trace_method.fstream); fclose(trace_method.fstream); } if (ftrace_debug) fclose(ftrace_debug); } // Define the number of clock ticks for some instructions. Add one to these // (in some cases) if there is an interlock. We currently do not check for // interlocks. #define TICKS_OTHER 1 #define TICKS_SMULxy 1 #define TICKS_SMLAWy 1 #define TICKS_SMLALxy 2 #define TICKS_MUL 2 #define TICKS_MLA 2 #define TICKS_MULS 4 // no interlock penalty #define TICKS_MLAS 4 // no interlock penalty #define TICKS_UMULL 3 #define TICKS_UMLAL 3 #define TICKS_SMULL 3 #define TICKS_SMLAL 3 #define TICKS_UMULLS 5 // no interlock penalty #define TICKS_UMLALS 5 // no interlock penalty #define TICKS_SMULLS 5 // no interlock penalty #define TICKS_SMLALS 5 // no interlock penalty // Compute the number of cycles that this instruction will take, // not including any I-cache or D-cache misses. This function // is called for each instruction in a basic block when that // block is being translated. int get_insn_ticks_arm(uint32_t insn) { #if 1 int result = 1; /* by default, use 1 cycle */ /* See Chapter 12 of the ARM920T Reference Manual for details about clock cycles */ /* first check for invalid condition codes */ if ((insn >> 28) == 0xf) { if ((insn >> 25) == 0x7d) { /* BLX */ result = 3; goto Exit; } /* XXX: if we get there, we're either in an UNDEFINED instruction */ /* or in co-processor related ones. For now, only return 1 cycle */ goto Exit; } /* other cases */ switch ((insn >> 25) & 7) { case 0: if ((insn & 0x00000090) == 0x00000090) /* Multiplies, extra load/store, Table 3-2 */ { /* XXX: TODO: Add support for multiplier operand content penalties in the translator */ if ((insn & 0x0fc000f0) == 0x00000090) /* 3-2: Multiply (accumulate) */ { int Rm = (insn & 15); int Rs = (insn >> 8) & 15; int Rn = (insn >> 12) & 15; if ((insn & 0x00200000) != 0) { /* MLA */ result += _interlock_use(Rn); } else { /* MLU */ if (Rn != 0) /* UNDEFINED */ goto Exit; } /* cycles=2+m, assume m=1, this should be adjusted at interpretation time */ result += 2 + _interlock_use(Rm) + _interlock_use(Rs); } else if ((insn & 0x0f8000f0) == 0x00800090) /* 3-2: Multiply (accumulate) long */ { int Rm = (insn & 15); int Rs = (insn >> 8) & 15; int RdLo = (insn >> 12) & 15; int RdHi = (insn >> 16) & 15; if ((insn & 0x00200000) != 0) { /* SMLAL & UMLAL */ result += _interlock_use(RdLo) + _interlock_use(RdHi); } /* else SMLL and UMLL */ /* cucles=3+m, assume m=1, this should be adjusted at interpretation time */ result += 3 + _interlock_use(Rm) + _interlock_use(Rs); } else if ((insn & 0x0fd00ff0) == 0x01000090) /* 3-2: Swap/swap byte */ { int Rm = (insn & 15); int Rd = (insn >> 8) & 15; result = 2 + _interlock_use(Rm); _interlock_def(Rd, result+1); } else if ((insn & 0x0e400ff0) == 0x00000090) /* 3-2: load/store halfword, reg offset */ { int Rm = (insn & 15); int Rd = (insn >> 12) & 15; int Rn = (insn >> 16) & 15; result += _interlock_use(Rn) + _interlock_use(Rm); if ((insn & 0x00100000) != 0) /* it's a load, there's a 2-cycle interlock */ _interlock_def(Rd, result+2); } else if ((insn & 0x0e400ff0) == 0x00400090) /* 3-2: load/store halfword, imm offset */ { int Rd = (insn >> 12) & 15; int Rn = (insn >> 16) & 15; result += _interlock_use(Rn); if ((insn & 0x00100000) != 0) /* it's a load, there's a 2-cycle interlock */ _interlock_def(Rd, result+2); } else if ((insn & 0x0e500fd0) == 0x000000d0) /* 3-2: load/store two words, reg offset */ { /* XXX: TODO: Enhanced DSP instructions */ } else if ((insn & 0x0e500fd0) == 0x001000d0) /* 3-2: load/store half/byte, reg offset */ { int Rm = (insn & 15); int Rd = (insn >> 12) & 15; int Rn = (insn >> 16) & 15; result += _interlock_use(Rn) + _interlock_use(Rm); if ((insn & 0x00100000) != 0) /* load, 2-cycle interlock */ _interlock_def(Rd, result+2); } else if ((insn & 0x0e5000d0) == 0x004000d0) /* 3-2: load/store two words, imm offset */ { /* XXX: TODO: Enhanced DSP instructions */ } else if ((insn & 0x0e5000d0) == 0x005000d0) /* 3-2: load/store half/byte, imm offset */ { int Rd = (insn >> 12) & 15; int Rn = (insn >> 16) & 15; result += _interlock_use(Rn); if ((insn & 0x00100000) != 0) /* load, 2-cycle interlock */ _interlock_def(Rd, result+2); } else { /* UNDEFINED */ } } else if ((insn & 0x0f900000) == 0x01000000) /* Misc. instructions, table 3-3 */ { switch ((insn >> 4) & 15) { case 0: if ((insn & 0x0fb0fff0) == 0x0120f000) /* move register to status register */ { int Rm = (insn & 15); result += _interlock_use(Rm); } break; case 1: if ( ((insn & 0x0ffffff0) == 0x01200010) || /* branch/exchange */ ((insn & 0x0fff0ff0) == 0x01600010) ) /* count leading zeroes */ { int Rm = (insn & 15); result += _interlock_use(Rm); } break; case 3: if ((insn & 0x0ffffff0) == 0x01200030) /* link/exchange */ { int Rm = (insn & 15); result += _interlock_use(Rm); } break; default: /* TODO: Enhanced DSP instructions */ ; } } else /* Data processing */ { int Rm = (insn & 15); int Rn = (insn >> 16) & 15; result += _interlock_use(Rn) + _interlock_use(Rm); if ((insn & 0x10)) { /* register-controlled shift => 1 cycle penalty */ int Rs = (insn >> 8) & 15; result += 1 + _interlock_use(Rs); } } break; case 1: if ((insn & 0x01900000) == 0x01900000) { /* either UNDEFINED or move immediate to CPSR */ } else /* Data processing immediate */ { int Rn = (insn >> 12) & 15; result += _interlock_use(Rn); } break; case 2: /* load/store immediate */ { int Rn = (insn >> 16) & 15; result += _interlock_use(Rn); if (insn & 0x00100000) { /* LDR */ int Rd = (insn >> 12) & 15; if (Rd == 15) /* loading PC */ result = 5; else _interlock_def(Rd,result+1); } } break; case 3: if ((insn & 0x10) == 0) /* load/store register offset */ { int Rm = (insn & 15); int Rn = (insn >> 16) & 15; result += _interlock_use(Rm) + _interlock_use(Rn); if (insn & 0x00100000) { /* LDR */ int Rd = (insn >> 12) & 15; if (Rd == 15) result = 5; else _interlock_def(Rd,result+1); } } /* else UNDEFINED */ break; case 4: /* load/store multiple */ { int Rn = (insn >> 16) & 15; uint32_t mask = (insn & 0xffff); int count; for (count = 0; mask; count++) mask &= (mask-1); result += _interlock_use(Rn); if (insn & 0x00100000) /* LDM */ { int nn; if (insn & 0x8000) { /* loading PC */ result = count+4; } else { /* not loading PC */ result = (count < 2) ? 2 : count; } /* create defs, all registers locked until the end of the load */ for (nn = 0; nn < 15; nn++) if ((insn & (1U << nn)) != 0) _interlock_def(nn,result); } else /* STM */ result = (count < 2) ? 2 : count; } break; case 5: /* branch and branch+link */ break; case 6: /* coprocessor load/store */ { int Rn = (insn >> 16) & 15; if (insn & 0x00100000) result += _interlock_use(Rn); /* XXX: other things to do ? */ } break; default: /* i.e. 7 */ /* XXX: TODO: co-processor related things */ ; } Exit: interlock_base += result; return result; #else /* old code - this seems to be completely buggy ?? */ if ((insn & 0x0ff0f090) == 0x01600080) { return TICKS_SMULxy; } else if ((insn & 0x0ff00090) == 0x01200080) { return TICKS_SMLAWy; } else if ((insn & 0x0ff00090) == 0x01400080) { return TICKS_SMLALxy; } else if ((insn & 0x0f0000f0) == 0x00000090) { // multiply uint8_t bit23 = (insn >> 23) & 0x1; uint8_t bit22_U = (insn >> 22) & 0x1; uint8_t bit21_A = (insn >> 21) & 0x1; uint8_t bit20_S = (insn >> 20) & 0x1; if (bit23 == 0) { // 32-bit multiply if (bit22_U != 0) { // This is an unexpected bit pattern. return TICKS_OTHER; } if (bit21_A == 0) { if (bit20_S) return TICKS_MULS; return TICKS_MUL; } if (bit20_S) return TICKS_MLAS; return TICKS_MLA; } // 64-bit multiply if (bit22_U == 0) { // Unsigned multiply long if (bit21_A == 0) { if (bit20_S) return TICKS_UMULLS; return TICKS_UMULL; } if (bit20_S) return TICKS_UMLALS; return TICKS_UMLAL; } // Signed multiply long if (bit21_A == 0) { if (bit20_S) return TICKS_SMULLS; return TICKS_SMULL; } if (bit20_S) return TICKS_SMLALS; return TICKS_SMLAL; } return TICKS_OTHER; #endif } int get_insn_ticks_thumb(uint32_t insn) { #if 1 int result = 1; switch ((insn >> 11) & 31) { case 0: case 1: case 2: /* Shift by immediate */ { int Rm = (insn >> 3) & 7; result += _interlock_use(Rm); } break; case 3: /* Add/Substract */ { int Rn = (insn >> 3) & 7; result += _interlock_use(Rn); if ((insn & 0x0400) == 0) { /* register value */ int Rm = (insn >> 6) & 7; result += _interlock_use(Rm); } } break; case 4: /* move immediate */ break; case 5: case 6: case 7: /* add/substract/compare immediate */ { int Rd = (insn >> 8) & 7; result += _interlock_use(Rd); } break; case 8: { if ((insn & 0x0400) == 0) /* data processing register */ { /* the registers can also be Rs and Rn in some cases */ /* but they're always read anyway and located at the */ /* same place, so we don't check the opcode */ int Rm = (insn >> 3) & 7; int Rd = (insn >> 3) & 7; result += _interlock_use(Rm) + _interlock_use(Rd); } else switch ((insn >> 8) & 3) { case 0: case 1: case 2: /* special data processing */ { int Rn = (insn & 7) | ((insn >> 4) & 0x8); int Rm = ((insn >> 3) & 15); result += _interlock_use(Rn) + _interlock_use(Rm); } break; case 3: if ((insn & 0xff07) == 0x4700) /* branch/exchange */ { int Rm = (insn >> 3) & 15; result = 3 + _interlock_use(Rm); } /* else UNDEFINED */ break; } } break; case 9: /* load from literal pool */ { int Rd = (insn >> 8) & 7; _interlock_def(Rd,result+1); } break; case 10: case 11: /* load/store register offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; int Rm = (insn >> 6) & 7; result += _interlock_use(Rn) + _interlock_use(Rm); switch ((insn >> 9) & 7) { case 0: /* STR */ case 1: /* STRH */ case 2: /* STRB */ result += _interlock_use(Rd); break; case 3: /* LDRSB */ case 5: /* LDRH */ case 6: /* LDRB */ case 7: /* LDRSH */ _interlock_def(Rd,result+2); break; case 4: /* LDR */ _interlock_def(Rd,result+1); } } break; case 12: /* store word immediate offset */ case 14: /* store byte immediate offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; result += _interlock_use(Rd) + _interlock_use(Rn); } break; case 13: /* load word immediate offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; result += _interlock_use(Rn); _interlock_def(Rd,result+1); } break; case 15: /* load byte immediate offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; result += _interlock_use(Rn); _interlock_def(Rd,result+2); } break; case 16: /* store halfword immediate offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; result += _interlock_use(Rn) + _interlock_use(Rd); } break; case 17: /* load halfword immediate offset */ { int Rd = (insn & 7); int Rn = (insn >> 3) & 7; result += _interlock_use(Rn); _interlock_def(Rd,result+2); } break; case 18: /* store to stack */ { int Rd = (insn >> 8) & 3; result += _interlock_use(Rd); } break; case 19: /* load from stack */ { int Rd = (insn >> 8) & 3; _interlock_def(Rd,result+1); } break; case 20: /* add to PC */ case 21: /* add to SP */ { int Rd = (insn >> 8) & 3; result += _interlock_use(Rd); } break; case 22: case 23: /* misc. instructions, table 6-2 */ { if ((insn & 0xff00) == 0xb000) /* adjust stack pointer */ { result += _interlock_use(14); } else if ((insn & 0x0600) == 0x0400) /* push pop register list */ { uint32_t mask = insn & 0x01ff; int count, nn; for (count = 0; mask; count++) mask &= (mask-1); result = (count < 2) ? 2 : count; if (insn & 0x0800) /* pop register list */ { for (nn = 0; nn < 9; nn++) if (insn & (1 << nn)) _interlock_def(nn, result); } else /* push register list */ { for (nn = 0; nn < 9; nn++) if (insn & (1 << nn)) result += _interlock_use(nn); } } /* else software breakpoint */ } break; case 24: /* store multiple */ { int Rd = (insn >> 8) & 7; uint32_t mask = insn & 255; int count, nn; for (count = 0; mask; count++) mask &= (mask-1); result = (count < 2) ? 2 : count; result += _interlock_use(Rd); for (nn = 0; nn < 8; nn++) if (insn & (1 << nn)) result += _interlock_use(nn); } break; case 25: /* load multiple */ { int Rd = (insn >> 8) & 7; uint32_t mask = insn & 255; int count, nn; for (count = 0; mask; count++) mask &= (mask-1); result = (count < 2) ? 2 : count; result += _interlock_use(Rd); for (nn = 0; nn < 8; nn++) if (insn & (1 << nn)) _interlock_def(nn, result); } break; case 26: case 27: /* conditional branch / undefined / software interrupt */ switch ((insn >> 8) & 15) { case 14: /* UNDEFINED */ case 15: /* SWI */ break; default: /* conditional branch */ result = 3; } break; case 28: /* unconditional branch */ result = 3; break; case 29: /* BLX suffix or undefined */ if ((insn & 1) == 0) result = 3; break; case 30: /* BLX/BLX prefix */ break; case 31: /* BL suffix */ result = 3; break; } interlock_base += result; return result; #else /* old code */ if ((insn & 0xfc00) == 0x4340) /* MUL */ return TICKS_SMULxy; return TICKS_OTHER; #endif } // Adds an exception trace record. void trace_exception(uint32 target_pc) { if (trace_exc.fstream == NULL) return; // Sometimes we get an unexpected exception as the first record. If the // basic block number is zero, then we know it is bogus. if (trace_bb.current_bb_num == 0) return; uint32_t current_pc = trace_bb.current_bb_addr + 4 * (trace_bb.num_insns - 1); #if 0 if (ftrace_debug) { fprintf(ftrace_debug, "t%llu exc pc: 0x%x bb_addr: 0x%x num_insns: %d current_pc: 0x%x bb_num %llu bb_start_time %llu\n", sim_time, target_pc, trace_bb.current_bb_addr, trace_bb.num_insns, current_pc, trace_bb.current_bb_num, trace_bb.current_bb_start_time); } #endif char *comp_ptr = trace_exc.compressed_ptr; if (comp_ptr >= trace_exc.high_water_ptr) { uint32_t size = comp_ptr - trace_exc.compressed; fwrite(trace_exc.compressed, sizeof(char), size, trace_exc.fstream); comp_ptr = trace_exc.compressed; } uint64_t time_diff = sim_time - trace_exc.prev_time; trace_exc.prev_time = sim_time; uint64_t bb_recnum_diff = trace_bb.recnum - trace_exc.prev_bb_recnum; trace_exc.prev_bb_recnum = trace_bb.recnum; comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(current_pc, comp_ptr); comp_ptr = varint_encode(bb_recnum_diff, comp_ptr); comp_ptr = varint_encode(target_pc, comp_ptr); comp_ptr = varint_encode(trace_bb.current_bb_num, comp_ptr); comp_ptr = varint_encode(trace_bb.current_bb_start_time, comp_ptr); comp_ptr = varint_encode(trace_bb.num_insns, comp_ptr); trace_exc.compressed_ptr = comp_ptr; } void trace_pid_1arg(int pid, int rec_type) { if (trace_pid.fstream == NULL) return; char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + kMaxPidCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(pid, comp_ptr); trace_pid.compressed_ptr = comp_ptr; } void trace_pid_2arg(int tgid, int pid, int rec_type) { if (trace_pid.fstream == NULL) return; char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + kMaxPid2Compressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(tgid, comp_ptr); comp_ptr = varint_encode(pid, comp_ptr); trace_pid.compressed_ptr = comp_ptr; } void trace_switch(int pid) { #if 0 if (ftrace_debug && trace_pid.fstream) fprintf(ftrace_debug, "t%lld switch %d\n", sim_time, pid); #endif trace_pid_1arg(pid, kPidSwitch); current_pid = pid; } void trace_fork(int tgid, int pid) { #if 0 if (ftrace_debug && trace_pid.fstream) fprintf(ftrace_debug, "t%lld fork %d\n", sim_time, pid); #endif trace_pid_2arg(tgid, pid, kPidFork); } void trace_clone(int tgid, int pid) { #if 0 if (ftrace_debug && trace_pid.fstream) fprintf(ftrace_debug, "t%lld clone %d\n", sim_time, pid); #endif trace_pid_2arg(tgid, pid, kPidClone); } void trace_exit(int exitcode) { #if 0 if (ftrace_debug && trace_pid.fstream) fprintf(ftrace_debug, "t%lld exit %d\n", sim_time, exitcode); #endif trace_pid_1arg(exitcode, kPidExit); } void trace_name(char *name) { #if 0 if (ftrace_debug && trace_pid.fstream) { fprintf(ftrace_debug, "t%lld pid %d name %s\n", sim_time, current_pid, name); } #endif if (trace_pid.fstream == NULL) return; int len = strlen(name); char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + len + kMaxNameCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidName; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(current_pid, comp_ptr); comp_ptr = varint_encode(len, comp_ptr); strncpy(comp_ptr, name, len); comp_ptr += len; trace_pid.compressed_ptr = comp_ptr; } void trace_execve(const char *argv, int len) { int ii; if (trace_pid.fstream == NULL) return; // Count the number of args int alen = 0; int sum_len = 0; int argc = 0; const char *ptr = argv; while (sum_len < len) { argc += 1; alen = strlen(ptr); ptr += alen + 1; sum_len += alen + 1; } #if 0 if (ftrace_debug) { fprintf(ftrace_debug, "t%lld argc: %d\n", sim_time, argc); alen = 0; ptr = argv; for (ii = 0; ii < argc; ++ii) { fprintf(ftrace_debug, " argv[%d]: %s\n", ii, ptr); alen = strlen(ptr); ptr += alen + 1; } } #endif char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + len + 5 * argc + kMaxExecArgsCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidExec; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(argc, comp_ptr); ptr = argv; for (ii = 0; ii < argc; ++ii) { alen = strlen(ptr); comp_ptr = varint_encode(alen, comp_ptr); strncpy(comp_ptr, ptr, alen); comp_ptr += alen; ptr += alen + 1; } trace_pid.compressed_ptr = comp_ptr; } void trace_mmap(unsigned long vstart, unsigned long vend, unsigned long offset, const char *path) { if (trace_pid.fstream == NULL) return; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld mmap %08lx - %08lx, offset %08lx '%s'\n", sim_time, vstart, vend, offset, path); #endif int len = strlen(path); char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + len + kMaxMmapCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidMmap; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(vstart, comp_ptr); comp_ptr = varint_encode(vend, comp_ptr); comp_ptr = varint_encode(offset, comp_ptr); comp_ptr = varint_encode(len, comp_ptr); strncpy(comp_ptr, path, len); trace_pid.compressed_ptr = comp_ptr + len; } void trace_munmap(unsigned long vstart, unsigned long vend) { if (trace_pid.fstream == NULL) return; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld munmap %08lx - %08lx\n", sim_time, vstart, vend); #endif char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + kMaxMunmapCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidMunmap; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(vstart, comp_ptr); comp_ptr = varint_encode(vend, comp_ptr); trace_pid.compressed_ptr = comp_ptr; } void trace_dynamic_symbol_add(unsigned long vaddr, const char *name) { if (trace_pid.fstream == NULL) return; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld sym %08lx '%s'\n", sim_time, vaddr, name); #endif int len = strlen(name); char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + len + kMaxSymbolCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidSymbolAdd; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(vaddr, comp_ptr); comp_ptr = varint_encode(len, comp_ptr); strncpy(comp_ptr, name, len); trace_pid.compressed_ptr = comp_ptr + len; } void trace_dynamic_symbol_remove(unsigned long vaddr) { if (trace_pid.fstream == NULL) return; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld remove %08lx\n", sim_time, vaddr); #endif char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + kMaxSymbolCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidSymbolRemove; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(vaddr, comp_ptr); trace_pid.compressed_ptr = comp_ptr; } void trace_init_name(int tgid, int pid, const char *name) { if (trace_pid.fstream == NULL) return; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld kthread %d %s\n", sim_time, pid, name); #endif int len = strlen(name); char *comp_ptr = trace_pid.compressed_ptr; char *max_end_ptr = comp_ptr + len + kMaxKthreadNameCompressed; if (max_end_ptr >= &trace_pid.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_pid.compressed; fwrite(trace_pid.compressed, sizeof(char), size, trace_pid.fstream); comp_ptr = trace_pid.compressed; } uint64_t time_diff = sim_time - trace_pid.prev_time; trace_pid.prev_time = sim_time; comp_ptr = varint_encode(time_diff, comp_ptr); int rec_type = kPidKthreadName; comp_ptr = varint_encode(rec_type, comp_ptr); comp_ptr = varint_encode(tgid, comp_ptr); comp_ptr = varint_encode(pid, comp_ptr); comp_ptr = varint_encode(len, comp_ptr); strncpy(comp_ptr, name, len); trace_pid.compressed_ptr = comp_ptr + len; } void trace_init_exec(unsigned long start, unsigned long end, unsigned long offset, const char *exe) { } // This function is called by the generated code to record the basic // block number. void trace_bb_helper(uint64_t bb_num, TranslationBlock *tb) { BBRec *bb_rec = tb->bb_rec; uint64_t prev_time = tb->prev_time; trace_bb.current_bb_addr = tb->pc; trace_bb.current_bb_num = bb_num; trace_bb.current_bb_start_time = sim_time; trace_bb.num_insns = 0; trace_bb.recnum += 1; #if 0 if (ftrace_debug) fprintf(ftrace_debug, "t%lld %lld\n", sim_time, bb_num); #endif if (bb_rec && bb_rec->bb_num == bb_num && prev_time > trace_bb.flush_time) { uint64_t time_diff = sim_time - prev_time; if (bb_rec->repeat == 0) { bb_rec->repeat = 1; bb_rec->time_diff = time_diff; tb->prev_time = sim_time; return; } else if (time_diff == bb_rec->time_diff) { bb_rec->repeat += 1; tb->prev_time = sim_time; return; } } BBRec *next = trace_bb.next; if (next == &trace_bb.buffer[kMaxNumBasicBlocks]) { BBRec *ptr; char *comp_ptr = trace_bb.compressed_ptr; int64_t prev_bb_num = trace_bb.prev_bb_num; uint64_t prev_bb_time = trace_bb.prev_bb_time; for (ptr = trace_bb.buffer; ptr != next; ++ptr) { if (comp_ptr >= trace_bb.high_water_ptr) { uint32_t size = comp_ptr - trace_bb.compressed; fwrite(trace_bb.compressed, sizeof(char), size, trace_bb.fstream); comp_ptr = trace_bb.compressed; } int64_t bb_diff = ptr->bb_num - prev_bb_num; prev_bb_num = ptr->bb_num; uint64_t time_diff = ptr->start_time - prev_bb_time; prev_bb_time = ptr->start_time; comp_ptr = varint_encode_signed(bb_diff, comp_ptr); comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode(ptr->repeat, comp_ptr); if (ptr->repeat) comp_ptr = varint_encode(ptr->time_diff, comp_ptr); } trace_bb.compressed_ptr = comp_ptr; trace_bb.prev_bb_num = prev_bb_num; trace_bb.prev_bb_time = prev_bb_time; next = trace_bb.buffer; trace_bb.flush_time = sim_time; } tb->bb_rec = next; next->bb_num = bb_num; next->start_time = sim_time; next->time_diff = 0; next->repeat = 0; tb->prev_time = sim_time; next += 1; trace_bb.next = next; } // This function is called by the generated code to record the simulation // time at the start of each instruction. void trace_insn_helper() { InsnRec *current = trace_insn.current; uint64_t time_diff = sim_time - trace_insn.prev_time; trace_insn.prev_time = sim_time; // Keep track of the number of traced instructions so far in this // basic block in case we get an exception in the middle of the bb. trace_bb.num_insns += 1; #if 0 if (ftrace_debug) { uint32_t current_pc = trace_bb.current_bb_addr + 4 * (trace_bb.num_insns - 1); fprintf(ftrace_debug, "%llu %x\n", sim_time, current_pc); } #endif if (time_diff == current->time_diff) { current->repeat += 1; if (current->repeat != 0) return; // The repeat count wrapped around, so back up one and create // a new record. current->repeat -= 1; } current += 1; if (current == &trace_insn.buffer[kInsnBufferSize]) { InsnRec *ptr; char *comp_ptr = trace_insn.compressed_ptr; for (ptr = trace_insn.buffer; ptr != current; ++ptr) { if (comp_ptr >= trace_insn.high_water_ptr) { uint32_t size = comp_ptr - trace_insn.compressed; uint32_t rval = fwrite(trace_insn.compressed, sizeof(char), size, trace_insn.fstream); if (rval != size) { fprintf(stderr, "fwrite() failed\n"); perror(trace_insn.filename); exit(1); } comp_ptr = trace_insn.compressed; } comp_ptr = varint_encode(ptr->time_diff, comp_ptr); comp_ptr = varint_encode(ptr->repeat, comp_ptr); } trace_insn.compressed_ptr = comp_ptr; current = trace_insn.buffer; } current->time_diff = time_diff; current->repeat = 0; trace_insn.current = current; } // Adds an interpreted method trace record. Each trace record is a time // stamped entry or exit to a method in a language executed by a "virtual // machine". This allows profiling tools to show the method names instead // of the core virtual machine interpreter. void trace_interpreted_method(uint32_t addr, int call_type) { if (trace_method.fstream == NULL) return; #if 0 fprintf(stderr, "trace_method time: %llu p%d 0x%x %d\n", sim_time, current_pid, addr, call_type); #endif char *comp_ptr = trace_method.compressed_ptr; char *max_end_ptr = comp_ptr + kMaxMethodCompressed; if (max_end_ptr >= &trace_method.compressed[kCompressedSize]) { uint32_t size = comp_ptr - trace_method.compressed; fwrite(trace_method.compressed, sizeof(char), size, trace_method.fstream); comp_ptr = trace_method.compressed; } uint64_t time_diff = sim_time - trace_method.prev_time; trace_method.prev_time = sim_time; int32_t addr_diff = addr - trace_method.prev_addr; trace_method.prev_addr = addr; int32_t pid_diff = current_pid - trace_method.prev_pid; trace_method.prev_pid = current_pid; comp_ptr = varint_encode(time_diff, comp_ptr); comp_ptr = varint_encode_signed(addr_diff, comp_ptr); comp_ptr = varint_encode_signed(pid_diff, comp_ptr); comp_ptr = varint_encode(call_type, comp_ptr); trace_method.compressed_ptr = comp_ptr; } uint64_t trace_static_bb_num(void) { return trace_static.bb_num; }