/* ******************************************************************************* * * Copyright (C) 2003-2007, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: gencnvex.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2003oct12 * created by: Markus W. Scherer */ #include <stdio.h> #include "unicode/utypes.h" #include "unicode/ustring.h" #include "cstring.h" #include "cmemory.h" #include "ucnv_cnv.h" #include "ucnvmbcs.h" #include "toolutil.h" #include "unewdata.h" #include "ucm.h" #include "makeconv.h" #include "genmbcs.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) static void CnvExtClose(NewConverter *cnvData); static UBool CnvExtIsValid(NewConverter *cnvData, const uint8_t *bytes, int32_t length); static UBool CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); static uint32_t CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData, int32_t tableType); typedef struct CnvExtData { NewConverter newConverter; UCMFile *ucm; /* toUnicode (state table in ucm->states) */ UToolMemory *toUTable, *toUUChars; /* fromUnicode */ UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; uint16_t stage1[MBCS_STAGE_1_SIZE]; uint16_t stage2[MBCS_STAGE_2_SIZE]; uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ uint32_t stage3b[0x10000]; int32_t stage1Top, stage2Top, stage3Top, stage3bTop; /* for stage3 compaction of <subchar1> |2 mappings */ uint16_t stage3Sub1Block; /* statistics */ int32_t maxInBytes, maxOutBytes, maxBytesPerUChar, maxInUChars, maxOutUChars, maxUCharsPerByte; } CnvExtData; NewConverter * CnvExtOpen(UCMFile *ucm) { CnvExtData *extData; extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); if(extData==NULL) { printf("out of memory\n"); exit(U_MEMORY_ALLOCATION_ERROR); } uprv_memset(extData, 0, sizeof(CnvExtData)); extData->ucm=ucm; /* aliased, not owned */ extData->newConverter.close=CnvExtClose; extData->newConverter.isValid=CnvExtIsValid; extData->newConverter.addTable=CnvExtAddTable; extData->newConverter.write=CnvExtWrite; return &extData->newConverter; } static void CnvExtClose(NewConverter *cnvData) { CnvExtData *extData=(CnvExtData *)cnvData; if(extData!=NULL) { utm_close(extData->toUTable); utm_close(extData->toUUChars); utm_close(extData->fromUTableUChars); utm_close(extData->fromUTableValues); utm_close(extData->fromUBytes); } } /* we do not expect this to be called */ static UBool CnvExtIsValid(NewConverter *cnvData, const uint8_t *bytes, int32_t length) { return FALSE; } static uint32_t CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData, int32_t tableType) { CnvExtData *extData=(CnvExtData *)cnvData; int32_t length, top, headerSize; int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; if(tableType&TABLE_BASE) { headerSize=0; } else { _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; /* write the header and base table name for an extension-only table */ length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; while(length&3) { /* add padding */ extData->ucm->baseName[length++]=0; } headerSize=MBCS_HEADER_V4_LENGTH*4+length; /* fill the header */ header.version[0]=4; header.version[1]=2; header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); /* write the header and the base table name */ udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); udata_writeBlock(pData, extData->ucm->baseName, length); } /* fill indexes[] - offsets/indexes are in units of the target array */ top=0; indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; top+=length*4; indexes[UCNV_EXT_TO_U_INDEX]=top; indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); top+=length*4; indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); top+=length*2; indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; length=utm_countItems(extData->fromUTableUChars); top+=length*2; if(top&3) { /* add padding */ *((UChar *)utm_alloc(extData->fromUTableUChars))=0; *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; ++length; top+=2; } indexes[UCNV_EXT_FROM_U_LENGTH]=length; indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; top+=length*4; indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; length=utm_countItems(extData->fromUBytes); top+=length; if(top&1) { /* add padding */ *((uint8_t *)utm_alloc(extData->fromUBytes))=0; ++length; ++top; } indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; top+=length*2; indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; length=extData->stage3Top; top+=length*2; if(top&3) { /* add padding */ extData->stage3[extData->stage3Top++]=0; ++length; top+=2; } indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; top+=length*4; indexes[UCNV_EXT_SIZE]=top; /* statistics */ indexes[UCNV_EXT_COUNT_BYTES]= (extData->maxInBytes<<16)| (extData->maxOutBytes<<8)| extData->maxBytesPerUChar; indexes[UCNV_EXT_COUNT_UCHARS]= (extData->maxInUChars<<16)| (extData->maxOutUChars<<8)| extData->maxUCharsPerByte; indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; /* write the extension data */ udata_writeBlock(pData, indexes, sizeof(indexes)); udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); #if 0 { int32_t i, j; length=extData->stage1Top; printf("\nstage1[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage1[i]!=length) { printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); } } j=length; length=extData->stage2Top; printf("\nstage2[%x]:\n", length); for(i=0; i<length; ++j, ++i) { if(extData->stage2[i]!=0) { printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); } } length=extData->stage3Top; printf("\nstage3[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage3[i]!=0) { printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); } } length=extData->stage3bTop; printf("\nstage3b[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage3b[i]!=0) { printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); } } } #endif if(VERBOSE) { printf("size of extension data: %ld\n", (long)top); } /* return the number of bytes that should have been written */ return (uint32_t)(headerSize+top); } /* to Unicode --------------------------------------------------------------- */ /* * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for * the toUnicode table. * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable * for the base toUnicode table but not for the base fromUnicode table. * The table must be sorted. * Modifies previous data in the reverseMap. */ static int32_t reduceToUMappings(UCMTable *table) { UCMapping *mappings; int32_t *map; int32_t i, j, count; int8_t flag; mappings=table->mappings; map=table->reverseMap; count=table->mappingsLength; /* leave the map alone for the initial mappings with desired flags */ for(i=j=0; i<count; ++i) { flag=mappings[map[i]].f; if(flag!=0 && flag!=3) { break; } } /* reduce from here to the rest */ for(j=i; i<count; ++i) { flag=mappings[map[i]].f; if(flag==0 || flag==3) { map[j++]=map[i]; } } return j; } static uint32_t getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { UChar32 *u32; UChar *u; uint32_t value; int32_t u16Length, ratio; UErrorCode errorCode; /* write the Unicode result code point or string index */ if(m->uLen==1) { u16Length=U16_LENGTH(m->u); value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); } else { /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ /* get the result code point string and its 16-bit string length */ u32=UCM_GET_CODE_POINTS(table, m); errorCode=U_ZERO_ERROR; u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { exit(errorCode); } /* allocate it and put its length and index into the value */ value= (((uint32_t)m->uLen+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| ((uint32_t)utm_countItems(extData->toUUChars)); u=utm_allocN(extData->toUUChars, u16Length); /* write the result 16-bit string */ errorCode=U_ZERO_ERROR; u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { exit(errorCode); } } if(m->f==0) { value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; } /* update statistics */ if(m->bLen>extData->maxInBytes) { extData->maxInBytes=m->bLen; } if(u16Length>extData->maxOutUChars) { extData->maxOutUChars=u16Length; } ratio=(u16Length+(m->bLen-1))/m->bLen; if(ratio>extData->maxUCharsPerByte) { extData->maxUCharsPerByte=ratio; } return value; } /* * Recursive toUTable generator core function. * Preconditions: * - start<limit (There is at least one mapping.) * - The mappings are sorted lexically. (Access is through the reverseMap.) * - All mappings between start and limit have input sequences that share * the same prefix of unitIndex length, and therefore all of these sequences * are at least unitIndex+1 long. * - There are only relevant mappings available through the reverseMap, * see reduceToUMappings(). * * One function invocation generates one section table. * * Steps: * 1. Count the number of unique unit values and get the low/high unit values * that occur at unitIndex. * 2. Allocate the section table with possible optimization for linear access. * 3. Write temporary version of the section table with start indexes of * subsections, each corresponding to one unit value at unitIndex. * 4. Iterate through the table once more, and depending on the subsection length: * 0: write 0 as a result value (unused byte in linear-access section table) * >0: if there is one mapping with an input unit sequence of unitIndex+1 * then defaultValue=compute the mapping result for this whole sequence * else defaultValue=0 * * recurse into the subsection */ static UBool generateToUTable(CnvExtData *extData, UCMTable *table, int32_t start, int32_t limit, int32_t unitIndex, uint32_t defaultValue) { UCMapping *mappings, *m; int32_t *map; int32_t i, j, uniqueCount, count, subStart, subLimit; uint8_t *bytes; int32_t low, high, prev; uint32_t *section; mappings=table->mappings; map=table->reverseMap; /* step 1: examine the input units; set low, high, uniqueCount */ m=mappings+map[start]; bytes=UCM_GET_BYTES(table, m); low=bytes[unitIndex]; uniqueCount=1; prev=high=low; for(i=start+1; i<limit; ++i) { m=mappings+map[i]; bytes=UCM_GET_BYTES(table, m); high=bytes[unitIndex]; if(high!=prev) { prev=high; ++uniqueCount; } } /* step 2: allocate the section; set count, section */ count=(high-low)+1; if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { /* * for the root table and for fairly full tables: * allocate for direct, linear array access * by keeping count, to write an entry for each unit value * from low to high * exception: use a compact table if count==0x100 because * that cannot be encoded in the length byte */ } else { count=uniqueCount; } if(count>=0x100) { fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); return FALSE; } /* allocate the section: 1 entry for the header + count for the items */ section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); /* write the section header */ *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; /* step 3: write temporary section table with subsection starts */ prev=low-1; /* just before low to prevent empty subsections before low */ j=0; /* section table index */ for(i=start; i<limit; ++i) { m=mappings+map[i]; bytes=UCM_GET_BYTES(table, m); high=bytes[unitIndex]; if(high!=prev) { /* start of a new subsection for unit high */ if(count>uniqueCount) { /* write empty subsections for unused units in a linear table */ while(++prev<high) { section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; } } else { prev=high; } /* write the entry with the subsection start */ section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; } } /* assert(j==count) */ /* step 4: recurse and write results */ subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); for(j=0; j<count; ++j) { subStart=subLimit; subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; /* remove the subStart temporary value */ section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; if(subStart==subLimit) { /* leave the value zero: empty subsection for unused unit in a linear table */ continue; } /* see if there is exactly one input unit sequence of length unitIndex+1 */ defaultValue=0; m=mappings+map[subStart]; if(m->bLen==unitIndex+1) { /* do not include this in generateToUTable() */ ++subStart; if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { /* print error for multiple same-input-sequence mappings */ fprintf(stderr, "error: multiple mappings from same bytes\n"); ucm_printMapping(table, m, stderr); ucm_printMapping(table, mappings+map[subStart], stderr); return FALSE; } defaultValue=getToUnicodeValue(extData, table, m); } if(subStart==subLimit) { /* write the result for the input sequence ending here */ section[j]|=defaultValue; } else { /* write the index to the subsection table */ section[j]|=(uint32_t)utm_countItems(extData->toUTable); /* recurse */ if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { return FALSE; } } } return TRUE; } /* * Generate the toUTable and toUUChars from the input table. * The input table must be sorted, and all precision flags must be 0..3. * This function will modify the table's reverseMap. */ static UBool makeToUTable(CnvExtData *extData, UCMTable *table) { int32_t toUCount; toUCount=reduceToUMappings(table); extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); return generateToUTable(extData, table, 0, toUCount, 0, 0); } /* from Unicode ------------------------------------------------------------- */ /* * preprocessing: * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode * change each Unicode string to encode all but the first code point in 16-bit form * * generation: * for each unique code point * write an entry in the 3-stage trie * check that there is only one single-code point sequence * start recursion for following 16-bit input units */ /* * Remove toUnicode fallbacks and non-<subchar1> SUB mappings * which are irrelevant for the fromUnicode extension table. * Remove MBCS_FROM_U_EXT_FLAG bits. * Overwrite the reverseMap with an index array to the relevant mappings. * Modify the code point sequences to a generator-friendly format where * the first code points remains unchanged but the following are recoded * into 16-bit Unicode string form. * The table must be sorted. * Destroys previous data in the reverseMap. */ static int32_t prepareFromUMappings(UCMTable *table) { UCMapping *mappings, *m; int32_t *map; int32_t i, j, count; int8_t flag; mappings=table->mappings; map=table->reverseMap; count=table->mappingsLength; /* * we do not go through the map on input because the mappings are * sorted lexically */ m=mappings; for(i=j=0; i<count; ++m, ++i) { flag=m->f; if(flag>=0) { flag&=MBCS_FROM_U_EXT_MASK; m->f=flag; } if(flag==0 || flag==1 || (flag==2 && m->bLen==1)) { map[j++]=i; if(m->uLen>1) { /* recode all but the first code point to 16-bit Unicode */ UChar32 *u32; UChar *u; UChar32 c; int32_t q, r; u32=UCM_GET_CODE_POINTS(table, m); u=(UChar *)u32; /* destructive in-place recoding */ for(r=2, q=1; q<m->uLen; ++q) { c=u32[q]; U16_APPEND_UNSAFE(u, r, c); } /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ m->uLen=(int8_t)r; } } } return j; } static uint32_t getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { uint8_t *bytes, *resultBytes; uint32_t value; int32_t u16Length, ratio; if(m->f==2) { /* * no mapping, <subchar1> preferred * * no need to count in statistics because the subchars are already * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, * and this non-mapping does not count for maxInUChars which are always * trivially at least two if counting unmappable supplementary code points */ return UCNV_EXT_FROM_U_SUBCHAR1; } bytes=UCM_GET_BYTES(table, m); value=0; switch(m->bLen) { /* 1..3: store the bytes in the value word */ case 3: value=((uint32_t)*bytes++)<<16; case 2: value|=((uint32_t)*bytes++)<<8; case 1: value|=*bytes; break; default: /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ /* store the bytes in fromUBytes[] and the index in the value word */ value=(uint32_t)utm_countItems(extData->fromUBytes); resultBytes=utm_allocN(extData->fromUBytes, m->bLen); uprv_memcpy(resultBytes, bytes, m->bLen); break; } value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; if(m->f==0) { value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; } /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ if(m->uLen==1) { u16Length=U16_LENGTH(m->u); } else { u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); } /* update statistics */ if(u16Length>extData->maxInUChars) { extData->maxInUChars=u16Length; } if(m->bLen>extData->maxOutBytes) { extData->maxOutBytes=m->bLen; } ratio=(m->bLen+(u16Length-1))/u16Length; if(ratio>extData->maxBytesPerUChar) { extData->maxBytesPerUChar=ratio; } return value; } /* * works like generateToUTable(), except that the * output section consists of two arrays, one for input UChars and one * for result values * * also, fromUTable sections are always stored in a compact form for * access via binary search */ static UBool generateFromUTable(CnvExtData *extData, UCMTable *table, int32_t start, int32_t limit, int32_t unitIndex, uint32_t defaultValue) { UCMapping *mappings, *m; int32_t *map; int32_t i, j, uniqueCount, count, subStart, subLimit; UChar *uchars; UChar32 low, high, prev; UChar *sectionUChars; uint32_t *sectionValues; mappings=table->mappings; map=table->reverseMap; /* step 1: examine the input units; set low, high, uniqueCount */ m=mappings+map[start]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); low=uchars[unitIndex]; uniqueCount=1; prev=high=low; for(i=start+1; i<limit; ++i) { m=mappings+map[i]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); high=uchars[unitIndex]; if(high!=prev) { prev=high; ++uniqueCount; } } /* step 2: allocate the section; set count, section */ /* the fromUTable always stores for access via binary search */ count=uniqueCount; /* allocate the section: 1 entry for the header + count for the items */ sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); /* write the section header */ *sectionUChars++=(UChar)count; *sectionValues++=defaultValue; /* step 3: write temporary section table with subsection starts */ prev=low-1; /* just before low to prevent empty subsections before low */ j=0; /* section table index */ for(i=start; i<limit; ++i) { m=mappings+map[i]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); high=uchars[unitIndex]; if(high!=prev) { /* start of a new subsection for unit high */ prev=high; /* write the entry with the subsection start */ sectionUChars[j]=(UChar)high; sectionValues[j]=(uint32_t)i; ++j; } } /* assert(j==count) */ /* step 4: recurse and write results */ subLimit=(int32_t)(sectionValues[0]); for(j=0; j<count; ++j) { subStart=subLimit; subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; /* see if there is exactly one input unit sequence of length unitIndex+1 */ defaultValue=0; m=mappings+map[subStart]; if(m->uLen==unitIndex+1) { /* do not include this in generateToUTable() */ ++subStart; if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { /* print error for multiple same-input-sequence mappings */ fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); ucm_printMapping(table, m, stderr); ucm_printMapping(table, mappings+map[subStart], stderr); return FALSE; } defaultValue=getFromUBytesValue(extData, table, m); } if(subStart==subLimit) { /* write the result for the input sequence ending here */ sectionValues[j]=defaultValue; } else { /* write the index to the subsection table */ sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); /* recurse */ if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { return FALSE; } } } return TRUE; } /* * add entries to the fromUnicode trie, * assume to be called with code points in ascending order * and use that to build the trie in precompacted form */ static void addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; if(value==0) { return; } /* * compute the index for each stage, * allocate a stage block if necessary, * and write the stage value */ i1=c>>10; if(i1>=extData->stage1Top) { extData->stage1Top=i1+1; } nextOffset=(c>>4)&0x3f; if(extData->stage1[i1]==0) { /* allocate another block in stage 2; overlap with the previous block */ newBlock=extData->stage2Top; min=newBlock-nextOffset; /* minimum block start with overlap */ while(min<newBlock && extData->stage2[newBlock-1]==0) { --newBlock; } extData->stage1[i1]=(uint16_t)newBlock; extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; if(extData->stage2Top>LENGTHOF(extData->stage2)) { fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); exit(U_MEMORY_ALLOCATION_ERROR); } } i2=extData->stage1[i1]+nextOffset; nextOffset=c&0xf; if(extData->stage2[i2]==0) { /* allocate another block in stage 3; overlap with the previous block */ newBlock=extData->stage3Top; min=newBlock-nextOffset; /* minimum block start with overlap */ while(min<newBlock && extData->stage3[newBlock-1]==0) { --newBlock; } /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; if(extData->stage3Top>LENGTHOF(extData->stage3)) { fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); exit(U_MEMORY_ALLOCATION_ERROR); } } i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; /* * assume extData->stage3[i3]==0 because we get * code points in strictly ascending order */ if(value==UCNV_EXT_FROM_U_SUBCHAR1) { /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ extData->stage3[i3]=1; /* * precompaction is not optimal for <subchar1> |2 mappings because * stage3 values for them are all the same, unlike for other mappings * which all have unique values; * use a simple compaction of reusing a whole block filled with these * mappings */ /* is the entire block filled with <subchar1> |2 mappings? */ if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { for(min=i3-nextOffset; min<i3 && extData->stage3[min]==1; ++min) {} if(min==i3) { /* the entire block is filled with these mappings */ if(extData->stage3Sub1Block!=0) { /* point to the previous such block and remove this block from stage3 */ extData->stage2[i2]=extData->stage3Sub1Block; extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); } else { /* remember this block's stage2 entry */ extData->stage3Sub1Block=extData->stage2[i2]; } } } } else { if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) { fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); exit(U_MEMORY_ALLOCATION_ERROR); } /* roundtrip or fallback mapping */ extData->stage3[i3]=(uint16_t)i3b; extData->stage3b[i3b]=value; } } static UBool generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { UCMapping *mappings, *m; int32_t *map; uint32_t value; int32_t subStart, subLimit; UChar32 *codePoints; UChar32 c, next; if(mapLength==0) { return TRUE; } mappings=table->mappings; map=table->reverseMap; /* * iterate over same-initial-code point mappings, * enter the initial code point into the trie, * and start a recursion on the corresponding mappings section * with generateFromUTable() */ m=mappings+map[0]; codePoints=UCM_GET_CODE_POINTS(table, m); next=codePoints[0]; subLimit=0; while(subLimit<mapLength) { /* get a new subsection of mappings starting with the same code point */ subStart=subLimit; c=next; while(next==c && ++subLimit<mapLength) { m=mappings+map[subLimit]; codePoints=UCM_GET_CODE_POINTS(table, m); next=codePoints[0]; } /* * compute the value for this code point; * if there is a mapping for this code point alone, it is at subStart * because the table is sorted lexically */ value=0; m=mappings+map[subStart]; codePoints=UCM_GET_CODE_POINTS(table, m); if(m->uLen==1) { /* do not include this in generateFromUTable() */ ++subStart; if(subStart<subLimit && mappings[map[subStart]].uLen==1) { /* print error for multiple same-input-sequence mappings */ fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); ucm_printMapping(table, m, stderr); ucm_printMapping(table, mappings+map[subStart], stderr); return FALSE; } value=getFromUBytesValue(extData, table, m); } if(subStart==subLimit) { /* write the result for this one code point */ addFromUTrieEntry(extData, c, value); } else { /* write the index to the subsection table */ addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { return FALSE; } } } return TRUE; } /* * Generate the fromU data structures from the input table. * The input table must be sorted, and all precision flags must be 0..3. * This function will modify the table's reverseMap. */ static UBool makeFromUTable(CnvExtData *extData, UCMTable *table) { uint16_t *stage1; int32_t i, stage1Top, fromUCount; fromUCount=prepareFromUMappings(table); extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); /* allocate all-unassigned stage blocks */ extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; /* * stage 3b stores only unique values, and in * index 0: 0 for "no mapping" * index 1: "no mapping" with preference for <subchar1> rather than <subchar> */ extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; extData->stage3bTop=2; /* allocate the first entry in the fromUTable because index 0 means "no result" */ utm_alloc(extData->fromUTableUChars); utm_alloc(extData->fromUTableValues); if(!generateFromUTrie(extData, table, fromUCount)) { return FALSE; } /* * offset the stage 1 trie entries by stage1Top because they will * be stored in a single array */ stage1=extData->stage1; stage1Top=extData->stage1Top; for(i=0; i<stage1Top; ++i) { stage1[i]=(uint16_t)(stage1[i]+stage1Top); } return TRUE; } /* -------------------------------------------------------------------------- */ static UBool CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { CnvExtData *extData; if(table->unicodeMask&UCNV_HAS_SURROGATES) { fprintf(stderr, "error: contains mappings for surrogate code points\n"); return FALSE; } staticData->conversionType=UCNV_MBCS; extData=(CnvExtData *)cnvData; /* * assume that the table is sorted * * call the functions in this order because * makeToUTable() modifies the original reverseMap, * makeFromUTable() writes a whole new mapping into reverseMap */ return makeToUTable(extData, table) && makeFromUTable(extData, table); }